BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jerlhag E. Gut-brain axis and addictive disorders: A review with focus on alcohol and drugs of abuse. Pharmacol Ther 2019;196:1-14. [PMID: 30439457 DOI: 10.1016/j.pharmthera.2018.11.005] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Colon-perez L, Montesinos J, Monsivais M. The Future of Neuroimaging and Gut-Brain Axis Research for Substance Use Disorders. Brain Research 2022. [DOI: 10.1016/j.brainres.2022.147835] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Gupta S, Mukhopadhyay S, Mitra A. Therapeutic potential of GHSR-1A antagonism in alcohol dependence, a review. Life Sci 2022;291:120316. [PMID: 35016882 DOI: 10.1016/j.lfs.2022.120316] [Reference Citation Analysis]
3 Potretzke S, Lemieux A, Nakajima M, al'Absi M. Circulating ghrelin changes as a biomarker of the stress response and craving in abstinent smokers. Pharmacol Biochem Behav 2022;:173423. [PMID: 35750154 DOI: 10.1016/j.pbb.2022.173423] [Reference Citation Analysis]
4 Zhang L, Zhang W, Tian X. The pleiotropic of GLP-1/GLP-1R axis in central nervous system diseases. Int J Neurosci 2021;:1-38. [PMID: 33941038 DOI: 10.1080/00207454.2021.1924707] [Reference Citation Analysis]
5 Williams DL. The diverse effects of brain glucagon-like peptide 1 receptors on ingestive behaviour. Br J Pharmacol 2021. [PMID: 33990944 DOI: 10.1111/bph.15535] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Lee MR, Farokhnia M, Cobbina E, Saravanakumar A, Li X, Battista JT, Farinelli LA, Akhlaghi F, Leggio L. Endocrine effects of the novel ghrelin receptor inverse agonist PF-5190457: Results from a placebo-controlled human laboratory alcohol co-administration study in heavy drinkers. Neuropharmacology 2020;170:107788. [PMID: 31557492 DOI: 10.1016/j.neuropharm.2019.107788] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
7 Kalafateli AL, Aranäs C, Jerlhag E. Activation of the amylin pathway modulates cocaine-induced activation of the mesolimbic dopamine system in male mice. Horm Behav 2021;127:104885. [PMID: 33166561 DOI: 10.1016/j.yhbeh.2020.104885] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Zhu C, Li H, Kong X, Wang Y, Sun T, Wang F. Possible Mechanisms Underlying the Effects of Glucagon-Like Peptide-1 Receptor Agonist on Cocaine Use Disorder. Front Pharmacol 2022;13:819470. [PMID: 35300299 DOI: 10.3389/fphar.2022.819470] [Reference Citation Analysis]
9 Kalafateli AL, Satir TM, Vallöf D, Zetterberg H, Jerlhag E. An amylin and calcitonin receptor agonist modulates alcohol behaviors by acting on reward-related areas in the brain. Prog Neurobiol 2021;200:101969. [PMID: 33278524 DOI: 10.1016/j.pneurobio.2020.101969] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Vallöf D, Kalafateli AL, Jerlhag E. Brain region-specific neuromedin U signalling regulates alcohol-related behaviours and food intake in rodents. Addict Biol 2020;25:e12764. [PMID: 31069918 DOI: 10.1111/adb.12764] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
11 Kaur A, Chopra K, Kaur IP, Rishi P. Salmonella Strain Specificity Determines Post-typhoid Central Nervous System Complications: Intervention by Lactiplantibacillus plantarum at Gut-Brain Axis. Front Microbiol 2020;11:1568. [PMID: 32793135 DOI: 10.3389/fmicb.2020.01568] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Merkel R, Moreno A, Zhang Y, Herman R, Ben Nathan J, Zeb S, Rahematpura S, Stecyk K, Milliken BT, Hayes MR, Doyle RP, Schmidt HD. A novel approach to treating opioid use disorders: Dual agonists of glucagon-like peptide-1 receptors and neuropeptide Y2 receptors. Neurosci Biobehav Rev 2021;131:1169-79. [PMID: 34715149 DOI: 10.1016/j.neubiorev.2021.10.026] [Reference Citation Analysis]
13 Orellana ER, Piscura MK, Horvath N, Hajnal A. Differential Response in Ethanol Behaviors of Female Rats Given Various Weight Loss Surgeries. Alcohol Alcohol 2021:agab054. [PMID: 34343232 DOI: 10.1093/alcalc/agab054] [Reference Citation Analysis]
14 Healey KL, Landin JD, Dubester K, Kibble S, Marquardt K, Brutman JN, Davis JF, Swartzwelder HS, Chandler LJ. Effects of ethanol on plasma ghrelin levels in the rat during early and late adolescence. Alcohol 2020;85:111-8. [PMID: 31923560 DOI: 10.1016/j.alcohol.2019.12.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
15 Bauer EE, Shoeman A, Buhr TJ, Daniels KM, Lyte M, Clark PJ. Voluntary binge-patterned alcohol drinking and sex-specific influences on monoamine-related neurochemical signatures in the mouse gut and brain. Alcohol Clin Exp Res 2021;45:996-1012. [PMID: 33704774 DOI: 10.1111/acer.14592] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Zhang Y, Rahematpura S, Ragnini KH, Moreno A, Stecyk KS, Kahng MW, Milliken BT, Hayes MR, Doyle RP, Schmidt HD. A novel dual agonist of glucagon-like peptide-1 receptors and neuropeptide Y2 receptors attenuates fentanyl taking and seeking in male rats. Neuropharmacology 2021;192:108599. [PMID: 33965397 DOI: 10.1016/j.neuropharm.2021.108599] [Reference Citation Analysis]
17 Wang X, Tian Z, Ma J, Feng Z, Ou Y, Zhou M, Peng J, Lv Y, Gao G, Qi S. NPY alterations induced by chronic morphine exposure affect the maintenance and reinstatement of morphine conditioned place preference. Neuropharmacology 2020;181:108350. [PMID: 33027625 DOI: 10.1016/j.neuropharm.2020.108350] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Jerlhag E. Alcohol-mediated behaviours and the gut-brain axis; with focus on glucagon-like peptide-1. Brain Research 2020;1727:146562. [DOI: 10.1016/j.brainres.2019.146562] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
19 Charalambous C, Havlickova T, Lapka M, Puskina N, Šlamberová R, Kuchar M, Sustkova-Fiserova M. Cannabinoid-Induced Conditioned Place Preference, Intravenous Self-Administration, and Behavioral Stimulation Influenced by Ghrelin Receptor Antagonism in Rats. Int J Mol Sci 2021;22:2397. [PMID: 33673659 DOI: 10.3390/ijms22052397] [Reference Citation Analysis]
20 Zhu C, Tao H, Rong S, Xiao L, Li X, Jiang S, Guo B, Wang L, Ding J, Gao C, Chang H, Sun T, Wang F. Glucagon-Like Peptide-1 Analog Exendin-4 Ameliorates Cocaine-Mediated Behavior by Inhibiting Toll-Like Receptor 4 Signaling in Mice. Front Pharmacol 2021;12:694476. [PMID: 34349653 DOI: 10.3389/fphar.2021.694476] [Reference Citation Analysis]
21 Vestlund J, Jerlhag E. Glucagon-like peptide-1 receptors and sexual behaviors in male mice. Psychoneuroendocrinology 2020;117:104687. [PMID: 32388229 DOI: 10.1016/j.psyneuen.2020.104687] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Bornscheuer L, Lundin A, Forsell Y, Lavebratt C, Melas PA. The cannabinoid receptor-1 gene interacts with stressful life events to increase the risk for problematic alcohol use. Sci Rep 2022;12:4963. [PMID: 35322131 DOI: 10.1038/s41598-022-08980-w] [Reference Citation Analysis]
23 Zhu C, Hong T, Li H, Jiang S, Guo B, Wang L, Ding J, Gao C, Sun Y, Sun T, Wang F, Wang Y, Wan D. Glucagon-Like Peptide-1 Agonist Exendin-4 Facilitates the Extinction of Cocaine-Induced Condition Place Preference. Front Syst Neurosci 2021;15:711750. [PMID: 35024034 DOI: 10.3389/fnsys.2021.711750] [Reference Citation Analysis]
24 Sustkova-Fiserova M, Charalambous C, Khryakova A, Certilina A, Lapka M, Šlamberová R. The Role of Ghrelin/GHS-R1A Signaling in Nonalcohol Drug Addictions. Int J Mol Sci 2022;23:761. [PMID: 35054944 DOI: 10.3390/ijms23020761] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Neasta J, Darcq E, Jeanblanc J, Carnicella S, Ben Hamida S. GPCR and Alcohol-Related Behaviors in Genetically Modified Mice. Neurotherapeutics 2020;17:17-42. [PMID: 31919661 DOI: 10.1007/s13311-019-00828-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
26 Veerappa A, Pendyala G, Guda C. A systems omics-based approach to decode substance use disorders and neuroadaptations. Neurosci Biobehav Rev 2021;130:61-80. [PMID: 34411560 DOI: 10.1016/j.neubiorev.2021.08.016] [Reference Citation Analysis]
27 Anan M, Higa R, Shikano K, Shide M, Soda A, Carrasco Apolinario ME, Mori K, Shin T, Miyazato M, Mimata H, Hikida T, Hanada T, Nakao K, Kangawa K, Hanada R. Cocaine has some effect on neuromedin U expressing neurons related to the brain reward system. Heliyon 2020;6:e03947. [PMID: 32462086 DOI: 10.1016/j.heliyon.2020.e03947] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
28 Vestlund J, Bergquist F, Licheri V, Adermark L, Jerlhag E. Activation of glucagon-like peptide-1 receptors and skilled reach foraging. Addict Biol 2021;26:e12953. [PMID: 32770792 DOI: 10.1111/adb.12953] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
29 Hernandez NS, Schmidt HD. Central GLP-1 receptors: Novel molecular targets for cocaine use disorder. Physiol Behav 2019;206:93-105. [PMID: 30930091 DOI: 10.1016/j.physbeh.2019.03.026] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
30 Teranishi H, Hanada R. Neuromedin U, a Key Molecule in Metabolic Disorders. Int J Mol Sci 2021;22:4238. [PMID: 33921859 DOI: 10.3390/ijms22084238] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Szulc M, Kujawski R, Baraniak J, Kania-Dobrowolska M, Kamińska E, Gryszczyńska A, Czora-Poczwardowska K, Winiarska H, Mikołajczak PŁ. Differential Influence of Pueraria lobata Root Extract and Its Main Isoflavones on Ghrelin Levels in Alcohol-Treated Rats. Pharmaceuticals (Basel) 2021;15:25. [PMID: 35056082 DOI: 10.3390/ph15010025] [Reference Citation Analysis]
32 Zallar LJ, Beurmann S, Tunstall BJ, Fraser CM, Koob GF, Vendruscolo LF, Leggio L. Ghrelin receptor deletion reduces binge-like alcohol drinking in rats. J Neuroendocrinol 2019;31:e12663. [PMID: 30456835 DOI: 10.1111/jne.12663] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
33 Cornejo MP, Castrogiovanni D, Schiöth HB, Reynaldo M, Marie J, Fehrentz J, Perello M. Growth hormone secretagogue receptor signalling affects high‐fat intake independently of plasma levels of ghrelin and LEAP 2, in a 4‐day binge eating model. J Neuroendocrinol 2019;31. [DOI: 10.1111/jne.12785] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
34 Coker CR, Keller BN, Arnold AC, Silberman Y. Impact of High Fat Diet and Ethanol Consumption on Neurocircuitry Regulating Emotional Processing and Metabolic Function. Front Behav Neurosci 2020;14:601111. [PMID: 33574742 DOI: 10.3389/fnbeh.2020.601111] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Aranäs C, Vestlund J, Witley S, Edvardsson CE, Kalafateli AL, Jerlhag E. Salmon Calcitonin Attenuates Some Behavioural Responses to Nicotine in Male Mice. Front Pharmacol 2021;12:685631. [PMID: 34234676 DOI: 10.3389/fphar.2021.685631] [Reference Citation Analysis]
36 Kalafateli AL, Vestlund J, Raun K, Egecioglu E, Jerlhag E. Effects of a selective long-acting amylin receptor agonist on alcohol consumption, food intake and body weight in male and female rats. Addict Biol 2021;26:e12910. [PMID: 32383257 DOI: 10.1111/adb.12910] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]