1 |
Mustafa AM, Krämer OH. Pharmacological Modulation of the Crosstalk between Aberrant Janus Kinase Signaling and Epigenetic Modifiers of the Histone Deacetylase Family to Treat Cancer. Pharmacol Rev 2023;75:35-61. [PMID: 36752816 DOI: 10.1124/pharmrev.122.000612] [Reference Citation Analysis]
|
2 |
Anestopoulos I, Kyriakou S, Tragkola V, Paraskevaidis I, Tzika E, Mitsiogianni M, Deligiorgi MV, Petrakis G, Trafalis DT, Botaitis S, Giatromanolaki A, Koukourakis MI, Franco R, Pappa A, Panayiotidis MI. Targeting the epigenome in malignant melanoma: Facts, challenges and therapeutic promises. Pharmacol Ther 2022;240:108301. [PMID: 36283453 DOI: 10.1016/j.pharmthera.2022.108301] [Reference Citation Analysis]
|
3 |
Xu X, Chan AKN, Li M, Liu Q, Mattson N, Pangeni Pokharel S, Chang WH, Yuan YC, Wang J, Moore RE, Pirrotte P, Wu J, Su R, Müschen M, Rosen ST, Chen J, Yang L, Chen CW. ACTR5 controls CDKN2A and tumor progression in an INO80-independent manner. Sci Adv 2022;8:eadc8911. [PMID: 36563143 DOI: 10.1126/sciadv.adc8911] [Reference Citation Analysis]
|
4 |
Zakir U, Siddiqui NN, Naqvi FU, Khan R. Aberrant STAT1 methylation as a non-invasive biomarker in blood of HCV induced hepatocellular carcinoma. Cancer Biomark 2021. [PMID: 34657877 DOI: 10.3233/CBM-210216] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
5 |
Qing X, Xu W, Zong J, Du X, Peng H, Zhang Y. Emerging treatment modalities for systemic therapy in hepatocellular carcinoma. Biomark Res 2021;9:64. [PMID: 34419152 DOI: 10.1186/s40364-021-00319-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
6 |
Yang W, Ni Y, Yang S, Ji Y, Yang X, Cheng F, Wang X, Zhang F, Rao J. The oncogene Mct-1 promotes progression of hepatocellular carcinoma via enhancement of Yap-mediated cell proliferation. Cell Death Discov 2021;7:57. [PMID: 33753742 DOI: 10.1038/s41420-021-00413-3] [Reference Citation Analysis]
|
7 |
Xu G, Zhu Y, Liu H, Liu Y, Zhang X. Long Non-Coding RNA KCNQ1OT1 Promotes Progression of Hepatocellular Carcinoma by miR-148a-3p/IGF1R Axis. Technol Cancer Res Treat 2020;19:1533033820980117. [PMID: 33349156 DOI: 10.1177/1533033820980117] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
|
8 |
Li H, Chen X, Xu J, Du X, Yang Y, Li J, Yang X, Huang H, Li X, Wu M, Zhang C, Zhang C, Li Z, Wang H, Meng X, Huang C, Li J. DNMT3b-mediated methylation of ZSWIM3 enhances inflammation in alcohol-induced liver injury via regulating TRAF2-mediated NF-κB pathway. Clinical Science 2020;134:1935-1956. [DOI: 10.1042/cs20200031] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 4.3] [Reference Citation Analysis]
|
9 |
Li H, Chen X, Xu J, Du X, Yang Y, Li J, Yang X, Huang H, Li X, Wu M, Zhang C, Zhang C, Li Z, Wang H, Meng X, Huang C, Li J. DNMT3b-mediated methylation of ZSWIM3 enhances inflammation in alcohol-induced liver injury via regulating TRAF2-mediated NF-κB pathway. Clinical Science 2020;134:1935-56. [DOI: 10.1042/cs20200031] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
10 |
Li H, Chen X, Xu J, Du X, Yang Y, Li J, Yang X, Huang H, Li X, Wu M, Zhang C, Zhang C, Li Z, Wang H, Meng X, Huang C, Li J. DNMT3b-mediated methylation of ZSWIM3 enhances inflammation in alcohol-induced liver injury via regulating TRAF2-mediated NF-κB pathway. Clinical Science 2020;134:1935-56. [DOI: 10.1042/cs20200031] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
|
11 |
Li J, Liu M. The Carcinogenicity of Aflatoxin B1. Aflatoxin B1 Occurrence, Detection and Toxicological Effects 2020. [DOI: 10.5772/intechopen.88353] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
12 |
Qiu W, Wang B, Gao Y, Tian Y, Tian M, Chen Y, Xu L, Yao TP, Li P, Yang P. Targeting Histone Deacetylase 6 Reprograms Interleukin-17-Producing Helper T Cell Pathogenicity and Facilitates Immunotherapies for Hepatocellular Carcinoma. Hepatology 2020;71:1967-87. [PMID: 31539182 DOI: 10.1002/hep.30960] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
|
13 |
Mitsiogianni M, Trafalis DT, Franco R, Zoumpourlis V, Pappa A, Panayiotidis MI. Sulforaphane and iberin are potent epigenetic modulators of histone acetylation and methylation in malignant melanoma. Eur J Nutr 2021;60:147-58. [PMID: 32215717 DOI: 10.1007/s00394-020-02227-y] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
|
14 |
Dai Q, Zhang C, Yuan Z, Sun Q, Jiang Y. Current discovery strategies for hepatocellular carcinoma therapeutics. Expert Opinion on Drug Discovery 2020;15:243-58. [DOI: 10.1080/17460441.2020.1696769] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
|
15 |
Kamimura K, Yokoo T, Abe H, Terai S. Gene Therapy for Liver Cancers: Current Status from Basic to Clinics. Cancers (Basel) 2019;11:E1865. [PMID: 31769427 DOI: 10.3390/cancers11121865] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
|
16 |
Freese K, Seitz T, Dietrich P, Lee SML, Thasler WE, Bosserhoff A, Hellerbrand C. Histone Deacetylase Expressions in Hepatocellular Carcinoma and Functional Effects of Histone Deacetylase Inhibitors on Liver Cancer Cells In Vitro. Cancers (Basel) 2019;11:E1587. [PMID: 31635225 DOI: 10.3390/cancers11101587] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 11.8] [Reference Citation Analysis]
|
17 |
Sun Y, Ma W, Yang Y, He M, Li A, Bai L, Yu B, Yu Z. Cancer nanotechnology: Enhancing tumor cell response to chemotherapy for hepatocellular carcinoma therapy. Asian J Pharm Sci 2019;14:581-94. [PMID: 32104485 DOI: 10.1016/j.ajps.2019.04.005] [Cited by in Crossref: 82] [Cited by in F6Publishing: 84] [Article Influence: 20.5] [Reference Citation Analysis]
|
18 |
Drake TM, Søreide K. Cancer epigenetics in solid organ tumours: A primer for surgical oncologists. Eur J Surg Oncol 2019;45:736-46. [PMID: 30745135 DOI: 10.1016/j.ejso.2019.02.005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
|
19 |
Ferreira RG, Cardoso MV, de Souza Furtado KM, Espíndola KMM, Amorim RP, Monteiro MC. Epigenetic alterations caused by aflatoxin b1: a public health risk in the induction of hepatocellular carcinoma. Transl Res 2019;204:51-71. [PMID: 30304666 DOI: 10.1016/j.trsl.2018.09.001] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 8.8] [Reference Citation Analysis]
|
20 |
Li GX, Ding ZY, Wang YW, Liu TT, Chen WX, Wu JJ, Xu WQ, Zhu P, Zhang BX. Integrative analysis of DNA methylation and gene expression identify a six epigenetic driver signature for predicting prognosis in hepatocellular carcinoma. J Cell Physiol. 2019;234:11942-11950. [PMID: 30536816 DOI: 10.1002/jcp.27882] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
|
21 |
Mekky MA, Salama RH, Abdel-Aal MF, Ghaliony MA, Zaky S. Studying the frequency of aberrant DNA methylation of APC, P14, and E-cadherin genes in HCV-related hepatocarcinogenesis. Cancer Biomark 2018;22:503-9. [PMID: 29865038 DOI: 10.3233/CBM-171156] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
|
22 |
Mitsiogianni M, Amery T, Franco R, Zoumpourlis V, Pappa A, Panayiotidis MI. From chemo-prevention to epigenetic regulation: The role of isothiocyanates in skin cancer prevention. Pharmacology & Therapeutics 2018;190:187-201. [DOI: 10.1016/j.pharmthera.2018.06.001] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
|
23 |
Saco TV, Breitzig MT, Lockey RF, Kolliputi N. Epigenetics of Mucus Hypersecretion in Chronic Respiratory Diseases. Am J Respir Cell Mol Biol 2018;58:299-309. [PMID: 29096066 DOI: 10.1165/rcmb.2017-0072TR] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
|
24 |
Pan XY, Yang Y, Meng HW, Li HD, Chen X, Huang HM, Bu FT, Yu HX, Wang Q, Huang C, Meng XM, Li J. DNA Methylation of PTGIS Enhances Hepatic Stellate Cells Activation and Liver Fibrogenesis. Front Pharmacol 2018;9:553. [PMID: 29892223 DOI: 10.3389/fphar.2018.00553] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
|
25 |
Huang JL, Cao SW, Ou QS, Yang B, Zheng SH, Tang J, Chen J, Hu YW, Zheng L, Wang Q. The long non-coding RNA PTTG3P promotes cell growth and metastasis via up-regulating PTTG1 and activating PI3K/AKT signaling in hepatocellular carcinoma. Mol Cancer 2018;17:93. [PMID: 29803224 DOI: 10.1186/s12943-018-0841-x] [Cited by in Crossref: 118] [Cited by in F6Publishing: 129] [Article Influence: 23.6] [Reference Citation Analysis]
|
26 |
Liao B, Zhang Y, Sun Q, Jiang P. Vorinostat enhances the anticancer effect of oxaliplatin on hepatocellular carcinoma cells. Cancer Med 2018;7:196-207. [PMID: 29239146 DOI: 10.1002/cam4.1278] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 2.2] [Reference Citation Analysis]
|
27 |
Wu D, Yang X, Peng H, Guo D, Zhao W, Zhao C, Zhou X. OCIAD2 suppressed tumor growth and invasion via AKT pathway in Hepatocelluar carcinoma. Carcinogenesis 2017;38:910-9. [PMID: 28911005 DOI: 10.1093/carcin/bgx073] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
|
28 |
Pinel C, Prainsack B, McKevitt C. Markers as mediators: A review and synthesis of epigenetics literature. Biosocieties 2019;13:276-303. [PMID: 31105763 DOI: 10.1057/s41292-017-0068-x] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 4.5] [Reference Citation Analysis]
|
29 |
Huang H, Li H, Chen X, Yang Y, Li X, Li W, Huang C, Meng X, Zhang L, Li J. HMGA2, a driver of inflammation, is associated with hypermethylation in acute liver injury. Toxicology and Applied Pharmacology 2017;328:34-45. [DOI: 10.1016/j.taap.2017.05.005] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 4.2] [Reference Citation Analysis]
|
30 |
Dai Y, Huang K, Zhang B, Zhu L, Xu W. Aflatoxin B1-induced epigenetic alterations: An overview. Food Chem Toxicol 2017;109:683-9. [PMID: 28645871 DOI: 10.1016/j.fct.2017.06.034] [Cited by in Crossref: 82] [Cited by in F6Publishing: 74] [Article Influence: 13.7] [Reference Citation Analysis]
|
31 |
Zheng C, Hao H, Chen L, Shao J. Long noncoding RNAs as novel serum biomarkers for the diagnosis of hepatocellular carcinoma: a systematic review and meta-analysis. Clin Transl Oncol 2017;19:961-8. [PMID: 28188488 DOI: 10.1007/s12094-017-1626-1] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 3.2] [Reference Citation Analysis]
|
32 |
Anestopoulos I, Sfakianos AP, Franco R, Chlichlia K, Panayiotidis MI, Kroll DJ, Pappa A. A Novel Role of Silibinin as a Putative Epigenetic Modulator in Human Prostate Carcinoma. Molecules 2016;22:E62. [PMID: 28042859 DOI: 10.3390/molecules22010062] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 4.0] [Reference Citation Analysis]
|
33 |
Cai S, Cheng X, Chen P, Pan X, Xu T, Huang C, Meng X, Li J. Transmembrane protein 88 attenuates liver fibrosis by promoting apoptosis and reversion of activated hepatic stellate cells. Molecular Immunology 2016;80:58-67. [DOI: 10.1016/j.molimm.2016.11.002] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
|
34 |
Du H, Che G. Genetic alterations and epigenetic alterations of cancer-associated fibroblasts. Oncol Lett 2017;13:3-12. [PMID: 28123515 DOI: 10.3892/ol.2016.5451] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 6.9] [Reference Citation Analysis]
|
35 |
Han L, Wang T, Wu J, Yin X, Fang H, Zhang N. A facile route to form self-carried redox-responsive vorinostat nanodrug for effective solid tumor therapy. Int J Nanomedicine 2016;11:6003-22. [PMID: 27956831 DOI: 10.2147/IJN.S118727] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
|
36 |
Deng LJ, Peng QL, Wang LH, Xu J, Liu JS, Li YJ, Zhuo ZJ, Bai LL, Hu LP, Chen WM, Ye WC, Zhang DM. Arenobufagin intercalates with DNA leading to G2 cell cycle arrest via ATM/ATR pathway. Oncotarget 2015;6:34258-75. [PMID: 26485758 DOI: 10.18632/oncotarget.5545] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 4.1] [Reference Citation Analysis]
|
37 |
Lee SM, Kim-Ha J, Choi WY, Lee J, Kim D, Lee J, Choi E, Kim YJ. Interplay of genetic and epigenetic alterations in hepatocellular carcinoma. Epigenomics 2016;8:993-1005. [PMID: 27411963 DOI: 10.2217/epi-2016-0027] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 4.3] [Reference Citation Analysis]
|
38 |
Peng X, Zhang D, Li Z, Fu M, Liu H. mTOR inhibition sensitizes human hepatocellular carcinoma cells to resminostat. Biochem Biophys Res Commun 2016;477:556-62. [PMID: 27311860 DOI: 10.1016/j.bbrc.2016.06.060] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
|
39 |
Fu M, Shi W, Li Z, Liu H. Activation of mPTP-dependent mitochondrial apoptosis pathway by a novel pan HDAC inhibitor resminostat in hepatocellular carcinoma cells. Biochem Biophys Res Commun 2016;477:527-33. [PMID: 27144317 DOI: 10.1016/j.bbrc.2016.04.147] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 3.7] [Reference Citation Analysis]
|
40 |
Naveja JJ, Dueñas-gonzález A, Medina-franco JL. Drug Repurposing for Epigenetic Targets Guided by Computational Methods. Epi-Informatics. Elsevier; 2016. pp. 327-57. [DOI: 10.1016/b978-0-12-802808-7.00012-5] [Cited by in Crossref: 14] [Article Influence: 2.0] [Reference Citation Analysis]
|
41 |
Fernandez-barrena M, Pin C. Chromatin Remodeling and Epigenetic Reprogramming in Chronic Disease and Cancer in the Liver and Pancreas. Chromatin Signaling and Diseases 2016. [DOI: 10.1016/b978-0-12-802389-1.00020-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
|
42 |
Dong N, Shi L, Chen C, Ma W, Wang X. Clinical Epigenetics and Epigenomics. Translational Bioinformatics 2016. [DOI: 10.1007/978-94-017-7543-4_5] [Reference Citation Analysis]
|
43 |
Yuan SX, Zhang J, Xu QG, Yang Y, Zhou WP. Long noncoding RNA, the methylation of genomic elements and their emerging crosstalk in hepatocellular carcinoma. Cancer Lett 2016;379:239-44. [PMID: 26282784 DOI: 10.1016/j.canlet.2015.08.008] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
|
44 |
Liao B, Liang H, Chen J, Liu Q, Zhang B, Chen X. Suberoylanilide hydroxamic acid enhances chemosensitivity to 5-fluorouracil in hepatocellular carcinoma via inhibition of thymidylate synthase. Tumor Biol 2015;36:9347-56. [DOI: 10.1007/s13277-015-3497-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
|
45 |
Zhang S, Huang W, Li X, Yang Z, Feng B. Synthesis, Biological Evaluation, and Computer-Aided Drug Designing of New Derivatives of Hyperactive Suberoylanilide Hydroxamic Acid Histone Deacetylase Inhibitors. Chem Biol Drug Des 2015;86:795-804. [DOI: 10.1111/cbdd.12554] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
|
46 |
Cuestas ML, Oubiña JR, Mathet VL. Hepatocellular carcinoma and multidrug resistance: Past, present and new challenges for therapy improvement. World J Pharmacol 2015; 4(1): 96-116 [DOI: 10.5497/wjp.v4.i1.96] [Cited by in CrossRef: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
|