BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: von Woedtke T, Reuter S, Masur K, Weltmann K. Plasmas for medicine. Physics Reports 2013;530:291-320. [DOI: 10.1016/j.physrep.2013.05.005] [Cited by in Crossref: 506] [Cited by in F6Publishing: 207] [Article Influence: 56.2] [Reference Citation Analysis]
Number Citing Articles
1 Kostov KG, Machida M, Prysiazhnyi V, Honda RY. Transfer of a cold atmospheric pressure plasma jet through a long flexible plastic tube. Plasma Sources Sci Technol 2015;24:025038. [DOI: 10.1088/0963-0252/24/2/025038] [Cited by in Crossref: 27] [Cited by in F6Publishing: 7] [Article Influence: 3.9] [Reference Citation Analysis]
2 Korbut AN, Kelman VA, Zhmenyak YV, Klenovskii MS. Emission properties of an atmospheric-pressure helium plasma jet generated by a barrier discharge. Opt Spectrosc 2014;116:919-25. [DOI: 10.1134/s0030400x14040146] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 1.1] [Reference Citation Analysis]
3 Colonna G, D’ammando G, Pietanza LD. The role of molecular vibration in nanosecond repetitively pulsed discharges and in DBDs in hydrogen plasmas. Plasma Sources Sci Technol 2016;25:054001. [DOI: 10.1088/0963-0252/25/5/054001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 2] [Article Influence: 3.3] [Reference Citation Analysis]
4 Tanaka H, Ishikawa K, Mizuno M, Toyokuni S, Kajiyama H, Kikkawa F, Metelmann H, Hori M. State of the art in medical applications using non-thermal atmospheric pressure plasma. Rev Mod Plasma Phys 2017;1. [DOI: 10.1007/s41614-017-0004-3] [Cited by in Crossref: 53] [Cited by in F6Publishing: 17] [Article Influence: 10.6] [Reference Citation Analysis]
5 Wild R, Gerling T, Bussiahn R, Weltmann K, Stollenwerk L. Phase-resolved measurement of electric charge deposited by an atmospheric pressure plasma jet on a dielectric surface. J Phys D: Appl Phys 2014;47:042001. [DOI: 10.1088/0022-3727/47/4/042001] [Cited by in Crossref: 26] [Cited by in F6Publishing: 5] [Article Influence: 2.9] [Reference Citation Analysis]
6 Svarnas P, Spiliopoulou A, Koutsoukos P, Gazeli K, Anastassiou E. Acinetobacter baumannii Deactivation by Means of DBD-Based Helium Plasma Jet. Plasma 2019;2:77-90. [DOI: 10.3390/plasma2020008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 3.3] [Reference Citation Analysis]
7 Yokoyama M, Johkura K, Sato T. Gene expression responses of HeLa cells to chemical species generated by an atmospheric plasma flow. Biochem Biophys Res Commun 2014;450:1266-71. [PMID: 24996177 DOI: 10.1016/j.bbrc.2014.06.116] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
8 Babaeva NY, Naidis GV. Modeling of Plasmas for Biomedicine. Trends in Biotechnology 2018;36:603-14. [DOI: 10.1016/j.tibtech.2017.06.017] [Cited by in Crossref: 36] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
9 Lindsay A, Anderson C, Slikboer E, Shannon S, Graves D. Momentum, heat, and neutral mass transport in convective atmospheric pressure plasma-liquid systems and implications for aqueous targets. J Phys D: Appl Phys 2015;48:424007. [DOI: 10.1088/0022-3727/48/42/424007] [Cited by in Crossref: 63] [Cited by in F6Publishing: 25] [Article Influence: 9.0] [Reference Citation Analysis]
10 Xiong Z, Graves DB. A novel cupping-assisted plasma treatment for skin disinfection. J Phys D: Appl Phys 2017;50:05LT01. [DOI: 10.1088/1361-6463/50/5/05lt01] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Sun A, Becker MM, Loffhagen D. PIC/MCC simulation of capacitively coupled discharges: Effect of particle management and integration. Computer Physics Communications 2016;206:35-44. [DOI: 10.1016/j.cpc.2016.05.003] [Cited by in Crossref: 28] [Cited by in F6Publishing: 5] [Article Influence: 4.7] [Reference Citation Analysis]
12 Schmidt A, Bekeschus S, von Woedtke T, Hasse S. Cell migration and adhesion of a human melanoma cell line is decreased by cold plasma treatment. Clinical Plasma Medicine 2015;3:24-31. [DOI: 10.1016/j.cpme.2015.05.003] [Cited by in Crossref: 40] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
13 Yang H, Lu R, Xian Y, Gan L, Lu X, Yang X. Effects of atmospheric pressure cold plasma on human hepatocarcinoma cell and its 5-fluorouracil resistant cell line. Physics of Plasmas 2015;22:122006. [DOI: 10.1063/1.4933405] [Cited by in Crossref: 24] [Cited by in F6Publishing: 10] [Article Influence: 3.4] [Reference Citation Analysis]
14 Gan L, Jiang J, Duan JW, Wu XJZ, Zhang S, Duan XR, Song JQ, Chen HX. Cold atmospheric plasma applications in dermatology: A systematic review. J Biophotonics 2021;14:e202000415. [PMID: 33231354 DOI: 10.1002/jbio.202000415] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
15 Hojnik N, Modic M, Walsh JL, Žigon D, Javornik U, Plavec J, Žegura B, Filipič M, Cvelbar U. Unravelling the pathways of air plasma induced aflatoxin B1 degradation and detoxification. J Hazard Mater 2021;403:123593. [PMID: 33264852 DOI: 10.1016/j.jhazmat.2020.123593] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
16 Rodero A, García M. Gas temperature determination of non-thermal atmospheric plasmas from the collisional broadening of argon atomic emission lines. Journal of Quantitative Spectroscopy and Radiative Transfer 2017;198:93-103. [DOI: 10.1016/j.jqsrt.2017.05.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 2.6] [Reference Citation Analysis]
17 Winter J, Nishime TM, Glitsch S, Lühder H, Weltmann K. On the development of a deployable cold plasma endoscope. Contributions to Plasma Physics 2018;58:404-14. [DOI: 10.1002/ctpp.201700127] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
18 Attri P, Kim M, Choi EH, Cho AE, Koga K, Shiratani M. Impact of an ionic liquid on protein thermodynamics in the presence of cold atmospheric plasma and gamma rays. Phys Chem Chem Phys 2017;19:25277-88. [DOI: 10.1039/c7cp04083k] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 2.2] [Reference Citation Analysis]
19 Naidis GV. Production of active species in cold helium–air plasma jets. Plasma Sources Sci Technol 2014;23:065014. [DOI: 10.1088/0963-0252/23/6/065014] [Cited by in Crossref: 38] [Cited by in F6Publishing: 15] [Article Influence: 4.8] [Reference Citation Analysis]
20 Oh J, Strudwick X, Short RD, Ogawa K, Hatta A, Furuta H, Gaur N, Hong S, Cowin AJ, Fukuhara H, Inoue K, Ito M, Charles C, Boswell RW, Bradley JW, Graves DB, Szili EJ. How plasma induced oxidation, oxygenation, and de-oxygenation influences viability of skin cells. Appl Phys Lett 2016;109:203701. [DOI: 10.1063/1.4967880] [Cited by in Crossref: 22] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
21 Lisco F, Shaw A, Wright A, Walls J, Iza F. Atmospheric-pressure plasma surface activation for solution processed photovoltaic devices. Solar Energy 2017;146:287-97. [DOI: 10.1016/j.solener.2017.02.030] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 2.6] [Reference Citation Analysis]
22 Tanaka H, Mizuno M, Toyokuni S, Maruyama S, Kodera Y, Terasaki H, Adachi T, Kato M, Kikkawa F, Hori M. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density. Physics of Plasmas 2015;22:122004. [DOI: 10.1063/1.4933402] [Cited by in Crossref: 42] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
23 Diógenes FEP, Nascimento SRC, Alves Junior C, Paiva EP, Torres SB, Oliveira AK, Ambrósio MMQ. Inactivation of isolated fungi on Erythrina velutina Willd. seeds through atmospheric plasma. Braz J Biol 2021;84:e251367. [PMID: 34932630 DOI: 10.1590/1519-6984.251367] [Reference Citation Analysis]
24 Carreiro AF, Delben JA, Guedes S, Silveira EJ, Janal MN, Vergani CE, Pushalkar S, Duarte S. Low‐temperature plasma on peri‐implant–related biofilm and gingival tissue. J Periodontol 2018;90:507-15. [DOI: 10.1002/jper.18-0366] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
25 Schmidt-bleker A, Winter J, Bösel A, Reuter S, Weltmann K. On the plasma chemistry of a cold atmospheric argon plasma jet with shielding gas device. Plasma Sources Sci Technol 2016;25:015005. [DOI: 10.1088/0963-0252/25/1/015005] [Cited by in Crossref: 107] [Cited by in F6Publishing: 32] [Article Influence: 15.3] [Reference Citation Analysis]
26 Winter J, Brandenburg R, Weltmann K. Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Sci Technol 2015;24:064001. [DOI: 10.1088/0963-0252/24/6/064001] [Cited by in Crossref: 184] [Cited by in F6Publishing: 32] [Article Influence: 26.3] [Reference Citation Analysis]
27 Pei X, Ghasemi M, Xu H, Hasnain Q, Wu S, Tu Y, Lu X. Dynamics of the gas flow turbulent front in atmospheric pressure plasma jets. Plasma Sources Sci Technol 2016;25:035013. [DOI: 10.1088/0963-0252/25/3/035013] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 2.2] [Reference Citation Analysis]
28 Hasse S, Duong Tran T, Hahn O, Kindler S, Metelmann H, von Woedtke T, Masur K. Induction of proliferation of basal epidermal keratinocytes by cold atmospheric-pressure plasma. Clin Exp Dermatol 2016;41:202-9. [DOI: 10.1111/ced.12735] [Cited by in Crossref: 51] [Cited by in F6Publishing: 38] [Article Influence: 7.3] [Reference Citation Analysis]
29 Uchida G, Kawabata K, Ito T, Takenaka K, Setsuhara Y. Development of a non-equilibrium 60 MHz plasma jet with a long discharge plume. Journal of Applied Physics 2017;122:033301. [DOI: 10.1063/1.4993715] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
30 Voráč J, Synek P, Procházka V, Hoder T. State-by-state emission spectra fitting for non-equilibrium plasmas: OH spectra of surface barrier discharge at argon/water interface. J Phys D: Appl Phys 2017;50:294002. [DOI: 10.1088/1361-6463/aa7570] [Cited by in Crossref: 40] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
31 Mann MS, Tiede R, Gavenis K, Daeschlein G, Bussiahn R, Weltmann K, Emmert S, Woedtke TV, Ahmed R. Introduction to DIN-specification 91315 based on the characterization of the plasma jet kINPen® MED. Clinical Plasma Medicine 2016;4:35-45. [DOI: 10.1016/j.cpme.2016.06.001] [Cited by in Crossref: 48] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
32 Gaens WV, Iseni S, Schmidt-bleker A, Weltmann K, Reuter S, Bogaerts A. Numerical analysis of the effect of nitrogen and oxygen admixtures on the chemistry of an argon plasma jet operating at atmospheric pressure. New J Phys 2015;17:033003. [DOI: 10.1088/1367-2630/17/3/033003] [Cited by in Crossref: 27] [Cited by in F6Publishing: 10] [Article Influence: 3.9] [Reference Citation Analysis]
33 Hori M, Laroussi M, Masur K, Ikehara Y. Plasma Processes and Cancer - Special Topical Cluster of the 2 nd IWPCT Meeting. Plasma Process Polym 2015;12:1336-7. [DOI: 10.1002/ppap.201500180] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
34 Nolff MC, Winter S, Reese S, Meyer‐lindenberg A. Comparison of polyhexanide, cold atmospheric plasma and saline in the treatment of canine bite wounds. J Small Anim Pract 2018;60:348-55. [DOI: 10.1111/jsap.12971] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
35 Sasaki S, Honda R, Hokari Y, Takashima K, Kanzaki M, Kaneko T. Characterization of plasma-induced cell membrane permeabilization: focus on OH radical distribution. J Phys D: Appl Phys 2016;49:334002. [DOI: 10.1088/0022-3727/49/33/334002] [Cited by in Crossref: 34] [Cited by in F6Publishing: 6] [Article Influence: 5.7] [Reference Citation Analysis]
36 Lu X, Naidis G, Laroussi M, Reuter S, Graves D, Ostrikov K. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Physics Reports 2016;630:1-84. [DOI: 10.1016/j.physrep.2016.03.003] [Cited by in Crossref: 600] [Cited by in F6Publishing: 152] [Article Influence: 100.0] [Reference Citation Analysis]
37 Hüfner A, Steffen H, Holtfreter B, Schlüter R, Duske K, Matthes R, von Woedtke T, Weltmann K, Kocher T, Jablonowski L. Effects of Non-Thermal Atmospheric Pressure Plasma and Sodium Hypochlorite Solution on Enterococcus faecalis Biofilm: An Investigation in Extracted Teeth: Effects of Non-Thermal Atmospheric Pressure…. Plasma Process Polym 2017;14:1600064. [DOI: 10.1002/ppap.201600064] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
38 Casado E, Garcia MC, Krawczyk DA, Romero‐salguero F, Rodero A. Study of the plasma–liquid interaction for an argon nonthermal microwave plasma jet from the analysis of benzene degradation. Plasma Process Polym 2020;17:2000030. [DOI: 10.1002/ppap.202000030] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
39 Xu Z, Cheng C, Shen J, Lan Y, Hu S, Han W, Chu PK. In vitro antimicrobial effects and mechanisms of direct current air-liquid discharge plasma on planktonic Staphylococcus aureus and Escherichia coli in liquids. Bioelectrochemistry 2018;121:125-34. [DOI: 10.1016/j.bioelechem.2018.01.012] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 6.8] [Reference Citation Analysis]
40 Zhang J, Kwon T, Kim S, Jeong D. Plasma Farming: Non-Thermal Dielectric Barrier Discharge Plasma Technology for Improving the Growth of Soybean Sprouts and Chickens. Plasma 2018;1:285-96. [DOI: 10.3390/plasma1020025] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 3.3] [Reference Citation Analysis]
41 Graves DB. Low temperature plasma biomedicine: A tutorial review. Physics of Plasmas 2014;21:080901. [DOI: 10.1063/1.4892534] [Cited by in Crossref: 243] [Cited by in F6Publishing: 69] [Article Influence: 30.4] [Reference Citation Analysis]
42 Friedman PC. Cold atmospheric pressure (physical) plasma in dermatology: where are we today? Int J Dermatol 2020;59:1171-84. [PMID: 32783244 DOI: 10.1111/ijd.15110] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
43 Kaushik NK, Kaushik N, Min B, Choi KH, Hong YJ, Miller V, Fridman A, Choi EH. Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF- α ) as a killing mechanism for cancer cell death after cold plasma activation. J Phys D: Appl Phys 2016;49:084001. [DOI: 10.1088/0022-3727/49/8/084001] [Cited by in Crossref: 53] [Cited by in F6Publishing: 20] [Article Influence: 8.8] [Reference Citation Analysis]
44 Wahyudiono, Mano K, Hayashi Y, Yamada M, Takahashi S, Takada N, Kanda H, Goto M. Atmospheric-pressure pulsed discharge plasma in capillary slug flow system for dye decomposition. Chemical Engineering and Processing - Process Intensification 2019;135:133-40. [DOI: 10.1016/j.cep.2018.11.023] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 3.3] [Reference Citation Analysis]
45 Homola T, Krumpolec R, Zemánek M, Kelar J, Synek P, Hoder T, Černák M. An Array of Micro-hollow Surface Dielectric Barrier Discharges for Large-Area Atmospheric-Pressure Surface Treatments. Plasma Chem Plasma Process 2017;37:1149-63. [DOI: 10.1007/s11090-017-9792-z] [Cited by in Crossref: 21] [Article Influence: 4.2] [Reference Citation Analysis]
46 Czapka T, Maliszewska I, Olesiak-bańska J. Influence of Atmospheric Pressure Non-thermal Plasma on Inactivation of Biofilm Cells. Plasma Chem Plasma Process 2018;38:1181-97. [DOI: 10.1007/s11090-018-9925-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
47 Weltmann K, von Woedtke T. Plasma medicine—current state of research and medical application. Plasma Phys Control Fusion 2017;59:014031. [DOI: 10.1088/0741-3335/59/1/014031] [Cited by in Crossref: 209] [Cited by in F6Publishing: 73] [Article Influence: 34.8] [Reference Citation Analysis]
48 Lu P, Boehm D, Cullen P, Bourke P. Controlled cytotoxicity of plasma treated water formulated by open-air hybrid mode discharge. Appl Phys Lett 2017;110:264102. [DOI: 10.1063/1.4990525] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 2.8] [Reference Citation Analysis]
49 Nguyen DB, Mok YS, Huynh DL, Jeong DK, Lee WG. Application of plasma jet to the inhibition of the proliferation of hepatic malignant cells via reactive oxygen species generation. Plasma Process Polym 2019;16:1800173. [DOI: 10.1002/ppap.201800173] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
50 Janda M, Martišovitš V, Hensel K, Machala Z. Generation of Antimicrobial NOx by Atmospheric Air Transient Spark Discharge. Plasma Chem Plasma Process 2016;36:767-81. [DOI: 10.1007/s11090-016-9694-5] [Cited by in Crossref: 48] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
51 Girard F, Badets V, Blanc S, Gazeli K, Marlin L, Authier L, Svarnas P, Sojic N, Clément F, Arbault S. Formation of reactive nitrogen species including peroxynitrite in physiological buffer exposed to cold atmospheric plasma. RSC Adv 2016;6:78457-67. [DOI: 10.1039/c6ra12791f] [Cited by in Crossref: 79] [Cited by in F6Publishing: 4] [Article Influence: 13.2] [Reference Citation Analysis]
52 Zhang X, Zhang X, Li H, Wang L, Zhang C, Xing X, Bao C. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Appl Microbiol Biotechnol 2014;98:5387-96. [DOI: 10.1007/s00253-014-5755-y] [Cited by in Crossref: 160] [Cited by in F6Publishing: 127] [Article Influence: 20.0] [Reference Citation Analysis]
53 Pawlat J, Terebun P, Kwiatkowski M, Diatczyk J. RF atmospheric plasma jet surface treatment of paper. J Phys D: Appl Phys 2016;49:374001. [DOI: 10.1088/0022-3727/49/37/374001] [Cited by in Crossref: 25] [Cited by in F6Publishing: 6] [Article Influence: 4.2] [Reference Citation Analysis]
54 Kaushik N, Kumar N, Kim CH, Kaushik NK, Choi EH. Dielectric Barrier Discharge Plasma Efficiently Delivers an Apoptotic Response in Human Monocytic Lymphoma: DBD Plasma Efficiently Affects Lymphoma Cells. Plasma Process Polym 2014;11:1175-87. [DOI: 10.1002/ppap.201400102] [Cited by in Crossref: 52] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
55 Schmidt A, von Woedtke T. Highlight Issue: Plasma Medicine. Biol Chem 2018;400:1-2. [PMID: 30403652 DOI: 10.1515/hsz-2018-0410] [Reference Citation Analysis]
56 Metelmann H, Nedrelow DS, Seebauer C, Schuster M, von Woedtke T, Weltmann K, Kindler S, Metelmann PH, Finkelstein SE, Von Hoff DD, Podmelle F. Head and neck cancer treatment and physical plasma. Clinical Plasma Medicine 2015;3:17-23. [DOI: 10.1016/j.cpme.2015.02.001] [Cited by in Crossref: 119] [Cited by in F6Publishing: 43] [Article Influence: 17.0] [Reference Citation Analysis]
57 Naidis GV, Babaeva NY. Modeling of streamer dynamics in helium plasma jets driven by modulated voltage pulses. Physics of Plasmas 2019;26:094501. [DOI: 10.1063/1.5115779] [Cited by in Crossref: 8] [Article Influence: 2.7] [Reference Citation Analysis]
58 Maheux S, Frache G, Thomann JS, Clément F, Penny C, Belmonte T, Duday D. Small unilamellar liposomes as a membrane model for cell inactivation by cold atmospheric plasma treatment. J Phys D: Appl Phys 2016;49:344001. [DOI: 10.1088/0022-3727/49/34/344001] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
59 Kawasaki T, Kusumegi S, Kudo A, Sakanoshita T, Tsurumaru T, Sato A, Uchida G, Koga K, Shiratani M. Effects of irradiation distance on supply of reactive oxygen species to the bottom of a Petri dish filled with liquid by an atmospheric O 2 /He plasma jet. Journal of Applied Physics 2016;119:173301. [DOI: 10.1063/1.4948430] [Cited by in Crossref: 24] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
60 Misra N, Yepez X, Xu L, Keener K. In-package cold plasma technologies. Journal of Food Engineering 2019;244:21-31. [DOI: 10.1016/j.jfoodeng.2018.09.019] [Cited by in Crossref: 47] [Cited by in F6Publishing: 14] [Article Influence: 15.7] [Reference Citation Analysis]
61 Sobota A, Guaitella O, Sretenović GB, Krstić IB, Kovačević VV, Obrusník A, Nguyen YN, Zajíčková L, Obradović BM, Kuraica MM. Electric field measurements in a kHz-driven He jet—the influence of the gas flow speed. Plasma Sources Sci Technol 2016;25:065026. [DOI: 10.1088/0963-0252/25/6/065026] [Cited by in Crossref: 29] [Cited by in F6Publishing: 7] [Article Influence: 4.8] [Reference Citation Analysis]
62 Wende K, Bekeschus S, Schmidt A, Jatsch L, Hasse S, Weltmann K, Masur K, von Woedtke T. Risk assessment of a cold argon plasma jet in respect to its mutagenicity. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2016;798-799:48-54. [DOI: 10.1016/j.mrgentox.2016.02.003] [Cited by in Crossref: 89] [Cited by in F6Publishing: 73] [Article Influence: 14.8] [Reference Citation Analysis]
63 Bansemer R, Schmidt-bleker A, Rienen UV, Weltmann K. Investigation and control of the ${{\rm{O}}}_{3}$- to $\mathrm{NO}$-transition in a novel sub-atmospheric pressure dielectric barrier discharge. Plasma Sources Sci Technol 2017;26:065005. [DOI: 10.1088/1361-6595/aa6c34] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
64 Gibson AR, Mccarthy HO, Ali AA, O'connell D, Graham WG. Interactions of a Non-Thermal Atmospheric Pressure Plasma Effluent with PC-3 Prostate Cancer Cells: Interactions of a Non-Thermal Atmospheric Pressure …. Plasma Process Polym 2014;11:1142-9. [DOI: 10.1002/ppap.201400111] [Cited by in Crossref: 46] [Cited by in F6Publishing: 22] [Article Influence: 5.8] [Reference Citation Analysis]
65 Lehmann A, Pietag F, Arnold T. Human health risk evaluation of a microwave-driven atmospheric plasma jet as medical device. Clinical Plasma Medicine 2017;7-8:16-23. [DOI: 10.1016/j.cpme.2017.06.001] [Cited by in Crossref: 10] [Article Influence: 2.0] [Reference Citation Analysis]
66 Manaloto E, Gowen AA, Lesniak A, He Z, Casey A, Cullen PJ, Curtin JF. Cold atmospheric plasma induces silver nanoparticle uptake, oxidative dissolution and enhanced cytotoxicity in glioblastoma multiforme cells. Arch Biochem Biophys 2020;689:108462. [PMID: 32590068 DOI: 10.1016/j.abb.2020.108462] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
67 Kobayashi T, Iwata N, Oh J, Hahizume H, Ohta T, Takeda K, Ishikawa K, Hori M, Ito M. Bactericidal pathway of Escherichia coli in buffered saline treated with oxygen radicals. J Phys D: Appl Phys 2017;50:155208. [DOI: 10.1088/1361-6463/aa61d7] [Cited by in Crossref: 19] [Cited by in F6Publishing: 6] [Article Influence: 3.8] [Reference Citation Analysis]
68 Kawasaki T, Sato A, Kusumegi S, Kudo A, Sakanoshita T, Tsurumaru T, Uchida G, Koga K, Shiratani M. Two-dimensional concentration distribution of reactive oxygen species transported through a tissue phantom by atmospheric-pressure plasma-jet irradiation. Appl Phys Express 2016;9:076202. [DOI: 10.7567/apex.9.076202] [Cited by in Crossref: 31] [Cited by in F6Publishing: 1] [Article Influence: 5.2] [Reference Citation Analysis]
69 Iseni S, Zhang S, van Gessel AFH, Hofmann S, van Ham BTJ, Reuter S, Weltmann K, Bruggeman PJ. Nitric oxide density distributions in the effluent of an RF argon APPJ: effect of gas flow rate and substrate. New J Phys 2014;16:123011. [DOI: 10.1088/1367-2630/16/12/123011] [Cited by in Crossref: 46] [Cited by in F6Publishing: 22] [Article Influence: 5.8] [Reference Citation Analysis]
70 Jones DB, da Costa RF, Kossoski F, Varella MTDN, Bettega MHF, Ferreira da Silva F, Limão-vieira P, García G, Lima MAP, White RD, Brunger MJ. Electron-impact electronic-state excitation of para -benzoquinone. The Journal of Chemical Physics 2018;148:124312. [DOI: 10.1063/1.5023494] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
71 Demkin VP, Melnichuk SV, Demkin OV, Kingma H, Van de Berg R. Spectroscopic studies of non-thermal plasma jet at atmospheric pressure formed in low-current nonsteady-state plasmatron for biomedical applications. Physics of Plasmas 2016;23:043509. [DOI: 10.1063/1.4946882] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
72 Trizio I, Sardella E, Francioso E, Dilecce G, Rizzi V, Cosma P, Schmidt M, Hänsch M, von Woedtke T, Favia P, Gristina R. Investigation of air-DBD effects on biological liquids for in vitro studies on eukaryotic cells. Clinical Plasma Medicine 2015;3:62-71. [DOI: 10.1016/j.cpme.2015.09.003] [Cited by in Crossref: 8] [Article Influence: 1.1] [Reference Citation Analysis]
73 Parkey J, Cross J, Hayes R, Parham C, Staack D, Sharma AC. A Battery Powered, Portable, and Self-Contained Non-Thermal Helium Plasma Jet Device for Point-of-Injury Burn Wound Treatment: A Battery Powered, Portable and Self-Contained…. Plasma Process Polym 2015;12:1244-55. [DOI: 10.1002/ppap.201400245] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
74 Kovalova Z, Leroy M, Kirkpatrick MJ, Odic E, Machala Z. Corona discharges with water electrospray for Escherichia coli biofilm eradication on a surface. Bioelectrochemistry 2016;112:91-9. [DOI: 10.1016/j.bioelechem.2016.05.002] [Cited by in Crossref: 32] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
75 Schmidt-bleker A, Norberg SA, Winter J, Johnsen E, Reuter S, Weltmann KD, Kushner MJ. Propagation mechanisms of guided streamers in plasma jets: the influence of electronegativity of the surrounding gas. Plasma Sources Sci Technol 2015;24:035022. [DOI: 10.1088/0963-0252/24/3/035022] [Cited by in Crossref: 63] [Cited by in F6Publishing: 22] [Article Influence: 9.0] [Reference Citation Analysis]
76 Szili EJ, Hong SH, Oh JS, Gaur N, Short RD. Tracking the Penetration of Plasma Reactive Species in Tissue Models. Trends Biotechnol 2018;36:594-602. [PMID: 28843839 DOI: 10.1016/j.tibtech.2017.07.012] [Cited by in Crossref: 48] [Cited by in F6Publishing: 28] [Article Influence: 9.6] [Reference Citation Analysis]
77 Lu P, Ziuzina D, Cullen PJ, Bourke P. Inner surface biofilm inactivation by atmospheric pressure helium porous plasma jet. Plasma Process Polym 2018;15:1800055. [DOI: 10.1002/ppap.201800055] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
78 Babaeva NY, Naidis GV, Panov VA, Wang R, Zhang S, Zhang C, Shao T. Plasma bullet propagation and reflection from metallic and dielectric targets. Plasma Sources Sci Technol 2019;28:095006. [DOI: 10.1088/1361-6595/ab36d3] [Cited by in Crossref: 19] [Article Influence: 6.3] [Reference Citation Analysis]
79 Doležalová E, Prukner V, Lukeš P, Šimek M. Stress response of Escherichia coli induced by surface streamer discharge in humid air. J Phys D: Appl Phys 2016;49:075401. [DOI: 10.1088/0022-3727/49/7/075401] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
80 Gao L, Feng CL, Wang ZW, Ding H. High sensitive and high temporal and spatial resolved image of reactive species in atmospheric pressure surface discharge reactor by laser induced fluorescence. Rev Sci Instrum 2017;88:053107. [PMID: 28571413 DOI: 10.1063/1.4983060] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
81 Iseni S, Bruggeman PJ, Weltmann K, Reuter S. Nitrogen metastable (N 2 ( A3 Σu+)) in a cold argon atmospheric pressure plasma jet: Shielding and gas composition. Appl Phys Lett 2016;108:184101. [DOI: 10.1063/1.4948535] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 2.2] [Reference Citation Analysis]
82 Tero R, Yamashita R, Hashizume H, Suda Y, Takikawa H, Hori M, Ito M. Nanopore formation process in artificial cell membrane induced by plasma-generated reactive oxygen species. Arch Biochem Biophys 2016;605:26-33. [PMID: 27216034 DOI: 10.1016/j.abb.2016.05.014] [Cited by in Crossref: 28] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
83 Bogaerts A, Yusupov M, Van der Paal J, Verlackt CCW, Neyts EC. Reactive Molecular Dynamics Simulations for a Better Insight in Plasma Medicine: Reactive Molecular Dynamics Simulations for …. Plasma Process Polym 2014;11:1156-68. [DOI: 10.1002/ppap.201400084] [Cited by in Crossref: 28] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
84 Patnaik AK, Adamovich I, Gord JR, Roy S. Recent advances in ultrafast-laser-based spectroscopy and imaging for reacting plasmas and flames. Plasma Sources Sci Technol 2017;26:103001. [DOI: 10.1088/1361-6595/aa8578] [Cited by in Crossref: 34] [Cited by in F6Publishing: 6] [Article Influence: 6.8] [Reference Citation Analysis]
85 Szili EJ, Oh J, Fukuhara H, Bhatia R, Gaur N, Nguyen CK, Hong S, Ito S, Ogawa K, Kawada C, Shuin T, Tsuda M, Furihata M, Kurabayashi A, Furuta H, Ito M, Inoue K, Hatta A, Short RD. Modelling the helium plasma jet delivery of reactive species into a 3D cancer tumour. Plasma Sources Sci Technol 2018;27:014001. [DOI: 10.1088/1361-6595/aa9b3b] [Cited by in Crossref: 37] [Cited by in F6Publishing: 10] [Article Influence: 7.4] [Reference Citation Analysis]
86 Schmidt-bleker A, Reuter S, Weltmann K. Quantitative schlieren diagnostics for the determination of ambient species density, gas temperature and calorimetric power of cold atmospheric plasma jets. J Phys D: Appl Phys 2015;48:175202. [DOI: 10.1088/0022-3727/48/17/175202] [Cited by in Crossref: 45] [Cited by in F6Publishing: 12] [Article Influence: 6.4] [Reference Citation Analysis]
87 Topala I, Nagatsu M. Capillary plasma jet: A low volume plasma source for life science applications. Appl Phys Lett 2015;106:054105. [DOI: 10.1063/1.4907349] [Cited by in Crossref: 25] [Cited by in F6Publishing: 5] [Article Influence: 3.6] [Reference Citation Analysis]
88 Hao X, Mattson AM, Edelblute CM, Malik MA, Heller LC, Kolb JF. Nitric Oxide Generation with an Air Operated Non-Thermal Plasma Jet and Associated Microbial Inactivation Mechanisms: NO Generation with an Air Operated Non-Thermal Plasma Jet …. Plasma Process Polym 2014;11:1044-56. [DOI: 10.1002/ppap.201300187] [Cited by in Crossref: 31] [Cited by in F6Publishing: 14] [Article Influence: 3.9] [Reference Citation Analysis]
89 Jinno M, Ikeda Y, Motomura H, Kido Y, Satoh S. Investigation of plasma induced electrical and chemical factors and their contribution processes to plasma gene transfection. Arch Biochem Biophys 2016;605:59-66. [PMID: 27136710 DOI: 10.1016/j.abb.2016.04.013] [Cited by in Crossref: 33] [Cited by in F6Publishing: 18] [Article Influence: 5.5] [Reference Citation Analysis]
90 Gianella M, Reuter S, Aguila AL, Ritchie GAD, Helden JHV. Detection of HO 2 in an atmospheric pressure plasma jet using optical feedback cavity-enhanced absorption spectroscopy. New J Phys 2016;18:113027. [DOI: 10.1088/1367-2630/18/11/113027] [Cited by in Crossref: 22] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
91 Dolezalova E, Lukes P. Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet. Bioelectrochemistry 2015;103:7-14. [PMID: 25212700 DOI: 10.1016/j.bioelechem.2014.08.018] [Cited by in Crossref: 86] [Cited by in F6Publishing: 68] [Article Influence: 10.8] [Reference Citation Analysis]
92 Bartis EAJ, Luan P, Knoll AJ, Graves DB, Seog J, Oehrlein GS. Biodeactivation of Lipopolysaccharide Correlates with Surface‐Bound NO 3 After Cold Atmospheric Plasma Treatment. Plasma Process Polym 2016;13:410-8. [DOI: 10.1002/ppap.201500072] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 2.1] [Reference Citation Analysis]
93 Park Y, Oh KS, Oh J, Seok DC, Kim SB, Yoo SJ, Lee M. The biological effects of surface dielectric barrier discharge on seed germination and plant growth with barley. Plasma Process Polym 2018;15:1600056. [DOI: 10.1002/ppap.201600056] [Cited by in Crossref: 33] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
94 Gelker M, Müller-goymann CC, Viöl W. Permeabilization of human stratum corneum and full-thickness skin samples by a direct dielectric barrier discharge. Clinical Plasma Medicine 2018;9:34-40. [DOI: 10.1016/j.cpme.2018.02.001] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
95 Yokoyama T, Miyazaki S, Ikawa S, Nakashima Y, Kitano K. Kinetics Analysis of the Reactions between Peroxynitric Acid and Amino Acids. Chem Res Toxicol 2020;33:1633-43. [PMID: 32298095 DOI: 10.1021/acs.chemrestox.9b00408] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
96 Reuter S, von Woedtke T, Weltmann K. The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications. J Phys D: Appl Phys 2018;51:233001. [DOI: 10.1088/1361-6463/aab3ad] [Cited by in Crossref: 161] [Cited by in F6Publishing: 27] [Article Influence: 40.3] [Reference Citation Analysis]
97 Kim J, Choi K, Kim Y, Park B, Cho G. Wearable Plasma Pads for Biomedical Applications. Applied Sciences 2017;7:1308. [DOI: 10.3390/app7121308] [Cited by in Crossref: 18] [Cited by in F6Publishing: 2] [Article Influence: 3.6] [Reference Citation Analysis]
98 Tanaka H, Mizuno M, Ishikawa K, Toyokuni S, Kajiyama H, Kikkawa F, Hori M. Molecular mechanisms of non-thermal plasma-induced effects in cancer cells. Biological Chemistry 2018;400:87-91. [DOI: 10.1515/hsz-2018-0199] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 5.8] [Reference Citation Analysis]
99 Kovačević VV, Dojčinović BP, Jović M, Roglić GM, Obradović BM, Kuraica MM. Measurement of reactive species generated by dielectric barrier discharge in direct contact with water in different atmospheres. J Phys D: Appl Phys 2017;50:155205. [DOI: 10.1088/1361-6463/aa5fde] [Cited by in Crossref: 83] [Cited by in F6Publishing: 35] [Article Influence: 16.6] [Reference Citation Analysis]
100 Qaisrani MH, Xian Y, Li C, Pei X, Ghasemi M, Lu X. Study on dynamics of the influence exerted by plasma on gas flow field in non-thermal atmospheric pressure plasma jet. Physics of Plasmas 2016;23:063523. [DOI: 10.1063/1.4954828] [Cited by in Crossref: 35] [Cited by in F6Publishing: 9] [Article Influence: 5.8] [Reference Citation Analysis]
101 Szili EJ, Gaur N, Hong S, Kurita H, Oh J, Ito M, Mizuno A, Hatta A, Cowin AJ, Graves DB, Short RD. The assessment of cold atmospheric plasma treatment of DNA in synthetic models of tissue fluid, tissue and cells. J Phys D: Appl Phys 2017;50:274001. [DOI: 10.1088/1361-6463/aa7501] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 3.6] [Reference Citation Analysis]
102 Schneider S, Dünnbier M, Hübner S, Reuter S, Benedikt J. Atomic nitrogen: a parameter study of a micro-scale atmospheric pressure plasma jet by means of molecular beam mass spectrometry. J Phys D: Appl Phys 2014;47:505203. [DOI: 10.1088/0022-3727/47/50/505203] [Cited by in Crossref: 25] [Cited by in F6Publishing: 13] [Article Influence: 3.1] [Reference Citation Analysis]
103 Edengeiser E, Lackmann J, Bründermann E, Schneider S, Benedikt J, Bandow JE, Havenith M. Synergistic effects of atmospheric pressure plasma-emitted components on DNA oligomers: a Raman spectroscopic study. J Biophoton 2015;8:918-24. [DOI: 10.1002/jbio.201400123] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
104 Wolff CM, Steuer A, Stoffels I, von Woedtke T, Weltmann K, Bekeschus S, Kolb JF. Combination of cold plasma and pulsed electric fields – A rationale for cancer patients in palliative care. Clinical Plasma Medicine 2019;16:100096. [DOI: 10.1016/j.cpme.2020.100096] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
105 Winter S, Meyer-Lindenberg A, Wolf G, Reese S, Nolff MC. In vitro evaluation of the decontamination effect of cold atmospheric argon plasma on selected bacteria frequently encountered in small animal bite injuries. J Microbiol Methods 2020;169:105728. [PMID: 31629909 DOI: 10.1016/j.mimet.2019.105728] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
106 Bourdon A, Darny T, Pechereau F, Pouvesle J, Viegas P, Iséni S, Robert E. Numerical and experimental study of the dynamics of a μ s helium plasma gun discharge with various amounts of N 2 admixture. Plasma Sources Sci Technol 2016;25:035002. [DOI: 10.1088/0963-0252/25/3/035002] [Cited by in Crossref: 93] [Cited by in F6Publishing: 21] [Article Influence: 15.5] [Reference Citation Analysis]
107 Xu Z, Shen J, Cheng C, Hu S, Lan Y, Chu PK. In vitro antimicrobial effects and mechanism of atmospheric-pressure He/O 2 plasma jet on Staphylococcus aureus biofilm. J Phys D: Appl Phys 2017;50:105201. [DOI: 10.1088/1361-6463/aa593f] [Cited by in Crossref: 26] [Cited by in F6Publishing: 11] [Article Influence: 5.2] [Reference Citation Analysis]
108 Sarinont T, Katayama R, Wada Y, Koga K, Shiratani M. Plant Growth Enhancement of Seeds Immersed in Plasma Activated Water. MRS Advances 2017;2:995-1000. [DOI: 10.1557/adv.2017.178] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 3.8] [Reference Citation Analysis]
109 Bartis EA, Luan P, Knoll AJ, Graves DB, Seog J, Oehrlein GS. A comparative study of biomolecule and polymer surface modifications by a surface microdischarge. Eur Phys J D 2016;70. [DOI: 10.1140/epjd/e2015-60446-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
110 Scholtz V, Soušková H, Švarcová M, Kríha V, Živná H, Julák J. Inactivation of dermatophyte infection by nonthermal plasma on animal model. Med Mycol 2017;55:422-8. [PMID: 28339534 DOI: 10.1093/mmy/myw094] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
111 Ma M, Duan J, Lu X, He G. Genotoxic and mutagenic properties of atmospheric pressure plasma jet on human liver cell line L02. Physics of Plasmas 2019;26:023523. [DOI: 10.1063/1.5087148] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
112 Sasaki S, Hokari Y, Kumada A, Kanzaki M, Kaneko T. Direct plasma stimuli including electrostimulation and OH radical induce transient increase in intracellular Ca 2+ and uptake of a middle-size membrane-impermeable molecule. Plasma Process Polym 2018;15:1700077. [DOI: 10.1002/ppap.201700077] [Cited by in Crossref: 16] [Cited by in F6Publishing: 1] [Article Influence: 3.2] [Reference Citation Analysis]
113 Wu S, Lu X. The role of residual charges in the repeatability of the dynamics of atmospheric pressure room temperature plasma plume. Physics of Plasmas 2014;21:123509. [DOI: 10.1063/1.4904369] [Cited by in Crossref: 20] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
114 Misra N, Schlüter O, Cullen P. Plasma in Food and Agriculture. Cold Plasma in Food and Agriculture. Elsevier; 2016. pp. 1-16. [DOI: 10.1016/b978-0-12-801365-6.00001-9] [Cited by in Crossref: 26] [Article Influence: 4.3] [Reference Citation Analysis]
115 Weltmann K, Kolb JF, Holub M, Uhrlandt D, Šimek M, Ostrikov K(, Hamaguchi S, Cvelbar U, Černák M, Locke B, Fridman A, Favia P, Becker K. The future for plasma science and technology. Plasma Process Polym 2018;16:1800118. [DOI: 10.1002/ppap.201800118] [Cited by in Crossref: 72] [Cited by in F6Publishing: 4] [Article Influence: 18.0] [Reference Citation Analysis]
116 Gerling T, Brandenburg R, Wilke C, Weltmann K, Gherardi N, Hoder T. Power measurement for an atmospheric pressure plasma jet at different frequencies: distribution in the core plasma and the effluent. Eur Phys J Appl Phys 2017;78:10801. [DOI: 10.1051/epjap/2017160489] [Cited by in Crossref: 10] [Article Influence: 2.0] [Reference Citation Analysis]
117 Yamada M, Takahashi S, Wahyudiono, Takada N, Kanda H, Goto M. Synthesis of silver nanoparticles by atmospheric-pressure pulsed discharge plasma in a slug flow system. Jpn J Appl Phys 2019;58:016001. [DOI: 10.7567/1347-4065/aaec1b] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 2.8] [Reference Citation Analysis]
118 Schmidt-bleker A, Winter J, Iseni S, Dünnbier M, Weltmann K, Reuter S. Reactive species output of a plasma jet with a shielding gas device—combination of FTIR absorption spectroscopy and gas phase modelling. J Phys D: Appl Phys 2014;47:145201. [DOI: 10.1088/0022-3727/47/14/145201] [Cited by in Crossref: 96] [Cited by in F6Publishing: 38] [Article Influence: 12.0] [Reference Citation Analysis]
119 Neretti G, Tampieri F, Borghi CA, Brun P, Cavazzana R, Cordaro L, Marotta E, Paradisi C, Seri P, Taglioli M, Zaniol B, Zuin M, Martines E. Characterization of a plasma source for biomedical applications by electrical, optical, and chemical measurements. Plasma Process Polym 2018;15:1800105. [DOI: 10.1002/ppap.201800105] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
120 Jablonowski H, Bussiahn R, Hammer MU, Weltmann K, von Woedtke T, Reuter S. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids. Physics of Plasmas 2015;22:122008. [DOI: 10.1063/1.4934989] [Cited by in Crossref: 57] [Cited by in F6Publishing: 27] [Article Influence: 8.1] [Reference Citation Analysis]
121 Kovačević VV, Sretenović GB, Slikboer E, Guaitella O, Sobota A, Kuraica MM. The effect of liquid target on a nonthermal plasma jet—imaging, electric fields, visualization of gas flow and optical emission spectroscopy. J Phys D: Appl Phys 2018;51:065202. [DOI: 10.1088/1361-6463/aaa288] [Cited by in Crossref: 44] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
122 Szili EJ, Harding FJ, Hong S, Herrmann F, Voelcker NH, Short RD. The hormesis effect of plasma-elevated intracellular ROS on HaCaT cells. J Phys D: Appl Phys 2015;48:495401. [DOI: 10.1088/0022-3727/48/49/495401] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 1.1] [Reference Citation Analysis]
123 Takaki K, Hayashi N, Wang D, Ohshima T. High-voltage technologies for agriculture and food processing. J Phys D: Appl Phys 2019;52:473001. [DOI: 10.1088/1361-6463/ab2e2d] [Cited by in Crossref: 24] [Cited by in F6Publishing: 2] [Article Influence: 8.0] [Reference Citation Analysis]
124 Yatom S, Luo Y, Xiong Q, Bruggeman PJ. Nanosecond pulsed humid Ar plasma jet in air: shielding, discharge characteristics and atomic hydrogen production. J Phys D: Appl Phys 2017;50:415204. [DOI: 10.1088/1361-6463/aa879c] [Cited by in Crossref: 22] [Cited by in F6Publishing: 1] [Article Influence: 4.4] [Reference Citation Analysis]
125 Pei X, Gidon D, Graves DB. Propeller arc: design and basic characteristics. Plasma Sources Sci Technol 2018;27:125007. [DOI: 10.1088/1361-6595/aaf7ef] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
126 Borges AC, Castaldelli Nishime TM, Kostov KG, de Morais Gouvêa Lima G, Lacerda Gontijo AV, de Carvalho JNMM, Yzumi Honda R, Yumi Koga-ito C. Cold atmospheric pressure plasma jet modulates Candida albicans virulence traits. Clinical Plasma Medicine 2017;7-8:9-15. [DOI: 10.1016/j.cpme.2017.06.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 2.4] [Reference Citation Analysis]
127 Boehm D, Bourke P. Safety implications of plasma-induced effects in living cells - a review of in vitro and in vivo findings. Biol Chem 2018;400:3-17. [PMID: 30044756 DOI: 10.1515/hsz-2018-0222] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
128 Wijaikhum A, Schröder D, Schröter S, Gibson AR, Niemi K, Friderich J, Greb A, Schulz-von der Gathen V, O’connell D, Gans T. Absolute ozone densities in a radio-frequency driven atmospheric pressure plasma using two-beam UV-LED absorption spectroscopy and numerical simulations. Plasma Sources Sci Technol 2017;26:115004. [DOI: 10.1088/1361-6595/aa8ebb] [Cited by in Crossref: 17] [Cited by in F6Publishing: 2] [Article Influence: 3.4] [Reference Citation Analysis]
129 Xia W, Liu D, Xu H, Wang X, Liu Z, Rong M, Kong MG. The effect of ethanol gas impurity on the discharge mode and discharge products of argon plasma jet at atmospheric pressure. Plasma Sources Sci Technol 2018;27:055001. [DOI: 10.1088/1361-6595/aabdc1] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
130 Boeckmann L, Schäfer M, Bernhardt T, Semmler ML, Jung O, Ojak G, Fischer T, Peters K, Nebe B, Müller-hilke B, Seebauer C, Bekeschus S, Emmert S. Cold Atmospheric Pressure Plasma in Wound Healing and Cancer Treatment. Applied Sciences 2020;10:6898. [DOI: 10.3390/app10196898] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
131 Mavrič T, Benčina M, Imani R, Junkar I, Valant M, Kralj-iglič V, Iglič A. Electrochemical Biosensor Based on TiO 2 Nanomaterials for Cancer Diagnostics. Elsevier; 2018. pp. 63-105. [DOI: 10.1016/bs.abl.2017.12.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 3.8] [Reference Citation Analysis]
132 Lu X, Naidis G, Laroussi M, Ostrikov K. Guided ionization waves: Theory and experiments. Physics Reports 2014;540:123-66. [DOI: 10.1016/j.physrep.2014.02.006] [Cited by in Crossref: 407] [Cited by in F6Publishing: 128] [Article Influence: 50.9] [Reference Citation Analysis]
133 Dünnbier M, Becker MM, Iseni S, Bansemer R, Loffhagen D, Reuter S, Weltmann K. Stability and excitation dynamics of an argon micro-scaled atmospheric pressure plasma jet. Plasma Sources Sci Technol 2015;24:065018. [DOI: 10.1088/0963-0252/24/6/065018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
134 Gazeli K, Bauville G, Fleury M, Jeanney P, Neveu O, Pasquiers S, Santos Sousa J. Effect of the gas flow rate on the spatiotemporal distribution of Ar(1s 5 ) absolute densities in a ns pulsed plasma jet impinging on a glass surface. Plasma Sources Sci Technol 2018;27:065003. [DOI: 10.1088/1361-6595/aac5b3] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 3.3] [Reference Citation Analysis]
135 Surmenev R, Chernozem R, Syromotina D, Oehr C, Baumbach T, Krause B, Boyandin A, Dvoinina L, Volova T, Surmeneva M. Low-temperature argon and ammonia plasma treatment of poly-3-hydroxybutyrate films: Surface topography and chemistry changes affect fibroblast cells in vitro. European Polymer Journal 2019;112:137-45. [DOI: 10.1016/j.eurpolymj.2018.12.040] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 5.3] [Reference Citation Analysis]
136 Lindsay AD, Graves DB, Shannon SC. Fully coupled simulation of the plasma liquid interface and interfacial coefficient effects. J Phys D: Appl Phys 2016;49:235204. [DOI: 10.1088/0022-3727/49/23/235204] [Cited by in Crossref: 28] [Cited by in F6Publishing: 7] [Article Influence: 4.7] [Reference Citation Analysis]
137 Laroussi M, Keidar M. Plasma Processes and Polymers Special Issue on: Plasma and Cancer. Plasma Process Polym 2014;11:1118-9. [DOI: 10.1002/ppap.201400122] [Cited by in Crossref: 7] [Article Influence: 0.9] [Reference Citation Analysis]
138 Duan J, Lu X, He G. On the penetration depth of reactive oxygen and nitrogen species generated by a plasma jet through real biological tissue. Physics of Plasmas 2017;24:073506. [DOI: 10.1063/1.4990554] [Cited by in Crossref: 47] [Cited by in F6Publishing: 21] [Article Influence: 9.4] [Reference Citation Analysis]
139 Hansen L, Schmidt-bleker A, Bansemer R, Kersten H, Weltmann K, Reuter S. Influence of a liquid surface on the NO x production of a cold atmospheric pressure plasma jet. J Phys D: Appl Phys 2018;51:474002. [DOI: 10.1088/1361-6463/aad6f0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
140 Li Y, Hu X, Li H, Zhang Y, Chen H. Investigation of cold atmospheric plasma treatment in polydimethylsiloxane microfluidic devices with a transmural method. J Phys Condens Matter 2018;30:384001. [PMID: 30095440 DOI: 10.1088/1361-648X/aad981] [Reference Citation Analysis]
141 Wang J, Yu Z, Xu Z, Hu S, Li Y, Xue X, Cai Q, Zhou X, Shen J, Lan Y, Cheng C. Antimicrobial mechanism and the effect of atmospheric pressure N2 plasma jet on the regeneration capacity of Staphylococcus aureus biofilm. Biofouling 2018;34:935-49. [PMID: 30477343 DOI: 10.1080/08927014.2018.1530350] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
142 Pereira S, Pinto E, Ribeiro P, Sério S. Study of a Cold Atmospheric Pressure Plasma jet device for indirect treatment of Squamous Cell Carcinoma. Clinical Plasma Medicine 2019;13:9-14. [DOI: 10.1016/j.cpme.2018.09.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 3.7] [Reference Citation Analysis]
143 Sato Y, Yamada S, Takeda S, Hattori N, Nakamura K, Tanaka H, Mizuno M, Hori M, Kodera Y. Effect of Plasma-Activated Lactated Ringer's Solution on Pancreatic Cancer Cells In Vitro and In Vivo. Ann Surg Oncol 2018;25:299-307. [PMID: 29139022 DOI: 10.1245/s10434-017-6239-y] [Cited by in Crossref: 42] [Cited by in F6Publishing: 27] [Article Influence: 8.4] [Reference Citation Analysis]
144 Fanelli F, Fracassi F. Atmospheric pressure non-equilibrium plasma jet technology: general features, specificities and applications in surface processing of materials. Surface and Coatings Technology 2017;322:174-201. [DOI: 10.1016/j.surfcoat.2017.05.027] [Cited by in Crossref: 78] [Cited by in F6Publishing: 13] [Article Influence: 15.6] [Reference Citation Analysis]
145 He Z, Charleton C, Devine RW, Kelada M, Walsh JMD, Conway GE, Gunes S, Mondala JRM, Tian F, Tiwari B, Kinsella GK, Malone R, O'Shea D, Devereux M, Wang W, Cullen PJ, Stephens JC, Curtin JF. Enhanced pyrazolopyrimidinones cytotoxicity against glioblastoma cells activated by ROS-Generating cold atmospheric plasma. Eur J Med Chem 2021;224:113736. [PMID: 34384944 DOI: 10.1016/j.ejmech.2021.113736] [Reference Citation Analysis]
146 Jablonowski L, Fricke K, Matthes R, Holtfreter B, Schlüter R, von Woedtke T, Weltmann KD, Kocher T. Removal of naturally grown human biofilm with an atmospheric pressure plasma jet: An in-vitro study. J Biophotonics 2017;10:718-26. [PMID: 27539641 DOI: 10.1002/jbio.201600166] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
147 Dong F, Zhang J, Wang K, Liu Z, Guo J, Zhang J. Cold plasma gas loaded microbubbles as a novel ultrasound contrast agent. Nanoscale 2019;11:1123-30. [DOI: 10.1039/c8nr08451c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
148 Laroussi M. Plasma Medicine: A Brief Introduction. Plasma 2018;1:47-60. [DOI: 10.3390/plasma1010005] [Cited by in Crossref: 64] [Cited by in F6Publishing: 13] [Article Influence: 16.0] [Reference Citation Analysis]
149 Xu Z, Shen J, Zhang Z, Ma J, Ma R, Zhao Y, Sun Q, Qian S, Zhang H, Ding L, Cheng C, Chu PK, Xia W. Inactivation Effects of Non-Thermal Atmospheric-Pressure Helium Plasma Jet on Staphylococcus aureus Biofilms: Inactivation Effects of He APPJ on S. aureus Biofilms. Plasma Process Polym 2015;12:827-35. [DOI: 10.1002/ppap.201500006] [Cited by in Crossref: 45] [Cited by in F6Publishing: 19] [Article Influence: 6.4] [Reference Citation Analysis]
150 Trizio I, Rizzi V, Gristina R, Sardella E, Cosma P, Francioso E, von Woedtke T, Favia P. Plasma generated RONS in cell culture medium for in vitro studies of eukaryotic cells on Tissue Engineering scaffolds. Plasma Process Polym 2017;14:1700014. [DOI: 10.1002/ppap.201700014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.4] [Reference Citation Analysis]
151 Xu Z, Zhou X, Yang W, Zhang Y, Ye Z, Hu S, Ye C, Li Y, Lan Y, Shen J, Ye X, Yang F, Cheng C. In vitro antimicrobial effects and mechanism of air plasma‐activated water on Staphylococcus aureus biofilm. Plasma Process Polym 2020;17:1900270. [DOI: 10.1002/ppap.201900270] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 5.5] [Reference Citation Analysis]
152 Im Y, Xiong Z, Elg DT, Graves DB. Uptake and diffusion of plasma-generated reactive nitrogen species through keratinized membrane. J Phys D: Appl Phys 2019;52:195201. [DOI: 10.1088/1361-6463/ab0867] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
153 Kramer A, Bekeschus S, Matthes R, Bender C, Stope MB, Napp M, Lademann O, Lademann J, Weltmann K, Schauer F. Cold Physical Plasmas in the Field of Hygiene-Relevance, Significance, and Future Applications: Cold Physical Plasmas in the Field of Hygiene …. Plasma Process Polym 2015;12:1410-22. [DOI: 10.1002/ppap.201500170] [Cited by in Crossref: 41] [Cited by in F6Publishing: 15] [Article Influence: 5.9] [Reference Citation Analysis]
154 Hofmans M, Sobota A. Influence of a target on the electric field profile in a kHz atmospheric pressure plasma jet with the full calculation of the Stark shifts. Journal of Applied Physics 2019;125:043303. [DOI: 10.1063/1.5075544] [Cited by in Crossref: 23] [Article Influence: 7.7] [Reference Citation Analysis]
155 Xaubet M, Baudler J, Gerling T, Giuliani L, Minotti F, Grondona D, Von Woedtke T, Weltmann K. Design optimization of an air atmospheric pressure plasma-jet device intended for medical use. Plasma Process Polym 2018;15:1700211. [DOI: 10.1002/ppap.201700211] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
156 Han X, Cantrell WA, Escobar EE, Ptasinska S. Plasmid DNA damage induced by helium atmospheric pressure plasma jet. Eur Phys J D 2014;68. [DOI: 10.1140/epjd/e2014-40753-y] [Cited by in Crossref: 23] [Cited by in F6Publishing: 11] [Article Influence: 2.9] [Reference Citation Analysis]
157 Yubero C, Rodero A, Dimitrijevic M, Gamero A, García M. Gas temperature determination in an argon non-thermal plasma at atmospheric pressure from broadenings of atomic emission lines. Spectrochimica Acta Part B: Atomic Spectroscopy 2017;129:14-20. [DOI: 10.1016/j.sab.2017.01.002] [Cited by in Crossref: 11] [Article Influence: 2.2] [Reference Citation Analysis]
158 Cheng H, Xu J, Li X, Liu D, Lu X. On the dose of plasma medicine: Equivalent total oxidation potential (ETOP). Physics of Plasmas 2020;27:063514. [DOI: 10.1063/5.0008881] [Cited by in Crossref: 25] [Cited by in F6Publishing: 2] [Article Influence: 12.5] [Reference Citation Analysis]
159 Nowakowska H, Czylkowski D, Hrycak B, Jasiński M. Characterization of a novel microwave plasma sheet source operated at atmospheric pressure. Plasma Sources Sci Technol 2018;27:085008. [DOI: 10.1088/1361-6595/aad402] [Cited by in Crossref: 10] [Article Influence: 2.5] [Reference Citation Analysis]
160 Tan F, Rui X, Xiang X, Yu Z, Al-Rubeai M. Multimodal treatment combining cold atmospheric plasma and acidic fibroblast growth factor for multi-tissue regeneration. FASEB J 2021;35:e21442. [PMID: 33774850 DOI: 10.1096/fj.202002611R] [Reference Citation Analysis]
161 von Woedtke T, Metelmann H, Weltmann K. Clinical Plasma Medicine: State and Perspectives of in Vivo Application of Cold Atmospheric Plasma: Clinical Plasma Medicine: State and Perspectives of in Vivo Application of Cold Atmospheric Plasma. Contrib Plasma Phys 2014;54:104-17. [DOI: 10.1002/ctpp.201310068] [Cited by in Crossref: 161] [Cited by in F6Publishing: 68] [Article Influence: 20.1] [Reference Citation Analysis]
162 Winter J, Sousa JS, Sadeghi N, Schmidt-bleker A, Reuter S, Puech V. The spatio-temporal distribution of He (2 3 S 1 ) metastable atoms in a MHz-driven helium plasma jet is influenced by the oxygen/nitrogen ratio of the surrounding atmosphere. Plasma Sources Sci Technol 2015;24:025015. [DOI: 10.1088/0963-0252/24/2/025015] [Cited by in Crossref: 26] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
163 Canal C, Modic M, Cvelbar U, Ginebra M. Regulating the antibiotic drug release from β-tricalcium phosphate ceramics by atmospheric plasma surface engineering. Biomater Sci 2016;4:1454-61. [DOI: 10.1039/c6bm00411c] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 2.2] [Reference Citation Analysis]
164 Moiseev T, Misra NN, Patil S, Cullen PJ, Bourke P, Keener KM, Mosnier JP. Post-discharge gas composition of a large-gap DBD in humid air by UV–Vis absorption spectroscopy. Plasma Sources Sci Technol 2014;23:065033. [DOI: 10.1088/0963-0252/23/6/065033] [Cited by in Crossref: 82] [Cited by in F6Publishing: 49] [Article Influence: 10.3] [Reference Citation Analysis]
165 Nie L, Chang L, Xian Y, Lu X. The effect of seed electrons on the repeatability of atmospheric pressure plasma plume propagation: I. Experiment. Physics of Plasmas 2016;23:093518. [DOI: 10.1063/1.4963730] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
166 Rutkowski R, Schuster M, Unger J, Seebauer C, Metelmann H, Woedtke T, Weltmann K, Daeschlein G. Hyperspectral imaging for in vivo monitoring of cold atmospheric plasma effects on microcirculation in treatment of head and neck cancer and wound healing. Clinical Plasma Medicine 2017;7-8:52-7. [DOI: 10.1016/j.cpme.2017.09.002] [Cited by in Crossref: 21] [Cited by in F6Publishing: 10] [Article Influence: 4.2] [Reference Citation Analysis]
167 Pipa AV, Ionikh YZ, Chekishev VM, Dünnbier M, Reuter S. Resonance broadening of argon lines in a micro-scaled atmospheric pressure plasma jet (argon μAPPJ). Appl Phys Lett 2015;106:244104. [DOI: 10.1063/1.4922730] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 2.4] [Reference Citation Analysis]
168 Shaw A, Seri P, Borghi CA, Shama G, Iza F. A reference protocol for comparing the biocidal properties of gas plasma generating devices. J Phys D: Appl Phys 2015;48:484001. [DOI: 10.1088/0022-3727/48/48/484001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
169 Demkin VP, Kingma H, Van de Berg R, Melnichuk SV, Demkin OV, Herards M, Ripenko VS, Sitnik KA. Determination of the Electrophysical Parameters of a Beam-Type High-Voltage Pulsed Discharge Plasma for Biomedical Research in a Highly Efficient Computing Environment. Russ Phys J 2015;58:740-3. [DOI: 10.1007/s11182-015-0560-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
170 Judée F, Wattieaux G, Merbahi N, Mansour M, Castanié-cornet MP. The antibacterial activity of a microwave argon plasma jet at atmospheric pressure relies mainly on UV-C radiations. J Phys D: Appl Phys 2014;47:405201. [DOI: 10.1088/0022-3727/47/40/405201] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
171 Woedtke TV, Weltmann KD, Metelmann HR, Bekeschus S, Emmert S, Lademann J, Viöl W. Letter. In response to: "Cold atmospheric pressure plasma for treatment of chronic wounds: drug or medical device?". J Wound Care 2018;27:892-3. [PMID: 30557117 DOI: 10.12968/jowc.2018.27.12.892] [Reference Citation Analysis]
172 Gupta TT, Ayan H. Application of Non-Thermal Plasma on Biofilm: A Review. Applied Sciences 2019;9:3548. [DOI: 10.3390/app9173548] [Cited by in Crossref: 21] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
173 Oh J, Kakuta M, Furuta H, Akatsuka H, Hatta A. Effect of plasma jet diameter on the efficiency of reactive oxygen and nitrogen species generation in water. Jpn J Appl Phys 2016;55:06HD01. [DOI: 10.7567/jjap.55.06hd01] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 2.2] [Reference Citation Analysis]
174 Lu X, Keidar M, Laroussi M, Choi E, Szili E, Ostrikov K. Transcutaneous plasma stress: From soft-matter models to living tissues. Materials Science and Engineering: R: Reports 2019;138:36-59. [DOI: 10.1016/j.mser.2019.04.002] [Cited by in Crossref: 55] [Cited by in F6Publishing: 11] [Article Influence: 18.3] [Reference Citation Analysis]
175 Schmidt A, Liebelt G, Striesow J, Freund E, von Woedtke T, Wende K, Bekeschus S. The molecular and physiological consequences of cold plasma treatment in murine skin and its barrier function. Free Radic Biol Med 2020;161:32-49. [PMID: 33011275 DOI: 10.1016/j.freeradbiomed.2020.09.026] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
176 Amirabadi S, Milani JM, Sohbatzadeh F. Application of dielectric barrier discharge plasma to hydrophobically modification of gum arabic with enhanced surface properties. Food Hydrocolloids 2020;104:105724. [DOI: 10.1016/j.foodhyd.2020.105724] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
177 Duske K, Wegner K, Donnert M, Kunert U, Podbielski A, Kreikemeyer B, Gerling T, Weltmann K, Nebe B, Bader R. Comparative In Vitro Study of Different Atmospheric Pressure Plasma Jets Concerning their Antimicrobial Potential and Cellular Reaction: Comparative In Vitro Study of Different Atmospheric Pressure Plasma Jets: Antimicrobial Potential and Cellular Reaction. Plasma Process Polym 2015;12:1050-60. [DOI: 10.1002/ppap.201400176] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
178 Goldberg BM, Reuter S, Dogariu A, Miles RB. 1D time evolving electric field profile measurements with sub-ns resolution using the E-FISH method. Opt Lett 2019;44:3853-6. [PMID: 31368985 DOI: 10.1364/OL.44.003853] [Cited by in Crossref: 19] [Article Influence: 6.3] [Reference Citation Analysis]
179 Hänsch MAC, Mann M, Weltmann K, von Woedtke T. Analysis of antibacterial efficacy of plasma-treated sodium chloride solutions. J Phys D: Appl Phys 2015;48:454001. [DOI: 10.1088/0022-3727/48/45/454001] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
180 Rostas AM, Ledernez L, Dietel L, Heidinger L, Bergmann M, Altenburger M, Bruch R, Urban G, Schleicher E, Weber S. Direct EPR detection of atomic nitrogen in an atmospheric nitrogen plasma jet. Phys Chem Chem Phys 2020;22:3875-82. [PMID: 32043098 DOI: 10.1039/c9cp05799d] [Reference Citation Analysis]
181 Kurita H, Miyachika S, Yasuda H, Takashima K, Mizuno A. Use of molecular beacons for the rapid analysis of DNA damage induced by exposure to an atmospheric pressure plasma jet. Appl Phys Lett 2015;107:263702. [DOI: 10.1063/1.4939044] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.1] [Reference Citation Analysis]
182 Verlackt CCW, Van Boxem W, Dewaele D, Lemière F, Sobott F, Benedikt J, Neyts EC, Bogaerts A. Mechanisms of Peptide Oxidation by Hydroxyl Radicals: Insight at the Molecular Scale. J Phys Chem C 2017;121:5787-99. [DOI: 10.1021/acs.jpcc.6b12278] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
183 Laroussi M. From Killing Bacteria to Destroying Cancer Cells: 20 Years of Plasma Medicine: From Killing Bacteria to Destroying Cancer Cells. Plasma Process Polym 2014;11:1138-41. [DOI: 10.1002/ppap.201400152] [Cited by in Crossref: 92] [Cited by in F6Publishing: 32] [Article Influence: 11.5] [Reference Citation Analysis]
184 Li D, Kong MG, Britun N, Snyders R, Leys C, Nikiforov A. Quantitative measurements of ground state atomic oxygen in atmospheric pressure surface micro-discharge array. J Phys D: Appl Phys 2017;50:215201. [DOI: 10.1088/1361-6463/aa6c44] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
185 Wang GM, Sun PP, Pan H, Ye GP, Sun K, Zhang J, Pan J, Fang J. Inactivation of Candida albicans Biofilms on Polymethyl Methacrylate and Enhancement of the Drug Susceptibility by Cold Ar/O2 Plasma Jet. Plasma Chem Plasma Process 2016;36:383-96. [DOI: 10.1007/s11090-015-9656-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.1] [Reference Citation Analysis]
186 Wu M, Liao C, Lin Z, Yang C, Cheng Y, Wu J. Experimental investigation of sterilization efficacy of green nails symptom and gray nails using an argon-based round atmospheric-pressure plasma jet. Biomed Phys Eng Express 2019;5:025034. [DOI: 10.1088/2057-1976/aaff18] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
187 Reuter S, Sousa JS, Stancu GD, Hubertus van Helden J. Review on VUV to MIR absorption spectroscopy of atmospheric pressure plasma jets. Plasma Sources Sci Technol 2015;24:054001. [DOI: 10.1088/0963-0252/24/5/054001] [Cited by in Crossref: 72] [Cited by in F6Publishing: 18] [Article Influence: 10.3] [Reference Citation Analysis]
188 Polčic P, Pakosová L, Chovančíková P, Machala Z. Reactive cold plasma particles generate oxidative stress in yeast but do not trigger apoptosis. Can J Microbiol 2018;64:367-75. [PMID: 29438626 DOI: 10.1139/cjm-2017-0753] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
189 Maheux S, Duday D, Belmonte T, Penny C, Cauchie H, Clément F, Choquet P. Formation of ammonium in saline solution treated by nanosecond pulsed cold atmospheric microplasma: a route to fast inactivation of E. coli bacteria. RSC Adv 2015;5:42135-40. [DOI: 10.1039/c5ra01109d] [Cited by in Crossref: 25] [Cited by in F6Publishing: 1] [Article Influence: 3.6] [Reference Citation Analysis]
190 Mui T, Silva L, Prysiazhnyi V, Kostov K. Polyurethane paint adhesion improvement on aluminium alloy treated by plasma jet and dielectric barrier discharge. Journal of Adhesion Science and Technology 2015;30:218-29. [DOI: 10.1080/01694243.2015.1099863] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
191 Xiong Z, Roe J, Grammer TC, Graves DB. Plasma Treatment of Onychomycosis. Plasma Process Polym 2016;13:588-97. [DOI: 10.1002/ppap.201600010] [Cited by in Crossref: 21] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
192 von Woedtke T, Schmidt A, Bekeschus S, Wende K. Introduction to Plasma Medicine. In: Metelmann H, von Woedtke T, Weltmann K, editors. Comprehensive Clinical Plasma Medicine. Cham: Springer International Publishing; 2018. pp. 3-21. [DOI: 10.1007/978-3-319-67627-2_1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
193 Setsuhara Y. Low-temperature atmospheric-pressure plasma sources for plasma medicine. Arch Biochem Biophys 2016;605:3-10. [PMID: 27109191 DOI: 10.1016/j.abb.2016.04.009] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
194 Huang W, Ptasinska S. Functionalization of graphene by atmospheric pressure plasma jet in air or H2O2 environments. Applied Surface Science 2016;367:160-6. [DOI: 10.1016/j.apsusc.2016.01.170] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
195 Wu S, Dong X, Mao W, Jiang J, Yue Y, Lu X, Zhang C. Observation of the stratified glow mode in helium/argon gas-confined barrier discharge at atmospheric pressure. Plasma Sources Sci Technol 2017;26:09LT01. [DOI: 10.1088/1361-6595/aa856d] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
196 Julák J, Hujacová A, Scholtz V, Khun J, Holada K. Contribution to the Chemistry of Plasma-Activated Water. Plasma Phys Rep 2018;44:125-36. [DOI: 10.1134/s1063780x18010075] [Cited by in Crossref: 38] [Cited by in F6Publishing: 1] [Article Influence: 9.5] [Reference Citation Analysis]
197 Wild R, Stollenwerk L. Phase-resolved measurement of the spatial surface charge distribution in a laterally patterned barrier discharge. New J Phys 2014;16:113040. [DOI: 10.1088/1367-2630/16/11/113040] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
198 Gerling T, Hoder T, Bussiahn R, Brandenburg R, Weltmann K. On the spatio-temporal dynamics of a self-pulsed nanosecond transient spark discharge: a spectroscopic and electrical analysis. Plasma Sources Sci Technol 2013;22:065012. [DOI: 10.1088/0963-0252/22/6/065012] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
199 Khun J, Scholtz V, Hozák P, Fitl P, Julák J. Various DC-driven point-to-plain discharges as non-thermal plasma sources and their bactericidal effects. Plasma Sources Sci Technol 2018;27:065002. [DOI: 10.1088/1361-6595/aabdd0] [Cited by in Crossref: 20] [Article Influence: 5.0] [Reference Citation Analysis]
200 Schregel C, Carbone EAD, Luggenhölscher D, Czarnetzki U. Ignition and afterglow dynamics of a high pressure nanosecond pulsed helium micro-discharge: I. Electron, Rydberg molecules and He (2 3 S) densities. Plasma Sources Sci Technol 2016;25:054003. [DOI: 10.1088/0963-0252/25/5/054003] [Cited by in Crossref: 25] [Article Influence: 4.2] [Reference Citation Analysis]
201 Naidis GV. Modeling of Streamer Dynamics in Atmospheric-Pressure Air Plasma Jets: Modeling of Streamer Dynamics…. Plasma Process Polym 2017;14:1600127. [DOI: 10.1002/ppap.201600127] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
202 Mohades S, Barekzi N, Laroussi M. Efficacy of Low Temperature Plasma against SCaBER Cancer Cells: Efficacy of Low Temperature Plasma …. Plasma Process Polym 2014;11:1150-5. [DOI: 10.1002/ppap.201400108] [Cited by in Crossref: 33] [Cited by in F6Publishing: 20] [Article Influence: 4.1] [Reference Citation Analysis]
203 Pawlat J, Starek A, Sujak A, Kwiatkowski M, Terebun P, Budzeń M. Effects of atmospheric pressure plasma generated in GlidArc reactor on Lavatera thuringiaca L. seeds’ germination. Plasma Process Polym 2018;15:1700064. [DOI: 10.1002/ppap.201700064] [Cited by in Crossref: 30] [Article Influence: 6.0] [Reference Citation Analysis]
204 Stasic JN, Selaković N, Puač N, Miletić M, Malović G, Petrović ZL, Veljovic DN, Miletic V. Effects of non-thermal atmospheric plasma treatment on dentin wetting and surface free energy for application of universal adhesives. Clin Oral Invest 2019;23:1383-96. [DOI: 10.1007/s00784-018-2563-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
205 Synek P, Zemánek M, Kudrle V, Hoder T. Advanced electrical current measurements of microdischarges: evidence of sub-critical pulses and ion currents in barrier discharge in air. Plasma Sources Sci Technol 2018;27:045008. [DOI: 10.1088/1361-6595/aab6d5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
206 Suda Y, Tero R, Yamashita R, Yusa K, Takikawa H. Reduction in lateral lipid mobility of lipid bilayer membrane by atmospheric pressure plasma irradiation. Jpn J Appl Phys 2016;55:03DF05. [DOI: 10.7567/jjap.55.03df05] [Cited by in Crossref: 22] [Cited by in F6Publishing: 2] [Article Influence: 3.7] [Reference Citation Analysis]
207 Winter J, Tresp H, Hammer MU, Iseni S, Kupsch S, Schmidt-bleker A, Wende K, Dünnbier M, Masur K, Weltmann K, Reuter S. Tracking plasma generated H 2 O 2 from gas into liquid phase and revealing its dominant impact on human skin cells. J Phys D: Appl Phys 2014;47:285401. [DOI: 10.1088/0022-3727/47/28/285401] [Cited by in Crossref: 108] [Cited by in F6Publishing: 48] [Article Influence: 13.5] [Reference Citation Analysis]
208 Nayak G, Sadeghi N, Bruggeman PJ. He(2 3S1 ) and He 2 ( a3 Σ u+ ) metastables densities measured in an RF-driven helium plasma using broadband absorption spectroscopy. Plasma Sources Sci Technol 2019;28:125006. [DOI: 10.1088/1361-6595/ab3691] [Cited by in Crossref: 8] [Article Influence: 2.7] [Reference Citation Analysis]
209 von Woedtke T, Emmert S, Metelmann H, Rupf S, Weltmann K. Perspectives on cold atmospheric plasma (CAP) applications in medicine. Physics of Plasmas 2020;27:070601. [DOI: 10.1063/5.0008093] [Cited by in Crossref: 24] [Cited by in F6Publishing: 2] [Article Influence: 12.0] [Reference Citation Analysis]
210 Lu X, Ostrikov K(. Guided ionization waves: The physics of repeatability. Applied Physics Reviews 2018;5:031102. [DOI: 10.1063/1.5031445] [Cited by in Crossref: 81] [Cited by in F6Publishing: 10] [Article Influence: 20.3] [Reference Citation Analysis]
211 von Woedtke T, Weltmann K. Grundlagen der Plasmamedizin. MKG-Chirurg 2016;9:246-54. [DOI: 10.1007/s12285-016-0075-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
212 Park J, Baik Kim G, Lippitz A, Kim YM, Jung D, Unger WE, Kim Y, Lee TG. Plasma-polymerized antifouling biochips for label-free measurement of protease activity in cell culture media. Sensors and Actuators B: Chemical 2019;281:527-34. [DOI: 10.1016/j.snb.2018.10.123] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 3.7] [Reference Citation Analysis]
213 Junkar I, Kulkarni M, Humpolíček P, Capáková Z, Burja B, Mazare A, Schmuki P, Mrak-poljšak K, Flašker A, Žigon P, Čučnik S, Mozetič M, Tomšič M, Iglič A, Sodin-semrl S. Could Titanium Dioxide Nanotubes Represent a Viable Support System for Appropriate Cells in Vascular Implants? Elsevier; 2017. pp. 1-39. [DOI: 10.1016/bs.abl.2016.12.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
214 Sretenović GB, Guaitella O, Sobota A, Krstić IB, Kovačević VV, Obradović BM, Kuraica MM. Electric field measurement in the dielectric tube of helium atmospheric pressure plasma jet. Journal of Applied Physics 2017;121:123304. [DOI: 10.1063/1.4979310] [Cited by in Crossref: 21] [Article Influence: 4.2] [Reference Citation Analysis]
215 Schröter S, Gibson AR, Kushner MJ, Gans T, O’connell D. Numerical study of the influence of surface reaction probabilities on reactive species in an rf atmospheric pressure plasma containing humidity. Plasma Phys Control Fusion 2018;60:014035. [DOI: 10.1088/1361-6587/aa8fe9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
216 Ke Z, Thopan P, Fridman G, Miller V, Yu L, Fridman A, Huang Q. Effect of N2/O2 composition on inactivation efficiency of Escherichia coli by discharge plasma at the gas-solution interface. Clinical Plasma Medicine 2017;7-8:1-8. [DOI: 10.1016/j.cpme.2017.05.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 9] [Article Influence: 3.8] [Reference Citation Analysis]
217 Emmert S, van Welzen A, Masur K, Gerling T, Bekeschus S, Eschenburg C, Wahl P, Bernhardt T, Schäfer M, Semmler ML, Grabow N, Fischer T, Thiem A, Jung O, Boeckmann L. Kaltes Atmosphärendruckplasma zur Behandlung akuter und chronischer Wunden. Hautarzt 2020;71:855-62. [DOI: 10.1007/s00105-020-04696-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
218 Tero R, Suda Y, Kato R, Tanoue H, Takikawa H. Plasma irradiation of artificial cell membrane system at solid–liquid interface. Appl Phys Express 2014;7:077001. [DOI: 10.7567/apex.7.077001] [Cited by in Crossref: 24] [Article Influence: 3.0] [Reference Citation Analysis]
219 Bradu C, Kutasi K, Magureanu M, Puač N, Živković S. Reactive nitrogen species in plasma-activated water: generation, chemistry and application in agriculture. J Phys D: Appl Phys 2020;53:223001. [DOI: 10.1088/1361-6463/ab795a] [Cited by in Crossref: 33] [Cited by in F6Publishing: 5] [Article Influence: 16.5] [Reference Citation Analysis]
220 Wende K, von Woedtke T, Weltmann KD, Bekeschus S. Chemistry and biochemistry of cold physical plasma derived reactive species in liquids. Biol Chem 2018;400:19-38. [PMID: 30403650 DOI: 10.1515/hsz-2018-0242] [Cited by in Crossref: 36] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
221 Adhikari ER, Ptasinska S. Correlation between helium atmospheric pressure plasma jet (APPJ) variables and plasma induced DNA damage. Eur Phys J D 2016;70. [DOI: 10.1140/epjd/e2016-70274-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
222 Lee HR, Lee HY, Heo J, Jang JY, Shin YS, Kim CH. Liquid-type nonthermal atmospheric plasma enhanced regenerative potential of silk-fibrin composite gel in radiation-induced wound failure. Mater Sci Eng C Mater Biol Appl 2021;128:112304. [PMID: 34474855 DOI: 10.1016/j.msec.2021.112304] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
223 Duan J, Lu X, He G. The selective effect of plasma activated medium in an in vitro co-culture of liver cancer and normal cells. Journal of Applied Physics 2017;121:013302. [DOI: 10.1063/1.4973484] [Cited by in Crossref: 51] [Cited by in F6Publishing: 15] [Article Influence: 10.2] [Reference Citation Analysis]
224 Van der Paal J, Verlackt CC, Yusupov M, Neyts EC, Bogaerts A. Structural modification of the skin barrier by OH radicals: a reactive molecular dynamics study for plasma medicine. J Phys D: Appl Phys 2015;48:155202. [DOI: 10.1088/0022-3727/48/15/155202] [Cited by in Crossref: 26] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
225 Tan F, Fang Y, Zhu L, Al-Rubeai M. Cold atmospheric plasma as an interface biotechnology for enhancing surgical implants. Crit Rev Biotechnol 2021;41:425-40. [PMID: 33622112 DOI: 10.1080/07388551.2020.1853671] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
226 Qian M, Yang C, Chen X, Ni G, Liu S, Wang D. Modeling of the Distinctive Ground-State Atomic Oxygen Density Profile in Plasma Needle Discharge at Atmospheric Pressure. Chinese Phys Lett 2015;32:075202. [DOI: 10.1088/0256-307x/32/7/075202] [Cited by in Crossref: 3] [Article Influence: 0.4] [Reference Citation Analysis]
227 Sun A, Becker MM, Loffhagen D. PIC/MCC simulation of capacitively coupled discharges in helium: boundary effects. Plasma Sources Sci Technol 2018;27:054002. [DOI: 10.1088/1361-6595/aac30a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
228 Martines E, Brun P, Brun P, Cavazzana R, Deligianni V, Leonardi A, Tarricone E, Zuin M. Towards a plasma treatment of corneal infections. Clinical Plasma Medicine 2013;1:17-24. [DOI: 10.1016/j.cpme.2013.10.001] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
229 Soler-arango J, Brelles-mariño G, Rodero A, Garcia MC. Characterization of an Air-Based Coaxial Dielectric Barrier Discharge Plasma Source for Biofilm Eradication. Plasma Chem Plasma Process 2018;38:535-56. [DOI: 10.1007/s11090-018-9877-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
230 Nguyen DB, Trinh QH, Lee WG, Mok YS. Analysis of an Ar plasma jet in a dielectric barrier discharge conjugated with a microsecond pulse. Plasma Sci Technol 2019;21:095401. [DOI: 10.1088/2058-6272/ab1d45] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
231 Simeni Simeni M, Goldberg BM, Zhang C, Frederickson K, Lempert WR, Adamovich IV. Electric field measurements in a nanosecond pulse discharge in atmospheric air. J Phys D: Appl Phys 2017;50:184002. [DOI: 10.1088/1361-6463/aa6668] [Cited by in Crossref: 19] [Cited by in F6Publishing: 3] [Article Influence: 3.8] [Reference Citation Analysis]
232 Kelly S, Golda J, Turner MM, Schulz-von der Gathen V. Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet. J Phys D: Appl Phys 2015;48:444002. [DOI: 10.1088/0022-3727/48/44/444002] [Cited by in Crossref: 20] [Cited by in F6Publishing: 6] [Article Influence: 2.9] [Reference Citation Analysis]
233 Zhang H, Huang Q, Li L, Ke Z, Wang Q. Distinguish the Role of DBD-Accompanying UV-Radiation in the Degradation of Bisphenol A. Plasma Chem Plasma Process 2016;36:585-98. [DOI: 10.1007/s11090-015-9678-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
234 Zaplotnik R, Bišćan M, Popović D, Mozetič M, Milošević S. Metastable helium atom density in a single electrode atmospheric plasma jet during sample treatment. Plasma Sources Sci Technol 2016;25:035023. [DOI: 10.1088/0963-0252/25/3/035023] [Cited by in Crossref: 12] [Article Influence: 2.0] [Reference Citation Analysis]
235 Scholtz V, Soušková H, Hubka V, Švarcová M, Julák J. Inactivation of human pathogenic dermatophytes by non-thermal plasma. Journal of Microbiological Methods 2015;119:53-8. [DOI: 10.1016/j.mimet.2015.09.017] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
236 Gazeli K, Doanh L, Held B, Clément F. Electrical, Thermal and Optical Parametric Study of Guided Ionization Waves Produced with a Compact μs-Pulsed DBD-Based Reactor. Plasma 2018;1:23-44. [DOI: 10.3390/plasma1010003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
237 Hilker L, von Woedtke T, Weltmann KD, Wollert HG. Cold atmospheric plasma: a new tool for the treatment of superficial driveline infections. Eur J Cardiothorac Surg 2017;51:186-7. [PMID: 27354253 DOI: 10.1093/ejcts/ezw212] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
238 Kinandana AW, Sumariyah S, Nur M, Abdullah AG, Nandiyanto ABD. Analysis of Plasma-activated Medium (PAM) in aqueous solution by an Atmospheric Pressure Plasma Jet (APPJ). MATEC Web Conf 2018;197:02013. [DOI: 10.1051/matecconf/201819702013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
239 Gianella M, Reuter S, Press SA, Schmidt-bleker A, Helden JHV, Ritchie GAD. HO 2 reaction kinetics in an atmospheric pressure plasma jet determined by cavity ring-down spectroscopy. Plasma Sources Sci Technol 2018;27:095013. [DOI: 10.1088/1361-6595/aadf01] [Cited by in Crossref: 13] [Article Influence: 3.3] [Reference Citation Analysis]
240 Tiede R, Hirschberg J, Viöl W, Emmert S. A μs-Pulsed Dielectric Barrier Discharge Source: Physical Characterization and Biological Effects on Human Skin Fibroblasts: A μs-pulsed dielectric barrier discharge source …. Plasma Process Polym 2016;13:775-87. [DOI: 10.1002/ppap.201500190] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
241 Sretenović GB, Krstić IB, Kovačević VV, Obradović BM, Kuraica MM. The isolated head model of the plasma bullet/streamer propagation: electric field-velocity relation. J Phys D: Appl Phys 2014;47:355201. [DOI: 10.1088/0022-3727/47/35/355201] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
242 Sretenović GB, Krstić IB, Kovačević VV, Obradović BM, Kuraica MM. Spatio-temporally resolved electric field measurements in helium plasma jet. J Phys D: Appl Phys 2014;47:102001. [DOI: 10.1088/0022-3727/47/10/102001] [Cited by in Crossref: 59] [Cited by in F6Publishing: 12] [Article Influence: 7.4] [Reference Citation Analysis]
243 Vermeylen S, De Waele J, Vanuytsel S, De Backer J, Van der Paal J, Ramakers M, Leyssens K, Marcq E, Van Audenaerde J, L. J. Smits E, Dewilde S, Bogaerts A. Cold atmospheric plasma treatment of melanoma and glioblastoma cancer cells. Plasma Process Polym 2016;13:1195-205. [DOI: 10.1002/ppap.201600116] [Cited by in Crossref: 44] [Cited by in F6Publishing: 11] [Article Influence: 7.3] [Reference Citation Analysis]
244 Malyavko A, Yan D, Wang Q, Klein AL, Patel KC, Sherman JH, Keidar M. Cold atmospheric plasma cancer treatment, direct versus indirect approaches. Mater Adv 2020;1:1494-505. [DOI: 10.1039/d0ma00329h] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
245 Brandenburg R. Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci Technol 2017;26:053001. [DOI: 10.1088/1361-6595/aa6426] [Cited by in Crossref: 225] [Cited by in F6Publishing: 44] [Article Influence: 45.0] [Reference Citation Analysis]
246 Laroussi M. Effects of PAM on select normal and cancerous epithelial cells. Plasma Res Express 2019;1:025010. [DOI: 10.1088/2516-1067/ab1b8a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
247 Logothetis D, Papadopoulos P, Svarnas P, Vafeas P. Numerical simulation of the interaction between helium jet flow and an atmospheric-pressure “plasma jet”. Computers & Fluids 2016;140:11-8. [DOI: 10.1016/j.compfluid.2016.09.006] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
248 Ridenti MA, Filho JA, Brunger MJ, da Costa RF, Varella MTDN, Bettega MH, Lima MA. Electron scattering by biomass molecular fragments: useful data for plasma applications? Eur Phys J D 2016;70. [DOI: 10.1140/epjd/e2016-70272-8] [Cited by in Crossref: 26] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
249 Dilecce G, Martini LM, Tosi P, Scotoni M, De Benedictis S. Laser induced fluorescence in atmospheric pressure discharges. Plasma Sources Sci Technol 2015;24:034007. [DOI: 10.1088/0963-0252/24/3/034007] [Cited by in Crossref: 28] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
250 Kenari AJ, Siadati SN, Abedian Z, Sohbatzadeh F, Amiri M, Gorji KE, Babapour H, Zabihi E, Ghoreishi SM, Mehraeen R, Monfared AS. Therapeutic effect of cold atmospheric plasma and its combination with radiation as a novel approach on inhibiting cervical cancer cell growth (HeLa cells). Bioorg Chem 2021;111:104892. [PMID: 33894430 DOI: 10.1016/j.bioorg.2021.104892] [Reference Citation Analysis]
251 Wolfmeier H, Pletzer D, Mansour SC, Hancock REW. New Perspectives in Biofilm Eradication. ACS Infect Dis 2018;4:93-106. [PMID: 29280609 DOI: 10.1021/acsinfecdis.7b00170] [Cited by in Crossref: 77] [Cited by in F6Publishing: 62] [Article Influence: 15.4] [Reference Citation Analysis]