BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gurevich EV, Tesmer JJ, Mushegian A, Gurevich VV. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther. 2012;133:40-69. [PMID: 21903131 DOI: 10.1016/j.pharmthera.2011.08.001] [Cited by in Crossref: 275] [Cited by in F6Publishing: 256] [Article Influence: 25.0] [Reference Citation Analysis]
Number Citing Articles
1 Nogués L, Palacios-garcía J, Reglero C, Rivas V, Neves M, Ribas C, Penela P, Mayor F. G protein-coupled receptor kinases (GRKs) in tumorigenesis and cancer progression: GPCR regulators and signaling hubs. Seminars in Cancer Biology 2018;48:78-90. [DOI: 10.1016/j.semcancer.2017.04.013] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 10.8] [Reference Citation Analysis]
2 Loth MK, Donaldson ZR. Oxytocin, Dopamine, and Opioid Interactions Underlying Pair Bonding: Highlighting a Potential Role for Microglia. Endocrinology 2021;162:bqaa223. [PMID: 33367612 DOI: 10.1210/endocr/bqaa223] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
3 Leyva-Illades D, Demorrow S. Orphan G protein receptor GPR55 as an emerging target in cancer therapy and management. Cancer Manag Res 2013;5:147-55. [PMID: 23869178 DOI: 10.2147/CMAR.S35175] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 0.8] [Reference Citation Analysis]
4 Tang T, Gong T, Jiang W, Zhou R. GPCRs in NLRP3 Inflammasome Activation, Regulation, and Therapeutics. Trends Pharmacol Sci 2018;39:798-811. [PMID: 30054020 DOI: 10.1016/j.tips.2018.07.002] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
5 Birdsong WT, Williams JT. Recent Progress in Opioid Research from an Electrophysiological Perspective. Mol Pharmacol 2020;98:401-9. [PMID: 32198208 DOI: 10.1124/mol.119.119040] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
6 Homan KT, Wu E, Wilson MW, Singh P, Larsen SD, Tesmer JJ. Structural and functional analysis of g protein-coupled receptor kinase inhibition by paroxetine and a rationally designed analog. Mol Pharmacol 2014;85:237-48. [PMID: 24220010 DOI: 10.1124/mol.113.089631] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 3.3] [Reference Citation Analysis]
7 Taguchi K, Hida M, Hasegawa M, Narimatsu H, Matsumoto T, Kobayashi T. Suppression of GRK2 expression reduces endothelial dysfunction by restoring glucose homeostasis. Sci Rep 2017;7:8436. [PMID: 28814745 DOI: 10.1038/s41598-017-08998-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
8 Wu N, Yang X, Song L, Wei J, Liu Z. Effect of Tianqi antitremor granules on behavioral manifestations and expression of G protein-coupled receptor kinase 6 and β-arrestin1 in levodopa-induced dyskinesia in a rat model of Parkinson's disease. Drug Des Devel Ther 2013;7:1481-9. [PMID: 24376341 DOI: 10.2147/DDDT.S48488] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
9 Le Sommer C, Barrows NJ, Bradrick SS, Pearson JL, Garcia-Blanco MA. G protein-coupled receptor kinase 2 promotes flaviviridae entry and replication. PLoS Negl Trop Dis 2012;6:e1820. [PMID: 23029581 DOI: 10.1371/journal.pntd.0001820] [Cited by in Crossref: 61] [Cited by in F6Publishing: 56] [Article Influence: 6.1] [Reference Citation Analysis]
10 Daniele S, Trincavelli ML, Fumagalli M, Zappelli E, Lecca D, Bonfanti E, Campiglia P, Abbracchio MP, Martini C. Does GRK–β arrestin machinery work as a “switch on” for GPR17-mediated activation of intracellular signaling pathways? Cellular Signalling 2014;26:1310-25. [DOI: 10.1016/j.cellsig.2014.02.016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 3.9] [Reference Citation Analysis]
11 Chen X, Zhao X, Cooper M, Ma P. The Roles of GRKs in Hemostasis and Thrombosis. Int J Mol Sci 2020;21:E5345. [PMID: 32731360 DOI: 10.3390/ijms21155345] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
12 Gao S, Malbon C, Wang HY. Probing the stoichiometry of β2-adrenergic receptor phosphorylation by targeted mass spectrometry. J Mol Signal 2014;9:3. [PMID: 24690384 DOI: 10.1186/1750-2187-9-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
13 Legler DF, Matti C, Laufer JM, Jakobs BD, Purvanov V, Uetz-von Allmen E, Thelen M. Modulation of Chemokine Receptor Function by Cholesterol: New Prospects for Pharmacological Intervention. Mol Pharmacol 2017;91:331-8. [PMID: 28082305 DOI: 10.1124/mol.116.107151] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
14 Pierce JD, Shen Q, Peltzer J, Thimmesch A, Hiebert JB. A pilot study exploring the effects of ubiquinol on brain genomics after traumatic brain injury. Nursing Outlook 2017;65:S44-52. [DOI: 10.1016/j.outlook.2017.06.012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
15 Heng BC, Aubel D, Fussenegger M. An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases. Biotechnology Advances 2013;31:1676-94. [DOI: 10.1016/j.biotechadv.2013.08.017] [Cited by in Crossref: 105] [Cited by in F6Publishing: 99] [Article Influence: 11.7] [Reference Citation Analysis]
16 Chen Q, Plasencia M, Li Z, Mukherjee S, Patra D, Chen CL, Klose T, Yao XQ, Kossiakoff AA, Chang L, Andrews PC, Tesmer JJG. Structures of rhodopsin in complex with G-protein-coupled receptor kinase 1. Nature 2021;595:600-5. [PMID: 34262173 DOI: 10.1038/s41586-021-03721-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
17 Bolinger MT, Ramshekar A, Waldschmidt HV, Larsen SD, Bewley MC, Flanagan JM, Antonetti DA. Occludin S471 Phosphorylation Contributes to Epithelial Monolayer Maturation. Mol Cell Biol 2016;36:2051-66. [PMID: 27185880 DOI: 10.1128/MCB.00053-16] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
18 Chidiac P. RGS proteins destroy spare receptors: Effects of GPCR-interacting proteins and signal deamplification on measurements of GPCR agonist potency. Methods 2016;92:87-93. [DOI: 10.1016/j.ymeth.2015.08.011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
19 Bock A, Kostenis E, Tränkle C, Lohse MJ, Mohr K. Pilot the pulse: controlling the multiplicity of receptor dynamics. Trends Pharmacol Sci 2014;35:630-8. [PMID: 25455830 DOI: 10.1016/j.tips.2014.10.002] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
20 Crudden C, Song D, Cismas S, Trocmé E, Pasca S, Calin GA, Girnita A, Girnita L. Below the Surface: IGF-1R Therapeutic Targeting and Its Endocytic Journey. Cells 2019;8:E1223. [PMID: 31600876 DOI: 10.3390/cells8101223] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
21 Pandalaneni S, Karuppiah V, Saleem M, Haynes LP, Burgoyne RD, Mayans O, Derrick JP, Lian LY. Neuronal Calcium Sensor-1 Binds the D2 Dopamine Receptor and G-protein-coupled Receptor Kinase 1 (GRK1) Peptides Using Different Modes of Interactions. J Biol Chem 2015;290:18744-56. [PMID: 25979333 DOI: 10.1074/jbc.M114.627059] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
22 Black JB, Premont RT, Daaka Y. Feedback regulation of G protein-coupled receptor signaling by GRKs and arrestins. Semin Cell Dev Biol 2016;50:95-104. [PMID: 26773211 DOI: 10.1016/j.semcdb.2015.12.015] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 4.8] [Reference Citation Analysis]
23 Gurevich VV, Gurevich EV. GPCRs and Signal Transducers: Interaction Stoichiometry. Trends Pharmacol Sci 2018;39:672-84. [PMID: 29739625 DOI: 10.1016/j.tips.2018.04.002] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 10.0] [Reference Citation Analysis]
24 Lucas E, Jurado-pueyo M, Fortuño MA, Fernández-veledo S, Vila-bedmar R, Jiménez-borreguero LJ, Lazcano JJ, Gao E, Gómez-ambrosi J, Frühbeck G, Koch WJ, Díez J, Mayor F, Murga C. Downregulation of G protein-coupled receptor kinase 2 levels enhances cardiac insulin sensitivity and switches on cardioprotective gene expression patterns. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2014;1842:2448-56. [DOI: 10.1016/j.bbadis.2014.09.004] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 4.0] [Reference Citation Analysis]
25 Yu Q, Gratzke C, Wang Y, Herlemann A, Strittmatter F, Rutz B, Stief CG, Hennenberg M. Inhibition of prostatic smooth muscle contraction by the inhibitor of G protein-coupled receptor kinase 2/3, CMPD101. European Journal of Pharmacology 2018;831:9-19. [DOI: 10.1016/j.ejphar.2018.04.022] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
26 Ahmed MR, Bychkov E, Li L, Gurevich VV, Gurevich EV. GRK3 suppresses L-DOPA-induced dyskinesia in the rat model of Parkinson's disease via its RGS homology domain. Sci Rep 2015;5:10920. [PMID: 26043205 DOI: 10.1038/srep10920] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
27 Lyon AM, Taylor VG, Tesmer JJ. Strike a pose: Gαq complexes at the membrane. Trends Pharmacol Sci 2014;35:23-30. [PMID: 24287282 DOI: 10.1016/j.tips.2013.10.008] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
28 Senarath K, Kankanamge D, Samaradivakara S, Ratnayake K, Tennakoon M, Karunarathne A. Regulation of G Protein βγ Signaling. Int Rev Cell Mol Biol 2018;339:133-91. [PMID: 29776603 DOI: 10.1016/bs.ircmb.2018.02.008] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
29 Schou KB, Pedersen LB, Christensen ST. Ins and outs of GPCR signaling in primary cilia. EMBO Rep 2015;16:1099-113. [PMID: 26297609 DOI: 10.15252/embr.201540530] [Cited by in Crossref: 116] [Cited by in F6Publishing: 106] [Article Influence: 16.6] [Reference Citation Analysis]
30 Bosakova M, Abraham SP, Nita A, Hruba E, Buchtova M, Taylor SP, Duran I, Martin J, Svozilova K, Barta T, Varecha M, Balek L, Kohoutek J, Radaszkiewicz T, Pusapati GV, Bryja V, Rush ET, Thiffault I, Nickerson DA, Bamshad MJ, Rohatgi R, Cohn DH, Krakow D, Krejci P; University of Washington Center for Mendelian Genomics. Mutations in GRK2 cause Jeune syndrome by impairing Hedgehog and canonical Wnt signaling. EMBO Mol Med 2020;12:e11739. [PMID: 33200460 DOI: 10.15252/emmm.201911739] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
31 Allen SJ, Parthasarathy G, Darke PL, Diehl RE, Ford RE, Hall DL, Johnson SA, Reid JC, Rickert KW, Shipman JM, Soisson SM, Zuck P, Munshi SK, Lumb KJ. Structure and Function of the Hypertension Variant A486V of G Protein-coupled Receptor Kinase 4. J Biol Chem 2015;290:20360-73. [PMID: 26134571 DOI: 10.1074/jbc.M115.648907] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
32 Diao X, Yao L, Ma J, Zhang T, Bai H, Suo Z, Yang X, Hu X. Analgesic action of adenosine A1 receptor involves the dephosphorylation of glycine receptor α1ins subunit in spinal dorsal horn of mice. Neuropharmacology 2020;176:108219. [DOI: 10.1016/j.neuropharm.2020.108219] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 Yang P, Glukhova A, Tesmer JJ, Chen Z. Membrane orientation and binding determinants of G protein-coupled receptor kinase 5 as assessed by combined vibrational spectroscopic studies. PLoS One 2013;8:e82072. [PMID: 24278472 DOI: 10.1371/journal.pone.0082072] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
34 Packiriswamy N, Parameswaran N. G-protein-coupled receptor kinases in inflammation and disease. Genes Immun 2015;16:367-77. [PMID: 26226012 DOI: 10.1038/gene.2015.26] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.9] [Reference Citation Analysis]
35 Lone AM, Giansanti P, Jørgensen MJ, Gjerga E, Dugourd A, Scholten A, Saez-Rodriguez J, Heck AJR, Taskén K. Systems approach reveals distinct and shared signaling networks of the four PGE2 receptors in T cells. Sci Signal 2021;14:eabc8579. [PMID: 34609894 DOI: 10.1126/scisignal.abc8579] [Reference Citation Analysis]
36 Schoofs G, Van Hout A, D'huys T, Schols D, Van Loy T. A Flow Cytometry-based Assay to Identify Compounds That Disrupt Binding of Fluorescently-labeled CXC Chemokine Ligand 12 to CXC Chemokine Receptor 4. J Vis Exp 2018. [PMID: 29578516 DOI: 10.3791/57271] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
37 Wang L, Bao H, Wang KX, Zhang P, Yao QP, Chen XH, Huang K, Qi YX, Jiang ZL. Secreted miR-27a Induced by Cyclic Stretch Modulates the Proliferation of Endothelial Cells in Hypertension via GRK6. Sci Rep 2017;7:41058. [PMID: 28106155 DOI: 10.1038/srep41058] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
38 Cottingham C, Wang Q. α2 adrenergic receptor dysregulation in depressive disorders: implications for the neurobiology of depression and antidepressant therapy. Neurosci Biobehav Rev 2012;36:2214-25. [PMID: 22910678 DOI: 10.1016/j.neubiorev.2012.07.011] [Cited by in Crossref: 66] [Cited by in F6Publishing: 55] [Article Influence: 6.6] [Reference Citation Analysis]
39 Ostermaier MK, Schertler GF, Standfuss J. Molecular mechanism of phosphorylation-dependent arrestin activation. Curr Opin Struct Biol 2014;29:143-51. [PMID: 25484000 DOI: 10.1016/j.sbi.2014.07.006] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
40 Onaran HO, Costa T. Conceptual and experimental issues in biased agonism. Cell Signal 2021;82:109955. [PMID: 33607257 DOI: 10.1016/j.cellsig.2021.109955] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
41 Litosch I. RhoA co-ordinates with heterotrimeric G proteins to regulate efficacy. Biochem Biophys Res Commun 2011;415:215-9. [PMID: 22033406 DOI: 10.1016/j.bbrc.2011.10.063] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
42 Arcones AC, Vila-Bedmar R, Mirasierra M, Cruces-Sande M, Vallejo M, Jones B, Tomas A, Mayor F Jr, Murga C. GRK2 regulates GLP-1R-mediated early phase insulin secretion in vivo. BMC Biol 2021;19:40. [PMID: 33658023 DOI: 10.1186/s12915-021-00966-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Sorriento D, Ciccarelli M, Cipolletta E, Trimarco B, Iaccarino G. "Freeze, Don't Move": How to Arrest a Suspect in Heart Failure - A Review on Available GRK2 Inhibitors. Front Cardiovasc Med 2016;3:48. [PMID: 27999776 DOI: 10.3389/fcvm.2016.00048] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
44 Cruces-Sande M, Arcones AC, Vila-Bedmar R, Val-Blasco A, Sharabi K, Díaz-Rodríguez D, Puigserver P, Mayor F Jr, Murga C. Autophagy mediates hepatic GRK2 degradation to facilitate glucagon-induced metabolic adaptation to fasting. FASEB J 2020;34:399-409. [PMID: 31914606 DOI: 10.1096/fj.201901444R] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
45 Wang J, Luo J, Aryal DK, Wetsel WC, Nass R, Benovic JL. G protein-coupled receptor kinase-2 (GRK-2) regulates serotonin metabolism through the monoamine oxidase AMX-2 in Caenorhabditis elegans. J Biol Chem 2017;292:5943-56. [PMID: 28213524 DOI: 10.1074/jbc.M116.760850] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
46 Beautrait A, Michalski KR, Lopez TS, Mannix KM, McDonald DJ, Cutter AR, Medina CB, Hebert AM, Francis CJ, Bouvier M, Tesmer JJ, Sterne-Marr R. Mapping the putative G protein-coupled receptor (GPCR) docking site on GPCR kinase 2: insights from intact cell phosphorylation and recruitment assays. J Biol Chem 2014;289:25262-75. [PMID: 25049229 DOI: 10.1074/jbc.M114.593178] [Cited by in Crossref: 29] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
47 Zhou C, Li P, Han M, Gao X. Daidzein stimulates fatty acid-induced fat deposition in C2C12 myoblast cells via the G protein-coupled receptor 30 pathway. Anim Biotechnol 2020;:1-13. [PMID: 33164657 DOI: 10.1080/10495398.2020.1842749] [Reference Citation Analysis]
48 Gurevich EV, Gurevich VV. GRKs as Modulators of Neurotransmitter Receptors. Cells 2020;10:E52. [PMID: 33396400 DOI: 10.3390/cells10010052] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
49 Sok V, Jacinto AZ, Peng N, Eldemerdash M, Le L, Tran PD, Feng LF, Patel JR, Gi M, Ammon JC, So CH. G protein coupled receptor kinase 5 modifies the nucleolar stress response activated by actinomycin D. Biochem Cell Biol 2021;99:508-18. [PMID: 33507833 DOI: 10.1139/bcb-2020-0480] [Reference Citation Analysis]
50 Palacios-García J, Sanz-Flores M, Asensio A, Alvarado R, Rojo-Berciano S, Stamatakis K, Paramio JM, Cano A, Nieto MÁ, García-Escudero R, Mayor F Jr, Ribas C. G-protein-coupled receptor kinase 2 safeguards epithelial phenotype in head and neck squamous cell carcinomas. Int J Cancer 2020;147:218-29. [PMID: 31850518 DOI: 10.1002/ijc.32838] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
51 Prossnitz ER, Arterburn JB. International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators. Pharmacol Rev. 2015;67:505-540. [PMID: 26023144 DOI: 10.1124/pr.114.009712] [Cited by in Crossref: 143] [Cited by in F6Publishing: 133] [Article Influence: 23.8] [Reference Citation Analysis]
52 Sorriento D, Fusco A, Ciccarelli M, Rungi A, Anastasio A, Carillo A, Dorn GW 2nd, Trimarco B, Iaccarino G. Mitochondrial G protein coupled receptor kinase 2 regulates proinflammatory responses in macrophages. FEBS Lett 2013;587:3487-94. [PMID: 24036448 DOI: 10.1016/j.febslet.2013.09.002] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.9] [Reference Citation Analysis]
53 Hinkle PM, Gehret AU, Jones BW. Desensitization, trafficking, and resensitization of the pituitary thyrotropin-releasing hormone receptor. Front Neurosci 2012;6:180. [PMID: 23248581 DOI: 10.3389/fnins.2012.00180] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 2.2] [Reference Citation Analysis]
54 Deiss K, Kisker C, Lohse MJ, Lorenz K. Raf kinase inhibitor protein (RKIP) dimer formation controls its target switch from Raf1 to G protein-coupled receptor kinase (GRK) 2. J Biol Chem 2012;287:23407-17. [PMID: 22610096 DOI: 10.1074/jbc.M112.363812] [Cited by in Crossref: 48] [Cited by in F6Publishing: 25] [Article Influence: 4.8] [Reference Citation Analysis]
55 Crudden C, Shibano T, Song D, Suleymanova N, Girnita A, Girnita L. Blurring Boundaries: Receptor Tyrosine Kinases as functional G Protein-Coupled Receptors. G Protein-Coupled Receptors: Emerging Paradigms in Activation, Signaling and Regulation Part B. Elsevier; 2018. pp. 1-40. [DOI: 10.1016/bs.ircmb.2018.02.006] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
56 Funk AJ, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE. Increased G protein-coupled receptor kinase (GRK) expression in the anterior cingulate cortex in schizophrenia. Schizophr Res 2014;159:130-5. [PMID: 25153362 DOI: 10.1016/j.schres.2014.07.040] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
57 Zappelli E, Daniele S, Abbracchio MP, Martini C, Trincavelli ML. A rapid and efficient immunoenzymatic assay to detect receptor protein interactions: G protein-coupled receptors. Int J Mol Sci 2014;15:6252-64. [PMID: 24733071 DOI: 10.3390/ijms15046252] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
58 Truebestein L, Elsner DJ, Fuchs E, Leonard TA. A molecular ruler regulates cytoskeletal remodelling by the Rho kinases. Nat Commun 2015;6:10029. [PMID: 26620183 DOI: 10.1038/ncomms10029] [Cited by in Crossref: 40] [Cited by in F6Publishing: 33] [Article Influence: 5.7] [Reference Citation Analysis]
59 Penela P. Chapter Three - Ubiquitination and Protein Turnover of G-Protein-Coupled Receptor Kinases in GPCR Signaling and Cellular Regulation. Prog Mol Biol Transl Sci 2016;141:85-140. [PMID: 27378756 DOI: 10.1016/bs.pmbts.2016.04.002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
60 Zha Z, Han X, Smith MD, Liu Y, Giguère PM, Kopanja D, Raychaudhuri P, Siderovski DP, Guan KL, Lei QY, Xiong Y. A Non-Canonical Function of Gβ as a Subunit of E3 Ligase in Targeting GRK2 Ubiquitylation. Mol Cell 2015;58:794-803. [PMID: 25982117 DOI: 10.1016/j.molcel.2015.04.017] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
61 Apostolakou AE, Baltoumas FA, Stravopodis DJ, Iconomidou VA. Extended Human G-Protein Coupled Receptor Network: Cell-Type-Specific Analysis of G-Protein Coupled Receptor Signaling Pathways. J Proteome Res 2020;19:511-24. [PMID: 31774292 DOI: 10.1021/acs.jproteome.9b00754] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
62 Chaudhary PK, Kim S. The GRKs Reactome: Role in Cell Biology and Pathology. Int J Mol Sci 2021;22:3375. [PMID: 33806057 DOI: 10.3390/ijms22073375] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
63 Laporte SA, Scott MGH. β-Arrestins: Multitask Scaffolds Orchestrating the Where and When in Cell Signalling. Methods Mol Biol 2019;1957:9-55. [PMID: 30919345 DOI: 10.1007/978-1-4939-9158-7_2] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
64 Gimenez LE, Babilon S, Wanka L, Beck-Sickinger AG, Gurevich VV. Mutations in arrestin-3 differentially affect binding to neuropeptide Y receptor subtypes. Cell Signal 2014;26:1523-31. [PMID: 24686081 DOI: 10.1016/j.cellsig.2014.03.019] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 4.3] [Reference Citation Analysis]
65 Gärtner F, Seidel T, Schulz U, Gummert J, Milting H. Desensitization and internalization of endothelin receptor A: impact of G protein-coupled receptor kinase 2 (GRK2)-mediated phosphorylation. J Biol Chem 2013;288:32138-48. [PMID: 24064210 DOI: 10.1074/jbc.M113.461566] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
66 Arencibia JM, Pastor-Flores D, Bauer AF, Schulze JO, Biondi RM. AGC protein kinases: from structural mechanism of regulation to allosteric drug development for the treatment of human diseases. Biochim Biophys Acta 2013;1834:1302-21. [PMID: 23524293 DOI: 10.1016/j.bbapap.2013.03.010] [Cited by in Crossref: 94] [Cited by in F6Publishing: 91] [Article Influence: 10.4] [Reference Citation Analysis]
67 Schmid CL, Bohn LM. βArrestins: Ligand-Directed Regulators of 5-HT2A Receptor Trafficking and Signaling Events. In: Guiard BP, Di Giovanni G, editors. 5-HT2A Receptors in the Central Nervous System. Cham: Springer International Publishing; 2018. pp. 31-55. [DOI: 10.1007/978-3-319-70474-6_2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
68 Gurevich VV, Gurevich EV. Analyzing the roles of multi-functional proteins in cells: The case of arrestins and GRKs. Crit Rev Biochem Mol Biol 2015;50:440-52. [PMID: 26453028 DOI: 10.3109/10409238.2015.1067185] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
69 Shiraishi Y, Natsume M, Kofuku Y, Imai S, Nakata K, Mizukoshi T, Ueda T, Iwaï H, Shimada I. Phosphorylation-induced conformation of β2-adrenoceptor related to arrestin recruitment revealed by NMR. Nat Commun 2018;9:194. [PMID: 29335412 DOI: 10.1038/s41467-017-02632-8] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 9.8] [Reference Citation Analysis]
70 Gurevich VV, Hanson SM, Song X, Vishnivetskiy SA, Gurevich EV. The functional cycle of visual arrestins in photoreceptor cells. Prog Retin Eye Res 2011;30:405-30. [PMID: 21824527 DOI: 10.1016/j.preteyeres.2011.07.002] [Cited by in Crossref: 77] [Cited by in F6Publishing: 72] [Article Influence: 7.0] [Reference Citation Analysis]
71 Crudden C, Ilic M, Suleymanova N, Worrall C, Girnita A, Girnita L. The dichotomy of the Insulin-like growth factor 1 receptor: RTK and GPCR: friend or foe for cancer treatment? Growth Horm IGF Res 2015;25:2-12. [PMID: 25466906 DOI: 10.1016/j.ghir.2014.10.002] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
72 Chen Q, Zhuo Y, Sharma P, Perez I, Francis DJ, Chakravarthy S, Vishnivetskiy SA, Berndt S, Hanson SM, Zhan X, Brooks EK, Altenbach C, Hubbell WL, Klug CS, Iverson TM, Gurevich VV. An Eight Amino Acid Segment Controls Oligomerization and Preferred Conformation of the two Non-visual Arrestins. J Mol Biol 2021;433:166790. [PMID: 33387531 DOI: 10.1016/j.jmb.2020.166790] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
73 Thal DM, Glukhova A, Sexton PM, Christopoulos A. Structural insights into G-protein-coupled receptor allostery. Nature 2018;559:45-53. [DOI: 10.1038/s41586-018-0259-z] [Cited by in Crossref: 135] [Cited by in F6Publishing: 112] [Article Influence: 33.8] [Reference Citation Analysis]
74 Karatzas E, Baltoumas FA, Panayiotou NA, Schneider R, Pavlopoulos GA. Arena3Dweb: interactive 3D visualization of multilayered networks. Nucleic Acids Res 2021;49:W36-45. [PMID: 33885790 DOI: 10.1093/nar/gkab278] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
75 Che P, Chen Y, Lu R, Peng N, Gannon M, Wyss JM, Jiao K, Wang Q. Spinophilin Is Indispensable for the α2B Adrenergic Receptor-Elicited Hypertensive Response. PLoS One 2015;10:e0135030. [PMID: 26244553 DOI: 10.1371/journal.pone.0135030] [Reference Citation Analysis]
76 de Munnik SM, Smit MJ, Leurs R, Vischer HF. Modulation of cellular signaling by herpesvirus-encoded G protein-coupled receptors. Front Pharmacol 2015;6:40. [PMID: 25805993 DOI: 10.3389/fphar.2015.00040] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
77 Cheng J, Lucas PC, McAllister-Lucas LM. Canonical and Non-Canonical Roles of GRK2 in Lymphocytes. Cells 2021;10:307. [PMID: 33546162 DOI: 10.3390/cells10020307] [Reference Citation Analysis]
78 Samaranayake S, Song X, Vishnivetskiy SA, Chen J, Gurevich EV, Gurevich VV. Enhanced Mutant Compensates for Defects in Rhodopsin Phosphorylation in the Presence of Endogenous Arrestin-1. Front Mol Neurosci 2018;11:203. [PMID: 29973866 DOI: 10.3389/fnmol.2018.00203] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
79 Traynham CJ, Hullmann J, Koch WJ. "Canonical and non-canonical actions of GRK5 in the heart". J Mol Cell Cardiol 2016;92:196-202. [PMID: 26829117 DOI: 10.1016/j.yjmcc.2016.01.027] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
80 Ganapathy K, Datta I, Sowmithra S, Joshi P, Bhonde R. Influence of 6-Hydroxydopamine Toxicity on α-Synuclein Phosphorylation, Resting Vesicle Expression, and Vesicular Dopamine Release: α-S YNUCLEIN P HOSPHORYLATION U NDER 6-OHDA T OXICITY. J Cell Biochem 2016;117:2719-36. [DOI: 10.1002/jcb.25570] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
81 Thompson SL, Dulawa SC. Dissecting the roles of β-arrestin2 and GSK-3 signaling in 5-HT1BR-mediated perseverative behavior and prepulse inhibition deficits in mice. PLoS One 2019;14:e0211239. [PMID: 30721232 DOI: 10.1371/journal.pone.0211239] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
82 Zhuo Y, Vishnivetskiy SA, Zhan X, Gurevich VV, Klug CS. Identification of receptor binding-induced conformational changes in non-visual arrestins. J Biol Chem 2014;289:20991-1002. [PMID: 24867953 DOI: 10.1074/jbc.M114.560680] [Cited by in Crossref: 40] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
83 Pusapati GV, Kong JH, Patel BB, Gouti M, Sagner A, Sircar R, Luchetti G, Ingham PW, Briscoe J, Rohatgi R. G protein-coupled receptors control the sensitivity of cells to the morphogen Sonic Hedgehog. Sci Signal 2018;11:eaao5749. [PMID: 29438014 DOI: 10.1126/scisignal.aao5749] [Cited by in Crossref: 50] [Cited by in F6Publishing: 34] [Article Influence: 12.5] [Reference Citation Analysis]
84 Tang ZR, Zhang R, Lian ZX, Deng SL, Yu K. Estrogen-Receptor Expression and Function in Female Reproductive Disease. Cells 2019;8:E1123. [PMID: 31546660 DOI: 10.3390/cells8101123] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 13.7] [Reference Citation Analysis]
85 Ahmed MR, Bychkov E, Kook S, Zurkovsky L, Dalby KN, Gurevich EV. Overexpression of GRK6 rescues L-DOPA-induced signaling abnormalities in the dopamine-depleted striatum of hemiparkinsonian rats. Exp Neurol 2015;266:42-54. [PMID: 25687550 DOI: 10.1016/j.expneurol.2015.02.008] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
86 Steury MD, McCabe LR, Parameswaran N. G Protein-Coupled Receptor Kinases in the Inflammatory Response and Signaling. Adv Immunol 2017;136:227-77. [PMID: 28950947 DOI: 10.1016/bs.ai.2017.05.003] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
87 Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko WK, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Prog Neurobiol 2015;132:96-168. [PMID: 26209473 DOI: 10.1016/j.pneurobio.2015.07.002] [Cited by in Crossref: 254] [Cited by in F6Publishing: 235] [Article Influence: 36.3] [Reference Citation Analysis]
88 Zhang J, Wallace SJ, Shiu MY, Smith I, Rhind SG, Langlois VS. Human hair follicle transcriptome profiling: a minimally invasive tool to assess molecular adaptations upon low-volume, high-intensity interval training. Physiol Rep 2017;5. [PMID: 29212859 DOI: 10.14814/phy2.13534] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
89 Nogués L, Reglero C, Rivas V, Neves M, Penela P, Mayor F. G-Protein–Coupled Receptor Kinase 2 as a Potential Modulator of the Hallmarks of Cancer. Mol Pharmacol 2017;91:220-8. [DOI: 10.1124/mol.116.107185] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 4.5] [Reference Citation Analysis]
90 Rowlands RA, Cato MC, Waldschmidt HV, Bouley RA, Chen Q, Avramova L, Larsen SD, Tesmer JJG, White AD. Structure-Based Design of Selective, Covalent G Protein-Coupled Receptor Kinase 5 Inhibitors. ACS Med Chem Lett 2019;10:1628-34. [PMID: 31857838 DOI: 10.1021/acsmedchemlett.9b00365] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
91 Penela P, Nogués L, Mayor F Jr. Role of G protein-coupled receptor kinases in cell migration. Curr Opin Cell Biol 2014;27:10-7. [PMID: 24680425 DOI: 10.1016/j.ceb.2013.10.005] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 5.1] [Reference Citation Analysis]
92 Waldschmidt HV, Homan KT, Cato MC, Cruz-Rodríguez O, Cannavo A, Wilson MW, Song J, Cheung JY, Koch WJ, Tesmer JJ, Larsen SD. Structure-Based Design of Highly Selective and Potent G Protein-Coupled Receptor Kinase 2 Inhibitors Based on Paroxetine. J Med Chem 2017;60:3052-69. [PMID: 28323425 DOI: 10.1021/acs.jmedchem.7b00112] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 5.6] [Reference Citation Analysis]
93 Homan KT, Tesmer JJ. Structural insights into G protein-coupled receptor kinase function. Curr Opin Cell Biol 2014;27:25-31. [PMID: 24680427 DOI: 10.1016/j.ceb.2013.10.009] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 4.3] [Reference Citation Analysis]
94 Kimura M, Oda Y, Kimura H, Nangaku M, Hirose Y, Niitsu T, Kanahara N, Shirayama Y, Hashimoto K, Iyo M. Reduction of dopamine and glycogen synthase kinase-3 signaling in rat striatum after continuous administration of haloperidol. Pharmacol Biochem Behav 2021;202:173114. [PMID: 33485878 DOI: 10.1016/j.pbb.2021.173114] [Reference Citation Analysis]
95 Abdullah N, Beg M, Soares D, Dittman JS, McGraw TE. Downregulation of a GPCR by β-Arrestin2-Mediated Switch from an Endosomal to a TGN Recycling Pathway. Cell Rep 2016;17:2966-78. [PMID: 27974210 DOI: 10.1016/j.celrep.2016.11.050] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 5.8] [Reference Citation Analysis]
96 Yao XQ, Cato MC, Labudde E, Beyett TS, Tesmer JJG, Grant BJ. Navigating the conformational landscape of G protein-coupled receptor kinases during allosteric activation. J Biol Chem 2017;292:16032-43. [PMID: 28808053 DOI: 10.1074/jbc.M117.807461] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
97 Eijkelkamp N, Heijnen CJ, Carbajal AG, Willemen HL, Wang H, Minett MS, Wood JN, Schedlowski M, Dantzer R, Kelley KW, Kavelaars A. G protein-coupled receptor kinase 6 acts as a critical regulator of cytokine-induced hyperalgesia by promoting phosphatidylinositol 3-kinase and inhibiting p38 signaling. Mol Med 2012;18:556-64. [PMID: 22331028 DOI: 10.2119/molmed.2011.00398] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
98 Wang Y, Gao E, Lau WB, Wang Y, Liu G, Li JJ, Wang X, Yuan Y, Koch WJ, Ma XL. G-protein-coupled receptor kinase 2-mediated desensitization of adiponectin receptor 1 in failing heart. Circulation 2015;131:1392-404. [PMID: 25696921 DOI: 10.1161/CIRCULATIONAHA.114.015248] [Cited by in Crossref: 33] [Cited by in F6Publishing: 18] [Article Influence: 4.7] [Reference Citation Analysis]
99 Ding B, Glukhova A, Sobczyk-Kojiro K, Mosberg HI, Tesmer JJ, Chen Z. Unveiling the membrane-binding properties of N-terminal and C-terminal regions of G protein-coupled receptor kinase 5 by combined optical spectroscopies. Langmuir 2014;30:823-31. [PMID: 24401145 DOI: 10.1021/la404055a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
100 Homan KT, Waldschmidt HV, Glukhova A, Cannavo A, Song J, Cheung JY, Koch WJ, Larsen SD, Tesmer JJG. Crystal Structure of G Protein-coupled Receptor Kinase 5 in Complex with a Rationally Designed Inhibitor. J Biol Chem 2015;290:20649-59. [PMID: 26032411 DOI: 10.1074/jbc.M115.647370] [Cited by in Crossref: 36] [Cited by in F6Publishing: 26] [Article Influence: 5.1] [Reference Citation Analysis]
101 Toya M, Akasaki Y, Sueishi T, Kurakazu I, Kuwahara M, Uchida T, Tsutsui T, Tsushima H, Yamada H, Lotz MK, Nakashima Y. G protein-coupled receptor kinase 5 deletion suppresses synovial inflammation in a murine model of collagen antibody-induced arthritis. Sci Rep 2021;11:10481. [PMID: 34006987 DOI: 10.1038/s41598-021-90020-0] [Reference Citation Analysis]
102 Toth K, Nagi K, Slosky LM, Rochelle L, Ray C, Kaur S, Shenoy SK, Caron MG, Barak LS. Encoding the β-Arrestin Trafficking Fate of Ghrelin Receptor GHSR1a: C-Tail-Independent Molecular Determinants in GPCRs. ACS Pharmacol Transl Sci 2019;2:230-46. [PMID: 32259059 DOI: 10.1021/acsptsci.9b00018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
103 Hendrickx JO, van Gastel J, Leysen H, Santos-Otte P, Premont RT, Martin B, Maudsley S. GRK5 - A Functional Bridge Between Cardiovascular and Neurodegenerative Disorders. Front Pharmacol 2018;9:1484. [PMID: 30618771 DOI: 10.3389/fphar.2018.01484] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
104 Nakaya M, Tajima M, Kosako H, Nakaya T, Hashimoto A, Watari K, Nishihara H, Ohba M, Komiya S, Tani N, Nishida M, Taniguchi H, Sato Y, Matsumoto M, Tsuda M, Kuroda M, Inoue K, Kurose H. GRK6 deficiency in mice causes autoimmune disease due to impaired apoptotic cell clearance. Nat Commun 2013;4:1532. [PMID: 23443560 DOI: 10.1038/ncomms2540] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 4.7] [Reference Citation Analysis]
105 Fumagalli M, Bonfanti E, Daniele S, Zappelli E, Lecca D, Martini C, Trincavelli ML, Abbracchio MP. The ubiquitin ligase Mdm2 controls oligodendrocyte maturation by intertwining mTOR with G protein-coupled receptor kinase 2 in the regulation of GPR17 receptor desensitization. Glia 2015;63:2327-39. [PMID: 26228571 DOI: 10.1002/glia.22896] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 4.7] [Reference Citation Analysis]
106 Asai D, Murata M, Toita R, Kawano T, Nakashima H, Kang JH. Role of amino acid residues surrounding the phosphorylation site in peptide substrates of G protein-coupled receptor kinase 2 (GRK2). Amino Acids 2016;48:2875-80. [PMID: 27714516 DOI: 10.1007/s00726-016-2345-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
107 Gurevich VV, Gurevich EV. GPCR Signaling Regulation: The Role of GRKs and Arrestins. Front Pharmacol. 2019;10:125. [PMID: 30837883 DOI: 10.3389/fphar.2019.00125] [Cited by in Crossref: 122] [Cited by in F6Publishing: 118] [Article Influence: 40.7] [Reference Citation Analysis]
108 Mushegian A, Gurevich VV, Gurevich EV. The origin and evolution of G protein-coupled receptor kinases. PLoS One. 2012;7:e33806. [PMID: 22442725 DOI: 10.1371/journal.pone.0033806] [Cited by in Crossref: 50] [Cited by in F6Publishing: 45] [Article Influence: 5.0] [Reference Citation Analysis]
109 Tóth AD, Turu G, Hunyady L, Balla A. Novel mechanisms of G-protein-coupled receptors functions: AT1 angiotensin receptor acts as a signaling hub and focal point of receptor cross-talk. Best Pract Res Clin Endocrinol Metab 2018;32:69-82. [PMID: 29678287 DOI: 10.1016/j.beem.2018.02.003] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 5.5] [Reference Citation Analysis]
110 Marino J, Schertler GFX. A set of common movements within GPCR-G-protein complexes from variability analysis of cryo-EM datasets. J Struct Biol 2021;213:107699. [PMID: 33545352 DOI: 10.1016/j.jsb.2021.107699] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
111 Azimzadeh P, Talamantez-Lyburn SC, Chang KT, Inoue A, Balenga N. Spatial regulation of GPR64/ADGRG2 signaling by β-arrestins and GPCR kinases. Ann N Y Acad Sci 2019;1456:26-43. [PMID: 31502283 DOI: 10.1111/nyas.14227] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
112 Gurevich VV, Song X, Vishnivetskiy SA, Gurevich EV. Enhanced phosphorylation-independent arrestins and gene therapy. Handb Exp Pharmacol 2014;219:133-52. [PMID: 24292828 DOI: 10.1007/978-3-642-41199-1_7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
113 Mehta N, Cheng AH, Chiang CK, Mendoza-Viveros L, Ling HH, Patel A, Xu B, Figeys D, Cheng HY. GRK2 Fine-Tunes Circadian Clock Speed and Entrainment via Transcriptional and Post-translational Control of PERIOD Proteins. Cell Rep 2015;12:1272-88. [PMID: 26279567 DOI: 10.1016/j.celrep.2015.07.037] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
114 Hattori M, Ozawa T. Bioluminescent tools for the analysis of G-protein-coupled receptor and arrestin interactions. RSC Adv 2015;5:12655-63. [DOI: 10.1039/c4ra14979c] [Cited by in Crossref: 4] [Article Influence: 0.6] [Reference Citation Analysis]
115 Pereira PHS, Garcia CRS. Evidence of G-Protein-Coupled Receptors (GPCR) in the Parasitic Protozoa Plasmodium falciparum-Sensing the Host Environment and Coupling within Its Molecular Signaling Toolkit. Int J Mol Sci 2021;22:12381. [PMID: 34830263 DOI: 10.3390/ijms222212381] [Reference Citation Analysis]
116 Thal DM, Homan KT, Chen J, Wu EK, Hinkle PM, Huang ZM, Chuprun JK, Song J, Gao E, Cheung JY, Sklar LA, Koch WJ, Tesmer JJ. Paroxetine is a direct inhibitor of g protein-coupled receptor kinase 2 and increases myocardial contractility. ACS Chem Biol 2012;7:1830-9. [PMID: 22882301 DOI: 10.1021/cb3003013] [Cited by in Crossref: 112] [Cited by in F6Publishing: 108] [Article Influence: 11.2] [Reference Citation Analysis]
117 Murga C, Arcones AC, Cruces-Sande M, Briones AM, Salaices M, Mayor F Jr. G Protein-Coupled Receptor Kinase 2 (GRK2) as a Potential Therapeutic Target in Cardiovascular and Metabolic Diseases. Front Pharmacol 2019;10:112. [PMID: 30837878 DOI: 10.3389/fphar.2019.00112] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 10.0] [Reference Citation Analysis]
118 Lee T, Packiriswamy N, Lee E, Lucas PC, McCabe LR, Parameswaran N. Role of G protein-coupled receptor kinase-6 in Escherichia coli lung infection model in mice. Physiol Genomics 2017;49:682-9. [PMID: 28939643 DOI: 10.1152/physiolgenomics.00066.2017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
119 Parker BM, Wertz SL, Pollard CM, Desimine VL, Maning J, McCrink KA, Lymperopoulos A. Novel Insights into the Crosstalk between Mineralocorticoid Receptor and G Protein-Coupled Receptors in Heart Adverse Remodeling and Disease. Int J Mol Sci. 2018;19:3764. [PMID: 30486399 DOI: 10.3390/ijms19123764] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
120 Zhao Y, Vanhoutte PM, Leung SW. α1 -Adrenoceptor activation of PKC-ε causes heterologous desensitization of thromboxane receptors in the aorta of spontaneously hypertensive rats. Br J Pharmacol 2015;172:3687-701. [PMID: 25857252 DOI: 10.1111/bph.13157] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
121 Gurevich VV, Gurevich EV. Biased GPCR signaling: Possible mechanisms and inherent limitations. Pharmacol Ther 2020;211:107540. [PMID: 32201315 DOI: 10.1016/j.pharmthera.2020.107540] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
122 Gurevich VV, Gurevich EV. Synthetic biology with surgical precision: targeted reengineering of signaling proteins. Cell Signal 2012;24:1899-908. [PMID: 22664341 DOI: 10.1016/j.cellsig.2012.05.012] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
123 Baameur F, Hammitt RA, Friedman J, McMurray JS, Clark RB. Biochemical and Cellular Specificity of Peptide Inhibitors of G Protein-Coupled Receptor Kinases. Int J Pept Res Ther 2014;20:1-12. [PMID: 25530741 DOI: 10.1007/s10989-013-9357-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
124 Burczyk M, Burkhalter MD, Blätte T, Matysik S, Caron MG, Barak LS, Philipp M. Phenotypic regulation of the sphingosine 1-phosphate receptor miles apart by G protein-coupled receptor kinase 2. Biochemistry 2015;54:765-75. [PMID: 25555130 DOI: 10.1021/bi501061h] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
125 Robinson BG, Bunzow JR, Grimm JB, Lavis LD, Dudman JT, Brown J, Neve KA, Williams JT. Desensitized D2 autoreceptors are resistant to trafficking. Sci Rep 2017;7:4379. [PMID: 28663556 DOI: 10.1038/s41598-017-04728-z] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
126 Chai F, Xu W, Musoke T, Tarabelsi G, Assaad S, Freedman J, Peterson R, Piotrowska K, Byrnes J, Rogers S, Veraksa A. Structure-function analysis of β-arrestin Kurtz reveals a critical role of receptor interactions in downregulation of GPCR signaling in vivo. Dev Biol 2019;455:409-19. [PMID: 31325455 DOI: 10.1016/j.ydbio.2019.07.013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
127 Nieto-Alamilla G, Márquez-Gómez R, García-Gálvez AM, Morales-Figueroa GE, Arias-Montaño JA. The Histamine H3 Receptor: Structure, Pharmacology, and Function. Mol Pharmacol 2016;90:649-73. [PMID: 27563055 DOI: 10.1124/mol.116.104752] [Cited by in Crossref: 74] [Cited by in F6Publishing: 65] [Article Influence: 12.3] [Reference Citation Analysis]
128 So CH, Michal A, Komolov KE, Luo J, Benovic JL. G protein-coupled receptor kinase 2 (GRK2) is localized to centrosomes and mediates epidermal growth factor-promoted centrosomal separation. Mol Biol Cell 2013;24:2795-806. [PMID: 23904266 DOI: 10.1091/mbc.E13-01-0013] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
129 Ohba Y, Nakaya M, Watari K, Nagasaka A, Kurose H. GRK6 phosphorylates IκBα at Ser32/Ser36 and enhances TNF-α-induced inflammation. Biochemical and Biophysical Research Communications 2015;461:307-13. [DOI: 10.1016/j.bbrc.2015.04.027] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
130 Vishnivetskiy SA, Ostermaier MK, Singhal A, Panneels V, Homan KT, Glukhova A, Sligar SG, Tesmer JJ, Schertler GF, Standfuss J, Gurevich VV. Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding. Cell Signal 2013;25:2155-62. [PMID: 23872075 DOI: 10.1016/j.cellsig.2013.07.009] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 3.2] [Reference Citation Analysis]
131 Fernandez TJ, De Maria M, Lobingier BT. A cellular perspective of bias at G protein-coupled receptors. Protein Sci 2020;29:1345-54. [PMID: 32297394 DOI: 10.1002/pro.3872] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
132 Stegen M, Engler A, Ochsenfarth C, Manthey I, Peters J, Siffert W, Frey UH. Characterization of the G protein-coupled receptor kinase 6 promoter reveals a functional CREB binding site. PLoS One 2021;16:e0247087. [PMID: 33600497 DOI: 10.1371/journal.pone.0247087] [Reference Citation Analysis]
133 Milić D, Veprintsev DB. Large-scale production and protein engineering of G protein-coupled receptors for structural studies. Front Pharmacol 2015;6:66. [PMID: 25873898 DOI: 10.3389/fphar.2015.00066] [Cited by in Crossref: 14] [Cited by in F6Publishing: 24] [Article Influence: 2.0] [Reference Citation Analysis]
134 Suh YH, Chang K, Roche KW. Metabotropic glutamate receptor trafficking. Mol Cell Neurosci 2018;91:10-24. [PMID: 29604330 DOI: 10.1016/j.mcn.2018.03.014] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 6.5] [Reference Citation Analysis]
135 Mayor F, Cruces-sande M, Arcones AC, Vila-bedmar R, Briones AM, Salaices M, Murga C. G protein-coupled receptor kinase 2 (GRK2) as an integrative signalling node in the regulation of cardiovascular function and metabolic homeostasis. Cellular Signalling 2018;41:25-32. [DOI: 10.1016/j.cellsig.2017.04.002] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
136 Bychkov E, Zurkovsky L, Garret MB, Ahmed MR, Gurevich EV. Distinct cellular and subcellular distributions of G protein-coupled receptor kinase and arrestin isoforms in the striatum. PLoS One 2012;7:e48912. [PMID: 23139825 DOI: 10.1371/journal.pone.0048912] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.2] [Reference Citation Analysis]
137 Asai D, Toita R, Murata M, Katayama Y, Nakashima H, Kang JH. Peptide substrates for G protein-coupled receptor kinase 2. FEBS Lett 2014;588:2129-32. [PMID: 24813628 DOI: 10.1016/j.febslet.2014.04.038] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
138 Uehling DE, Joseph B, Chung KC, Zhang AX, Ler S, Prakesch MA, Poda G, Grouleff J, Aman A, Kiyota T, Leung-Hagesteijn C, Konda JD, Marcellus R, Griffin C, Subramaniam R, Abibi A, Strathdee CA, Isaac MB, Al-Awar R, Tiedemann RE. Design, Synthesis, and Characterization of 4-Aminoquinazolines as Potent Inhibitors of the G Protein-Coupled Receptor Kinase 6 (GRK6) for the Treatment of Multiple Myeloma. J Med Chem 2021;64:11129-47. [PMID: 34291633 DOI: 10.1021/acs.jmedchem.1c00506] [Reference Citation Analysis]
139 García-Borrón JC, Abdel-Malek Z, Jiménez-Cervantes C. MC1R, the cAMP pathway, and the response to solar UV: extending the horizon beyond pigmentation. Pigment Cell Melanoma Res 2014;27:699-720. [PMID: 24807163 DOI: 10.1111/pcmr.12257] [Cited by in Crossref: 104] [Cited by in F6Publishing: 95] [Article Influence: 13.0] [Reference Citation Analysis]
140 Dzamko N, Zhou J, Huang Y, Halliday GM. Parkinson's disease-implicated kinases in the brain; insights into disease pathogenesis. Front Mol Neurosci 2014;7:57. [PMID: 25009465 DOI: 10.3389/fnmol.2014.00057] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 5.6] [Reference Citation Analysis]
141 Ammon JC, Valls D, Eldemerdash M, Patel JR, Tran PD, Feng L, Gi M, Gonzalez TT, Phan C, Zendejas AE, So CH. G protein-coupled receptor kinase 2 modifies the cellular reaction to cisplatin through interactions with NADPH oxidase 4. Mol Cell Biochem 2021;476:1505-16. [PMID: 33392923 DOI: 10.1007/s11010-020-03969-3] [Reference Citation Analysis]
142 van Gastel J, Leysen H, Boddaert J, Vangenechten L, Luttrell LM, Martin B, Maudsley S. Aging-related modifications to G protein-coupled receptor signaling diversity. Pharmacol Ther 2021;223:107793. [PMID: 33316288 DOI: 10.1016/j.pharmthera.2020.107793] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
143 Sommer AK, Falcenberg M, Ljepoja B, Fröhlich T, Arnold GJ, Wagner E, Roidl A. Downregulation of GRK5 hampers the migration of breast cancer cells. Sci Rep 2019;9:15548. [PMID: 31664083 DOI: 10.1038/s41598-019-51923-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
144 Steury MD, Lucas PC, McCabe LR, Parameswaran N. G-protein-coupled receptor kinase-2 is a critical regulator of TNFα signaling in colon epithelial cells. Biochem J 2017;474:2301-13. [PMID: 28572156 DOI: 10.1042/BCJ20170093] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
145 Jimenez-Duran G, Triantafilou M. Metabolic regulators of enigmatic inflammasomes in autoimmune diseases and crosstalk with innate immune receptors. Immunology 2021;163:348-62. [PMID: 33682108 DOI: 10.1111/imm.13326] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
146 Lefkowitz RJ. Arrestins Come of Age. The Molecular Biology of Arrestins. Elsevier; 2013. pp. 3-18. [DOI: 10.1016/b978-0-12-394440-5.00001-2] [Cited by in Crossref: 38] [Cited by in F6Publishing: 28] [Article Influence: 4.2] [Reference Citation Analysis]
147 Rowlands RA, Chen Q, Bouley RA, Avramova LV, Tesmer JJG, White AD. Generation of Highly Selective, Potent, and Covalent G Protein-Coupled Receptor Kinase 5 Inhibitors. J Med Chem 2021;64:566-85. [PMID: 33393767 DOI: 10.1021/acs.jmedchem.0c01522] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
148 Vila-Bedmar R, Cruces-Sande M, Lucas E, Willemen HL, Heijnen CJ, Kavelaars A, Mayor F Jr, Murga C. Reversal of diet-induced obesity and insulin resistance by inducible genetic ablation of GRK2. Sci Signal 2015;8:ra73. [PMID: 26198359 DOI: 10.1126/scisignal.aaa4374] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 5.6] [Reference Citation Analysis]
149 Rinaldi B, Donniacuo M, Sodano L, Gritti G, Martuscelli E, Orlandi A, Rafaniello C, Rossi F, Calzetta L, Capuano A, Matera MG. Effects of chronic treatment with the new ultra-long-acting β2 -adrenoceptor agonist indacaterol alone or in combination with the β1 -adrenoceptor blocker metoprolol on cardiac remodelling. Br J Pharmacol 2015;172:3627-37. [PMID: 25825265 DOI: 10.1111/bph.13148] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
150 Sato PY, Chuprun JK, Schwartz M, Koch WJ. The evolving impact of g protein-coupled receptor kinases in cardiac health and disease. Physiol Rev. 2015;95:377-404. [PMID: 25834229 DOI: 10.1152/physrev.00015.2014] [Cited by in Crossref: 97] [Cited by in F6Publishing: 82] [Article Influence: 13.9] [Reference Citation Analysis]
151 Xiao P, Huang X, Huang L, Yang J, Li A, Shen K, Wedegaertner PB, Jiang X. G protein-coupled receptor kinase 4-induced cellular senescence and its senescence-associated gene expression profiling. Exp Cell Res 2017;360:273-80. [PMID: 28912086 DOI: 10.1016/j.yexcr.2017.09.017] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
152 Montejo-López W, Rivera-Ramírez N, Escamilla-Sánchez J, García-Hernández U, Arias-Montaño JA. Heterologous, PKC-Mediated Desensitization of Human Histamine H3 Receptors Expressed in CHO-K1 Cells. Neurochem Res 2016;41:2415-24. [PMID: 27350581 DOI: 10.1007/s11064-016-1954-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
153 Hejnova L, Skrabalova J, Novotny J. Prolonged Morphine Treatment Alters Expression and Plasma Membrane Distribution of β-Adrenergic Receptors and Some Other Components of Their Signaling System in Rat Cerebral Cortex. J Mol Neurosci 2017;63:364-76. [PMID: 29081032 DOI: 10.1007/s12031-017-0987-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
154 Glukhova A, Draper-Joyce CJ, Sunahara RK, Christopoulos A, Wootten D, Sexton PM. Rules of Engagement: GPCRs and G Proteins. ACS Pharmacol Transl Sci 2018;1:73-83. [PMID: 32219204 DOI: 10.1021/acsptsci.8b00026] [Cited by in Crossref: 60] [Cited by in F6Publishing: 41] [Article Influence: 15.0] [Reference Citation Analysis]
155 Gurevich EV, Premont RT, Gainetdinov RR. G protein-coupled receptor kinases: from molecules to diseases. FASEB J 2015;29:361-4. [PMID: 25649814 DOI: 10.1096/fj.14-263657ufm] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
156 Gurevich VV, Gurevich EV. Plethora of functions packed into 45 kDa arrestins: biological implications and possible therapeutic strategies. Cell Mol Life Sci 2019;76:4413-21. [DOI: 10.1007/s00018-019-03272-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
157 Chen X, Gupta S, Cooper M, DeHelian D, Zhao X, Naik MU, Wurtzel JGT, Stalker TJ, Goldfinger LE, Benovic J, Brass LF, McKenzie SE, Naik UP, Ma P. GRK6 regulates the hemostatic response to injury through its rate-limiting effects on GPCR signaling in platelets. Blood Adv 2020;4:76-86. [PMID: 31899801 DOI: 10.1182/bloodadvances.2019000467] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
158 Cai X, Wang H, Wang M, Wang D, Zhang Z, Wei R, Gao X, Zhang R, Wang C, Chen J. A novel phosphorylation site on orexin receptor 1 regulating orexinA-induced GRK2-biased signaling. Cell Signal 2020;75:109743. [PMID: 32827691 DOI: 10.1016/j.cellsig.2020.109743] [Reference Citation Analysis]
159 Tesmer VM, Lennarz S, Mayer G, Tesmer JJ. Molecular mechanism for inhibition of g protein-coupled receptor kinase 2 by a selective RNA aptamer. Structure 2012;20:1300-9. [PMID: 22727813 DOI: 10.1016/j.str.2012.05.002] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 3.7] [Reference Citation Analysis]
160 Bagnato A, Rosanò L. New Routes in GPCR/β-Arrestin-Driven Signaling in Cancer Progression and Metastasis. Front Pharmacol 2019;10:114. [PMID: 30837880 DOI: 10.3389/fphar.2019.00114] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
161 Gurevich EV, Gainetdinov RR, Gurevich VV. G protein-coupled receptor kinases as regulators of dopamine receptor functions. Pharmacol Res 2016;111:1-16. [PMID: 27178731 DOI: 10.1016/j.phrs.2016.05.010] [Cited by in Crossref: 62] [Cited by in F6Publishing: 52] [Article Influence: 10.3] [Reference Citation Analysis]
162 Park CR, You DJ, Park S, Mander S, Jang DE, Yeom SC, Oh SH, Ahn C, Lee SH, Seong JY, Hwang JI. The accessory proteins REEP5 and REEP6 refine CXCR1-mediated cellular responses and lung cancer progression. Sci Rep 2016;6:39041. [PMID: 27966653 DOI: 10.1038/srep39041] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
163 Muñoz Mde L, Limón-Camacho G, Tovar R, Diaz-Badillo A, Mendoza-Hernández G, Black WC 4th. Proteomic identification of dengue virus binding proteins in Aedes aegypti mosquitoes and Aedes albopictus cells. Biomed Res Int 2013;2013:875958. [PMID: 24324976 DOI: 10.1155/2013/875958] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 1.2] [Reference Citation Analysis]
164 Okawa T, Aramaki Y, Yamamoto M, Kobayashi T, Fukumoto S, Toyoda Y, Henta T, Hata A, Ikeda S, Kaneko M, Hoffman ID, Sang BC, Zou H, Kawamoto T. Design, Synthesis, and Evaluation of the Highly Selective and Potent G-Protein-Coupled Receptor Kinase 2 (GRK2) Inhibitor for the Potential Treatment of Heart Failure. J Med Chem 2017;60:6942-90. [PMID: 28699740 DOI: 10.1021/acs.jmedchem.7b00443] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 5.2] [Reference Citation Analysis]
165 Yang JJ, Yu WW, Hu LL, Liu WJ, Lin XH, Wang W, Zhang Q, Wang PL, Tang SW, Wang X, Liu M, Lu W, Zhang HK. Discovery and Characterization of 1H-1,2,3-Triazole Derivatives as Novel Prostanoid EP4 Receptor Antagonists for Cancer Immunotherapy. J Med Chem 2020;63:569-90. [PMID: 31855426 DOI: 10.1021/acs.jmedchem.9b01269] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
166 Hullmann J, Traynham CJ, Coleman RC, Koch WJ. The expanding GRK interactome: Implications in cardiovascular disease and potential for therapeutic development. Pharmacol Res 2016;110:52-64. [PMID: 27180008 DOI: 10.1016/j.phrs.2016.05.008] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 6.8] [Reference Citation Analysis]
167 Mendoza-Viveros L, Cheng AH, Cheng HM. GRK2: putting the brakes on the circadian clock. Receptors Clin Investig 2016;3. [PMID: 27088110 DOI: 10.14800/rci.1175] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
168 Penela P, Ribas C, Sánchez-Madrid F, Mayor F Jr. G protein-coupled receptor kinase 2 (GRK2) as a multifunctional signaling hub. Cell Mol Life Sci 2019;76:4423-46. [PMID: 31432234 DOI: 10.1007/s00018-019-03274-3] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 8.7] [Reference Citation Analysis]
169 Lucas E, Cruces-sande M, Briones AM, Salaices M, Mayor F, Murga C, Vila-bedmar R. Molecular physiopathology of obesity-related diseases: multi-organ integration by GRK2. Archives of Physiology and Biochemistry 2015;121:163-77. [DOI: 10.3109/13813455.2015.1107589] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
170 Matthees ESF, Haider RS, Hoffmann C, Drube J. Differential Regulation of GPCRs-Are GRK Expression Levels the Key? Front Cell Dev Biol 2021;9:687489. [PMID: 34109182 DOI: 10.3389/fcell.2021.687489] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
171 Ghanemi A. Targeting G protein coupled receptor-related pathways as emerging molecular therapies. Saudi Pharm J. 2015;23:115-129. [PMID: 25972730 DOI: 10.1016/j.jsps.2013.07.007] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 3.8] [Reference Citation Analysis]
172 Komolov KE, Benovic JL. G protein-coupled receptor kinases: Past, present and future. Cell Signal 2018;41:17-24. [PMID: 28711719 DOI: 10.1016/j.cellsig.2017.07.004] [Cited by in Crossref: 72] [Cited by in F6Publishing: 63] [Article Influence: 14.4] [Reference Citation Analysis]
173 Sun N, Kim KM. Mechanistic diversity involved in the desensitization of G protein-coupled receptors. Arch Pharm Res 2021;44:342-53. [PMID: 33761113 DOI: 10.1007/s12272-021-01320-y] [Reference Citation Analysis]
174 Sterne-Marr R, Baillargeon AI, Michalski KR, Tesmer JJ. Expression, purification, and analysis of G-protein-coupled receptor kinases. Methods Enzymol 2013;521:347-66. [PMID: 23351749 DOI: 10.1016/B978-0-12-391862-8.00019-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
175 Gurevich EV, Gurevich VV. Therapeutic potential of small molecules and engineered proteins. Handb Exp Pharmacol 2014;219:1-12. [PMID: 24292822 DOI: 10.1007/978-3-642-41199-1_1] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 4.5] [Reference Citation Analysis]
176 Audagnotto M, Dal Peraro M. Protein post-translational modifications: In silico prediction tools and molecular modeling. Comput Struct Biotechnol J 2017;15:307-19. [PMID: 28458782 DOI: 10.1016/j.csbj.2017.03.004] [Cited by in Crossref: 84] [Cited by in F6Publishing: 71] [Article Influence: 16.8] [Reference Citation Analysis]
177 Snyder JC, Rochelle LK, Barak LS, Caron MG. The stem cell-expressed receptor Lgr5 possesses canonical and functionally active molecular determinants critical to β-arrestin-2 recruitment. PLoS One 2013;8:e84476. [PMID: 24386388 DOI: 10.1371/journal.pone.0084476] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
178 Xu H, Jiang X, Shen K, Fischer CC, Wedegaertner PB. The regulator of G protein signaling (RGS) domain of G protein-coupled receptor kinase 5 (GRK5) regulates plasma membrane localization and function. Mol Biol Cell 2014;25:2105-15. [PMID: 24807909 DOI: 10.1091/mbc.E13-09-0547] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
179 Che X, Zhang G, Zhang X, Xue J. Overexpression of G Protein-Coupled Receptor Kinase 6 (GRK6) Is Associated with Progression and Poor Prognosis of Papillary Thyroid Carcinoma. Med Sci Monit 2018;24:3540-8. [PMID: 29805156 DOI: 10.12659/MSM.908176] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
180 Laganà M, Schlecht-Louf G, Bachelerie F. The G Protein-Coupled Receptor Kinases (GRKs) in Chemokine Receptor-Mediated Immune Cell Migration: From Molecular Cues to Physiopathology. Cells 2021;10:E75. [PMID: 33466410 DOI: 10.3390/cells10010075] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
181 de Lucia C, Femminella GD, Gambino G, Pagano G, Allocca E, Rengo C, Silvestri C, Leosco D, Ferrara N, Rengo G. Adrenal adrenoceptors in heart failure. Front Physiol 2014;5:246. [PMID: 25071591 DOI: 10.3389/fphys.2014.00246] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 3.4] [Reference Citation Analysis]
182 Yen HY, Hopper JTS, Liko I, Allison TM, Zhu Y, Wang D, Stegmann M, Mohammed S, Wu B, Robinson CV. Ligand binding to a G protein-coupled receptor captured in a mass spectrometer. Sci Adv 2017;3:e1701016. [PMID: 28630934 DOI: 10.1126/sciadv.1701016] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 5.8] [Reference Citation Analysis]
183 Liu Z, Jiang Y, Li Y, Wang J, Fan L, Scott MJ, Xiao G, Li S, Billiar TR, Wilson MA, Fan J. TLR4 Signaling augments monocyte chemotaxis by regulating G protein-coupled receptor kinase 2 translocation. J Immunol 2013;191:857-64. [PMID: 23772028 DOI: 10.4049/jimmunol.1300790] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 4.0] [Reference Citation Analysis]
184 Schumacher SM, Koch WJ. Noncanonical Roles of G Protein-coupled Receptor Kinases in Cardiovascular Signaling. J Cardiovasc Pharmacol 2017;70:129-41. [PMID: 28328744 DOI: 10.1097/FJC.0000000000000483] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
185 Hilger D. The role of structural dynamics in GPCR‐mediated signaling. FEBS J 2021;288:2461-89. [DOI: 10.1111/febs.15841] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
186 Hullmann JE, Grisanti LA, Makarewich CA, Gao E, Gold JI, Chuprun JK, Tilley DG, Houser SR, Koch WJ. GRK5-mediated exacerbation of pathological cardiac hypertrophy involves facilitation of nuclear NFAT activity. Circ Res 2014;115:976-85. [PMID: 25332207 DOI: 10.1161/CIRCRESAHA.116.304475] [Cited by in Crossref: 49] [Cited by in F6Publishing: 35] [Article Influence: 6.1] [Reference Citation Analysis]
187 Kang JH, Toita R, Kawano T, Murata M, Asai D. Design of substrates and inhibitors of G protein-coupled receptor kinase 2 (GRK2) based on its phosphorylation reaction. Amino Acids 2020;52:863-70. [PMID: 32577910 DOI: 10.1007/s00726-020-02864-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
188 Laudette M, Formoso K, Lezoualc'h F. GRKs and Epac1 Interaction in Cardiac Remodeling and Heart Failure. Cells 2021;10:154. [PMID: 33466800 DOI: 10.3390/cells10010154] [Reference Citation Analysis]
189 Han CC, Liu Q, Zhang Y, Li YF, Cui DQ, Luo TT, Zhang YW, Wang XM, Wang C, Ma Y, Wei W. CP-25 inhibits PGE2-induced angiogenesis by down-regulating EP4/AC/cAMP/PKA-mediated GRK2 translocation. Clin Sci (Lond) 2020;134:331-47. [PMID: 31967309 DOI: 10.1042/CS20191032] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
190 Samaradivakara S, Kankanamge D, Senarath K, Ratnayake K, Karunarathne A. G protein γ (Gγ) subtype dependent targeting of GRK2 to M3 receptor by Gβγ. Biochem Biophys Res Commun 2018;503:165-70. [PMID: 29864421 DOI: 10.1016/j.bbrc.2018.05.204] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
191 Tsai CJ, Marino J, Adaixo R, Pamula F, Muehle J, Maeda S, Flock T, Taylor NM, Mohammed I, Matile H, Dawson RJ, Deupi X, Stahlberg H, Schertler G. Cryo-EM structure of the rhodopsin-Gαi-βγ complex reveals binding of the rhodopsin C-terminal tail to the gβ subunit. Elife 2019;8:e46041. [PMID: 31251171 DOI: 10.7554/eLife.46041] [Cited by in Crossref: 27] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
192 Homan KT, Tesmer JJ. Molecular basis for small molecule inhibition of G protein-coupled receptor kinases. ACS Chem Biol 2015;10:246-56. [PMID: 24984143 DOI: 10.1021/cb5003976] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 4.0] [Reference Citation Analysis]
193 Zha Z, Han XR, Smith MD, Lei QY, Guan KL, Xiong Y. Hypertension-associated C825T polymorphism impairs the function of Gβ3 to target GRK2 ubiquitination. Cell Discov 2016;2:16005. [PMID: 27462452 DOI: 10.1038/celldisc.2016.5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
194 Montó F, Oliver E, Vicente D, Buendía F, Rueda J, Agüero J, Almenar L, Valldecabres C, Rovira E, Muedra V, Noguera MA, Ivorra MD, Dʼocon P. β2- and β1-Adrenoceptor Expression Exhibits a Common Regulatory Pattern With GRK2 and GRK5 in Human and Animal Models of Cardiovascular Diseases: . Journal of Cardiovascular Pharmacology 2015;66:478-86. [DOI: 10.1097/fjc.0000000000000299] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
195 Wanka L, Behr V, Beck-Sickinger AG. Arrestin-dependent internalization of rhodopsin-like G protein-coupled receptors. Biol Chem 2021. [PMID: 34036761 DOI: 10.1515/hsz-2021-0128] [Reference Citation Analysis]
196 Heinze DM, Carmical JR, Aronson JF, Thangamani S. Early immunologic events at the tick-host interface. PLoS One 2012;7:e47301. [PMID: 23077588 DOI: 10.1371/journal.pone.0047301] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
197 Du QH, Han L, Jiang JJ, Xu Y, Li WH, Li PT, Wang XY, Jia X. Glytan decreases portal pressure via mesentery vasoconstriction in portal hypertensive rats. World J Gastroenterol 2014; 20(44): 16674-16682 [PMID: 25469036 DOI: 10.3748/wjg.v20.i44.16674] [Cited by in CrossRef: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
198 Lorton D, Bellinger DL. Molecular mechanisms underlying β-adrenergic receptor-mediated cross-talk between sympathetic neurons and immune cells. Int J Mol Sci 2015;16:5635-65. [PMID: 25768345 DOI: 10.3390/ijms16035635] [Cited by in Crossref: 81] [Cited by in F6Publishing: 77] [Article Influence: 11.6] [Reference Citation Analysis]
199 Sulon SM, Benovic JL. Targeting G protein-coupled receptor kinases (GRKs) to G protein-coupled receptors. Curr Opin Endocr Metab Res 2021;16:56-65. [PMID: 33718657 DOI: 10.1016/j.coemr.2020.09.002] [Reference Citation Analysis]
200 Emery MA, Eitan S. Members of the same pharmacological family are not alike: Different opioids, different consequences, hope for the opioid crisis? Progress in Neuro-Psychopharmacology and Biological Psychiatry 2019;92:428-49. [DOI: 10.1016/j.pnpbp.2019.02.010] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
201 Okamoto Y, Shikano S. Differential phosphorylation signals control endocytosis of GPR15. Mol Biol Cell 2017;28:2267-81. [PMID: 28615320 DOI: 10.1091/mbc.E16-09-0627] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
202 Lafarga V, Mayor F Jr, Penela P. The interplay between G protein-coupled receptor kinase 2 (GRK2) and histone deacetylase 6 (HDAC6) at the crossroads of epithelial cell motility. Cell Adh Migr 2012;6:495-501. [PMID: 23076141 DOI: 10.4161/cam.21585] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
203 Celver J, Sharma M, Thanawala V, Christopher Octeau J, Kovoor A. Arrestin-dependent but G-protein coupled receptor kinase-independent uncoupling of D2-dopamine receptors. J Neurochem 2013;127:57-65. [PMID: 23815307 DOI: 10.1111/jnc.12359] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 0.4] [Reference Citation Analysis]
204 Zhang M, Gao M, Chen J, Song L, Wei W. CP-25 exerts anti-angiogenic effects on a rat model of adjuvant-induced arthritis by promoting GRK2-induced downregulation of CXCR4-ERK1/2 signaling in endothelial cells. Mol Med Rep 2019;20:4831-42. [PMID: 31661133 DOI: 10.3892/mmr.2019.10765] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
205 Asai D, Murata M, Toita R, Kawano T, Nakashima H, Kang JH. A high-affinity peptide substrate for G protein-coupled receptor kinase 2 (GRK2). Amino Acids 2019;51:973-6. [PMID: 31004228 DOI: 10.1007/s00726-019-02735-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
206 Lee S, Wottrich S, Bonavida B. Crosstalks between Raf-kinase inhibitor protein and cancer stem cell transcription factors (Oct4, KLF4, Sox2, Nanog). Tumour Biol 2017;39:1010428317692253. [PMID: 28378634 DOI: 10.1177/1010428317692253] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
207 Villegas-Comonfort S, Takei Y, Tsujimoto G, Hirasawa A, García-Sáinz JA. Effects of arachidonic acid on FFA4 receptor: Signaling, phosphorylation and internalization. Prostaglandins Leukot Essent Fatty Acids 2017;117:1-10. [PMID: 28237082 DOI: 10.1016/j.plefa.2017.01.013] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
208 Lorenz K, Stathopoulou K, Schmid E, Eder P, Cuello F. Heart failure-specific changes in protein kinase signalling. Pflugers Arch - Eur J Physiol 2014;466:1151-62. [DOI: 10.1007/s00424-014-1462-x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
209 Watari K, Nakaya M, Kurose H. Multiple functions of G protein-coupled receptor kinases. J Mol Signal. 2014;9:1. [PMID: 24597858 DOI: 10.1186/1750-2187-9-1] [Cited by in Crossref: 55] [Cited by in F6Publishing: 52] [Article Influence: 6.9] [Reference Citation Analysis]
210 Zhao P, Furness SGB. The nature of efficacy at G protein-coupled receptors. Biochem Pharmacol 2019;170:113647. [PMID: 31585071 DOI: 10.1016/j.bcp.2019.113647] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
211 McNeill SM, Baltos JA, White PJ, May LT. Biased agonism at adenosine receptors. Cell Signal 2021;82:109954. [PMID: 33610717 DOI: 10.1016/j.cellsig.2021.109954] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
212 Marzano F, Rapacciuolo A, Ferrara N, Rengo G, Koch WJ, Cannavo A. Targeting GRK5 for Treating Chronic Degenerative Diseases. Int J Mol Sci 2021;22:1920. [PMID: 33671974 DOI: 10.3390/ijms22041920] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
213 Hu J, Zhang W, Liu Y, Yang Y, Tan C, Wei X, Wang Y, Tan S, Liu M, Liu K, Liu Y, Zhang H, Xiao X. LDK 378 inhibits the recruitment of myeloid‐derived suppressor cells to spleen via the p38– GRK 2– CCR 2 pathway in mice with sepsis. Immunol Cell Biol 2019;97:902-15. [DOI: 10.1111/imcb.12289] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
214 Sueishi T, Akasaki Y, Goto N, Kurakazu I, Toya M, Kuwahara M, Uchida T, Hayashida M, Tsushima H, Bekki H, Lotz MK, Nakashima Y. GRK5 Inhibition Attenuates Cartilage Degradation via Decreased NF-κB Signaling. Arthritis Rheumatol 2020;72:620-31. [PMID: 31696655 DOI: 10.1002/art.41152] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
215 Yokoyama U, Iwatsubo K, Umemura M, Fujita T, Ishikawa Y, Sibley DR. The Prostanoid EP4 Receptor and Its Signaling Pathway. Pharmacol Rev 2013;65:1010-52. [DOI: 10.1124/pr.112.007195] [Cited by in Crossref: 154] [Cited by in F6Publishing: 139] [Article Influence: 17.1] [Reference Citation Analysis]
216 Pollard CM, Ghandour J, Cora N, Perez A, Parker BM, Desimine VL, Wertz SL, Pereyra JM, Ferraino KE, Patel JJ, Lymperopoulos A. GRK2-Mediated Crosstalk Between β-Adrenergic and Angiotensin II Receptors Enhances Adrenocortical Aldosterone Production In Vitro and In Vivo. Int J Mol Sci 2020;21:E574. [PMID: 31963151 DOI: 10.3390/ijms21020574] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
217 Guimarães TR, Swanson E, Kofler J, Thathiah A. G protein-coupled receptor kinases are associated with Alzheimer's disease pathology. Neuropathol Appl Neurobiol 2021. [PMID: 34164834 DOI: 10.1111/nan.12742] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
218 Bouley RA, Weinberg ZY, Waldschmidt HV, Yen YC, Larsen SD, Puthenveedu MA, Tesmer JJG. A New Paroxetine-Based GRK2 Inhibitor Reduces Internalization of the μ-Opioid Receptor. Mol Pharmacol 2020;97:392-401. [PMID: 32234810 DOI: 10.1124/mol.119.118661] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
219 Ferré S, Ciruela F, Dessauer CW, González-Maeso J, Hébert TE, Jockers R, Logothetis DE, Pardo L. G protein-coupled receptor-effector macromolecular membrane assemblies (GEMMAs). Pharmacol Ther 2021;:107977. [PMID: 34480967 DOI: 10.1016/j.pharmthera.2021.107977] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
220 Shim JY, Khurana L, Kendall DA. Computational analysis of the CB1 carboxyl-terminus in the receptor-G protein complex. Proteins 2016;84:532-43. [PMID: 26994549 DOI: 10.1002/prot.24999] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
221 Yang J, Villar VA, Jones JE, Jose PA, Zeng C. G protein-coupled receptor kinase 4: role in hypertension. Hypertension 2015;65:1148-55. [PMID: 25870190 DOI: 10.1161/HYPERTENSIONAHA.115.05189] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 2.9] [Reference Citation Analysis]
222 Zurkovsky L, Sedaghat K, Ahmed MR, Gurevich VV, Gurevich EV. Arrestin-2 and arrestin-3 differentially modulate locomotor responses and sensitization to amphetamine. Neuropharmacology 2017;121:20-9. [PMID: 28419873 DOI: 10.1016/j.neuropharm.2017.04.021] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
223 Guccione M, Ettari R, Taliani S, Da Settimo F, Zappalà M, Grasso S. G-Protein-Coupled Receptor Kinase 2 (GRK2) Inhibitors: Current Trends and Future Perspectives. J Med Chem 2016;59:9277-94. [PMID: 27362616 DOI: 10.1021/acs.jmedchem.5b01939] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
224 Qi X, Guo Y, Song Y, Yu C, Zhao L, Fang L, Kong D, Zhao J, Gao L. Follicle-stimulating hormone enhances hepatic gluconeogenesis by GRK2-mediated AMPK hyperphosphorylation at Ser485 in mice. Diabetologia 2018;61:1180-92. [PMID: 29442133 DOI: 10.1007/s00125-018-4562-x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
225 Mayberry CL, Wilczek MP, Fong TM, Nichols SL, Maginnis MS. GRK2 mediates β-arrestin interactions with 5-HT2 receptors for JC polyomavirus endocytosis. J Virol 2021:JVI. [PMID: 33441347 DOI: 10.1128/JVI.02139-20] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
226 Fridmanis D, Roga A, Klovins J. ACTH Receptor (MC2R) Specificity: What Do We Know About Underlying Molecular Mechanisms? Front Endocrinol (Lausanne) 2017;8:13. [PMID: 28220105 DOI: 10.3389/fendo.2017.00013] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 5.8] [Reference Citation Analysis]
227 Gurevich VV, Gurevich EV. Molecular Mechanisms of GPCR Signaling: A Structural Perspective. Int J Mol Sci 2017;18:E2519. [PMID: 29186792 DOI: 10.3390/ijms18122519] [Cited by in Crossref: 41] [Cited by in F6Publishing: 29] [Article Influence: 8.2] [Reference Citation Analysis]
228 Stoy H, Gurevich VV. How genetic errors in GPCRs affect their function: Possible therapeutic strategies. Genes Dis 2015;2:108-32. [PMID: 26229975 DOI: 10.1016/j.gendis.2015.02.005] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 5.7] [Reference Citation Analysis]
229 Fu Q, Shi Q, West TM, Xiang YK. Cross-Talk Between Insulin Signaling and G Protein-Coupled Receptors. J Cardiovasc Pharmacol 2017;70:74-86. [PMID: 28328746 DOI: 10.1097/FJC.0000000000000481] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
230 Gurevich VV, Chen Q, Gurevich EV. Arrestins: Introducing Signaling Bias Into Multifunctional Proteins. Prog Mol Biol Transl Sci 2018;160:47-61. [PMID: 30470292 DOI: 10.1016/bs.pmbts.2018.07.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
231 Murillo JR, Goto-Silva L, Sánchez A, Nogueira FCS, Domont GB, Junqueira M. Quantitative proteomic analysis identifies proteins and pathways related to neuronal development in differentiated SH-SY5Y neuroblastoma cells. EuPA Open Proteom 2017;16:1-11. [PMID: 29900121 DOI: 10.1016/j.euprot.2017.06.001] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 5.4] [Reference Citation Analysis]
232 Komolov KE, Bhardwaj A, Benovic JL. Atomic Structure of GRK5 Reveals Distinct Structural Features Novel for G Protein-coupled Receptor Kinases. J Biol Chem 2015;290:20629-47. [PMID: 26032409 DOI: 10.1074/jbc.M115.647297] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
233 Gimenez LE, Kook S, Vishnivetskiy SA, Ahmed MR, Gurevich EV, Gurevich VV. Role of receptor-attached phosphates in binding of visual and non-visual arrestins to G protein-coupled receptors. J Biol Chem 2012;287:9028-40. [PMID: 22275358 DOI: 10.1074/jbc.M111.311803] [Cited by in Crossref: 62] [Cited by in F6Publishing: 44] [Article Influence: 6.2] [Reference Citation Analysis]
234 Tesmer JJ, Nance MR, Singh P, Lee H. Structure of a monomeric variant of rhodopsin kinase at 2.5 Å resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012;68:622-5. [PMID: 22684056 DOI: 10.1107/S1744309112017435] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
235 Li L, Homan KT, Vishnivetskiy SA, Manglik A, Tesmer JJ, Gurevich VV, Gurevich EV. G Protein-coupled Receptor Kinases of the GRK4 Protein Subfamily Phosphorylate Inactive G Protein-coupled Receptors (GPCRs). J Biol Chem 2015;290:10775-90. [PMID: 25770216 DOI: 10.1074/jbc.M115.644773] [Cited by in Crossref: 39] [Cited by in F6Publishing: 28] [Article Influence: 5.6] [Reference Citation Analysis]
236 Fu X, Koller S, Abd Alla J, Quitterer U. Inhibition of G-protein-coupled Receptor Kinase 2 (GRK2) Triggers the Growth-promoting Mitogen-activated Protein Kinase (MAPK) Pathway. Journal of Biological Chemistry 2013;288:7738-55. [DOI: 10.1074/jbc.m112.428078] [Cited by in Crossref: 30] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
237 Gimenez LE, Vishnivetskiy SA, Baameur F, Gurevich VV. Manipulation of very few receptor discriminator residues greatly enhances receptor specificity of non-visual arrestins. J Biol Chem 2012;287:29495-505. [PMID: 22787152 DOI: 10.1074/jbc.M112.366674] [Cited by in Crossref: 52] [Cited by in F6Publishing: 41] [Article Influence: 5.2] [Reference Citation Analysis]
238 Gurevich EV, Gurevich VV. Beyond traditional pharmacology: new tools and approaches. Br J Pharmacol. 2015;172:3229-3241. [PMID: 25572005 DOI: 10.1111/bph.13066] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
239 Seyedabadi M, Gharghabi M, Gurevich EV, Gurevich VV. Receptor-Arrestin Interactions: The GPCR Perspective. Biomolecules 2021;11:218. [PMID: 33557162 DOI: 10.3390/biom11020218] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
240 Du QH, Han L, Jiang JJ, Li PT, Wang XY, Jia X. Increased endothelin receptor B and G protein coupled kinase-2 in the mesentery of portal hypertensive rats. World J Gastroenterol 2013; 19(13): 2065-2072 [PMID: 23599626 DOI: 10.3748/wjg.v19.i13.2065] [Cited by in CrossRef: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
241 Bohbot JD, Sparks JT, Dickens JC. The maxillary palp of Aedes aegypti, a model of multisensory integration. Insect Biochem Mol Biol 2014;48:29-39. [PMID: 24613607 DOI: 10.1016/j.ibmb.2014.02.007] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 4.9] [Reference Citation Analysis]
242 Taguchi K, Bessho N, Hasegawa M, Narimatsu H, Matsumoto T, Kobayashi T. Co-treatment with clonidine and a GRK2 inhibitor prevented rebound hypertension and endothelial dysfunction after withdrawal in diabetes. Hypertens Res 2018;41:263-74. [DOI: 10.1038/s41440-018-0016-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
243 Packiriswamy N, Lee T, Raghavendra PB, Durairaj H, Wang H, Parameswaran N. G-protein-coupled receptor kinase-5 mediates inflammation but does not regulate cellular infiltration or bacterial load in a polymicrobial sepsis model in mice. J Innate Immun 2013;5:401-13. [PMID: 23485819 DOI: 10.1159/000347002] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.7] [Reference Citation Analysis]
244 Komolov KE, Sulon SM, Bhardwaj A, van Keulen SC, Duc NM, Laurinavichyute DK, Lou HJ, Turk BE, Chung KY, Dror RO, Benovic JL. Structure of a GRK5-Calmodulin Complex Reveals Molecular Mechanism of GRK Activation and Substrate Targeting. Mol Cell 2021;81:323-339.e11. [PMID: 33321095 DOI: 10.1016/j.molcel.2020.11.026] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
245 Yu S, Sun L, Jiao Y, Lee LTO. The Role of G Protein-coupled Receptor Kinases in Cancer. Int J Biol Sci 2018;14:189-203. [PMID: 29483837 DOI: 10.7150/ijbs.22896] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 6.8] [Reference Citation Analysis]
246 Benovic JL. Historical Perspective of the G Protein-Coupled Receptor Kinase Family. Cells 2021;10:555. [PMID: 33806476 DOI: 10.3390/cells10030555] [Reference Citation Analysis]
247 Tesmer JJ. Hitchhiking on the heptahelical highway: structure and function of 7TM receptor complexes. Nat Rev Mol Cell Biol 2016;17:439-50. [PMID: 27093944 DOI: 10.1038/nrm.2016.36] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
248 Kumari P, Srivastava A, Ghosh E, Ranjan R, Dogra S, Yadav PN, Shukla AK. Core engagement with β-arrestin is dispensable for agonist-induced vasopressin receptor endocytosis and ERK activation. Mol Biol Cell 2017;28:1003-10. [PMID: 28228552 DOI: 10.1091/mbc.E16-12-0818] [Cited by in Crossref: 49] [Cited by in F6Publishing: 40] [Article Influence: 9.8] [Reference Citation Analysis]
249 So CH, Michal AM, Mashayekhi R, Benovic JL. G protein-coupled receptor kinase 5 phosphorylates nucleophosmin and regulates cell sensitivity to polo-like kinase 1 inhibition. J Biol Chem 2012;287:17088-99. [PMID: 22467873 DOI: 10.1074/jbc.M112.353854] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
250 Gurevich VV, Gurevich EV. The structural basis of the arrestin binding to GPCRs. Mol Cell Endocrinol 2019;484:34-41. [PMID: 30703488 DOI: 10.1016/j.mce.2019.01.019] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
251 Zhao P, Lieu T, Barlow N, Sostegni S, Haerteis S, Korbmacher C, Liedtke W, Jimenez-Vargas NN, Vanner SJ, Bunnett NW. Neutrophil Elastase Activates Protease-activated Receptor-2 (PAR2) and Transient Receptor Potential Vanilloid 4 (TRPV4) to Cause Inflammation and Pain. J Biol Chem 2015;290:13875-87. [PMID: 25878251 DOI: 10.1074/jbc.M115.642736] [Cited by in Crossref: 90] [Cited by in F6Publishing: 54] [Article Influence: 12.9] [Reference Citation Analysis]
252 Badawy SMM, Okada T, Kajimoto T, Ijuin T, Nakamura SI. DHHC5-mediated palmitoylation of S1P receptor subtype 1 determines G-protein coupling. Sci Rep 2017;7:16552. [PMID: 29185452 DOI: 10.1038/s41598-017-16457-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
253 Zheng C, Tholen J, Gurevich VV. Critical role of the finger loop in arrestin binding to the receptors. PLoS One 2019;14:e0213792. [PMID: 30875392 DOI: 10.1371/journal.pone.0213792] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
254 Gurevich VV, Gurevich EV. Arrestin-mediated signaling: Is there a controversy? World J Biol Chem 2018; 9(3): 25-35 [PMID: 30595812 DOI: 10.4331/wjbc.v9.i3.25] [Cited by in CrossRef: 23] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
255 Wang ZQ, He CY, Hu L, Shi HP, Li JF, Gu QL, Su LP, Liu BY, Li C, Zhu Z. Long noncoding RNA UCA1 promotes tumour metastasis by inducing GRK2 degradation in gastric cancer. Cancer Lett. 2017;408:10-21. [PMID: 28843497 DOI: 10.1016/j.canlet.2017.08.013] [Cited by in Crossref: 48] [Cited by in F6Publishing: 57] [Article Influence: 9.6] [Reference Citation Analysis]
256 Foster SR, Roura E, Molenaar P, Thomas WG. G protein-coupled receptors in cardiac biology: old and new receptors. Biophys Rev 2015;7:77-89. [PMID: 28509979 DOI: 10.1007/s12551-014-0154-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
257 Gurevich EV, Gainetdinov RR, Gurevich VV. Regulation of Dopamine-Dependent Behaviors by G Protein-Coupled Receptor Kinases. In: Gurevich VV, Gurevich EV, Tesmer JJ, editors. G Protein-Coupled Receptor Kinases. New York: Springer; 2016. pp. 237-69. [DOI: 10.1007/978-1-4939-3798-1_11] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
258 Yang Z, Yang F, Zhang D, Liu Z, Lin A, Liu C, Xiao P, Yu X, Sun J. Phosphorylation of G Protein-Coupled Receptors: From the Barcode Hypothesis to the Flute Model. Mol Pharmacol 2017;92:201-10. [DOI: 10.1124/mol.116.107839] [Cited by in Crossref: 63] [Cited by in F6Publishing: 55] [Article Influence: 12.6] [Reference Citation Analysis]
259 Homan KT, Larimore KM, Elkins JM, Szklarz M, Knapp S, Tesmer JJ. Identification and structure-function analysis of subfamily selective g protein-coupled receptor kinase inhibitors. ACS Chem Biol. 2015;10:310-319. [PMID: 25238254 DOI: 10.1021/cb5006323] [Cited by in Crossref: 43] [Cited by in F6Publishing: 38] [Article Influence: 5.4] [Reference Citation Analysis]
260 Patel J, Channon KM, McNeill E. The downstream regulation of chemokine receptor signalling: implications for atherosclerosis. Mediators Inflamm 2013;2013:459520. [PMID: 23690662 DOI: 10.1155/2013/459520] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.3] [Reference Citation Analysis]