BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Misztak P, Pańczyszyn-Trzewik P, Sowa-Kućma M. Histone deacetylases (HDACs) as therapeutic target for depressive disorders. Pharmacol Rep 2018;70:398-408. [PMID: 29456074 DOI: 10.1016/j.pharep.2017.08.001] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 6.4] [Reference Citation Analysis]
Number Citing Articles
1 Amasi-Hartoonian N, Pariante CM, Cattaneo A, Sforzini L. Understanding treatment-resistant depression using "omics" techniques: A systematic review. J Affect Disord 2022;318:423-55. [PMID: 36103934 DOI: 10.1016/j.jad.2022.09.011] [Reference Citation Analysis]
2 Guclu E, Inan SY, Vural HC. The Sirtuin 2 Inhibitor AK-7 Leads to an Antidepressant-Like Effect in Mice via Upregulation of CREB1, BDNF, and NTRK2 Pathways. Mol Neurobiol 2022. [PMID: 36074231 DOI: 10.1007/s12035-022-03026-8] [Reference Citation Analysis]
3 Jiao R, Chen X, Boerwinkle E, Xiong M. Genome-Wide Causation Studies of Complex Diseases. J Comput Biol 2022. [PMID: 35451855 DOI: 10.1089/cmb.2021.0676] [Reference Citation Analysis]
4 Rossetti C, Cherix A, Guiraud LF, Cardinaux J. New Insights Into the Pivotal Role of CREB-Regulated Transcription Coactivator 1 in Depression and Comorbid Obesity. Front Mol Neurosci 2022;15:810641. [DOI: 10.3389/fnmol.2022.810641] [Reference Citation Analysis]
5 Marcos X, Méndez-luna D, Fragoso-vázquez M, Rosales-hernández M, Correa-basurto J. Anti-breast cancer activity of novel compounds loaded in polymeric mixed micelles: Characterization and in vitro studies. Journal of Drug Delivery Science and Technology 2021;66:102815. [DOI: 10.1016/j.jddst.2021.102815] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Lin YS, Wang CC, Chen CY. GWAS Meta-Analysis Reveals Shared Genes and Biological Pathways between Major Depressive Disorder and Insomnia. Genes (Basel) 2021;12:1506. [PMID: 34680902 DOI: 10.3390/genes12101506] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
7 Yan L, Jin W, Zhao Q, Cui X, Shi T, Xu Y, Li F, Jin W, Zhang Z, Zhang Z, Tang QQ, Pan D. PWWP2B Fine-Tunes Adipose Thermogenesis by Stabilizing HDACs in a NuRD Subcomplex. Adv Sci (Weinh) 2021;8:e2102060. [PMID: 34180153 DOI: 10.1002/advs.202102060] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Zhu LJ, Sun YQ, Wang S, Shi HJ, Li N. Involvement of 5-HT1A receptor-mediated histone acetylation in the regulation of depression. Neuroreport 2021;32:1049-57. [PMID: 34232131 DOI: 10.1097/WNR.0000000000001693] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Baribeau D, Anagnostou E. Novel treatments for autism spectrum disorder based on genomics and systems biology. Pharmacol Ther 2021;:107939. [PMID: 34174273 DOI: 10.1016/j.pharmthera.2021.107939] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
10 Barbieri SS, Sandrini L, Musazzi L, Popoli M, Ieraci A. Apocynin Prevents Anxiety-Like Behavior and Histone Deacetylases Overexpression Induced by Sub-Chronic Stress in Mice. Biomolecules 2021;11:885. [PMID: 34203655 DOI: 10.3390/biom11060885] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
11 Ershadi ASB, Amini-Khoei H, Hosseini MJ, Dehpour AR. SAHA Improves Depressive Symptoms, Cognitive Impairment and Oxidative Stress: Rise of a New Antidepressant Class. Neurochem Res 2021;46:1252-63. [PMID: 33576938 DOI: 10.1007/s11064-021-03263-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
12 Li W, Ali T, Zheng C, Liu Z, He K, Shah FA, Ren Q, Rahman SU, Li N, Yu ZJ, Li S. Fluoxetine regulates eEF2 activity (phosphorylation) via HDAC1 inhibitory mechanism in an LPS-induced mouse model of depression. J Neuroinflammation 2021;18:38. [PMID: 33526073 DOI: 10.1186/s12974-021-02091-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
13 Misztak P, Sowa-Kućma M, Szewczyk B, Nowak G. Vorinostat (SAHA) May Exert Its Antidepressant-Like Effects Through the Modulation of Oxidative Stress Pathways. Neurotox Res 2021;39:170-81. [PMID: 33400178 DOI: 10.1007/s12640-020-00317-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Nishi M. Effects of Early-Life Stress on the Brain and Behaviors: Implications of Early Maternal Separation in Rodents. Int J Mol Sci 2020;21:E7212. [PMID: 33003605 DOI: 10.3390/ijms21197212] [Cited by in Crossref: 5] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
15 Misztak P, Pańczyszyn-Trzewik P, Nowak G, Sowa-Kućma M. Epigenetic marks and their relationship with BDNF in the brain of suicide victims. PLoS One 2020;15:e0239335. [PMID: 32970734 DOI: 10.1371/journal.pone.0239335] [Cited by in Crossref: 2] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
16 Venditti S, Verdone L, Reale A, Vetriani V, Caserta M, Zampieri M. Molecules of Silence: Effects of Meditation on Gene Expression and Epigenetics. Front Psychol 2020;11:1767. [PMID: 32849047 DOI: 10.3389/fpsyg.2020.01767] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
17 Talarowska M. Epigenetic Mechanisms in the Neurodevelopmental Theory of Depression. Depress Res Treat 2020;2020:6357873. [PMID: 32373361 DOI: 10.1155/2020/6357873] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
18 Vacca M, Celano G, Calabrese FM, Portincasa P, Gobbetti M, De Angelis M. The Controversial Role of Human Gut Lachnospiraceae. Microorganisms 2020;8:E573. [PMID: 32326636 DOI: 10.3390/microorganisms8040573] [Cited by in Crossref: 104] [Cited by in F6Publishing: 248] [Article Influence: 52.0] [Reference Citation Analysis]
19 Carbone C, Brancato A, Adinolfi A, Lo Russo SLM, Alleva E, Cannizzaro C, Adriani W. Motor Transitions' Peculiarity of Heterozygous DAT Rats When Offspring of an Unconventional KOxWT Mating. Neuroscience 2020;433:108-20. [PMID: 32171819 DOI: 10.1016/j.neuroscience.2020.03.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
20 Shepard RD, Langlois LD, Authement ME, Nugent FS. Histone deacetylase inhibition reduces ventral tegmental area dopamine neuronal hyperexcitability involving AKAP150 signaling following maternal deprivation in juvenile male rats. J Neurosci Res 2020;98:1457-67. [PMID: 32162391 DOI: 10.1002/jnr.24613] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
21 Martínez-Pacheco H, Picazo O, López-Torres A, Morin JP, Castro-Cerritos KV, Zepeda RC, Roldán-Roldán G. Biochemical and Behavioral Characterization of IN14, a New Inhibitor of HDACs with Antidepressant-Like Properties. Biomolecules 2020;10:E299. [PMID: 32075023 DOI: 10.3390/biom10020299] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
22 Lu M, Zhang X, Xu Y, He G, Liu Q, Zhu J, Zhang C. Elevated histone H3 citrullination is associated with increased Beclin1 expression in HBV-related hepatocellular carcinoma. J Med Virol 2020;92:1221-30. [PMID: 31900950 DOI: 10.1002/jmv.25663] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
23 D'Mello SR. Histone deacetylases 1, 2 and 3 in nervous system development. Curr Opin Pharmacol 2020;50:74-81. [PMID: 31901696 DOI: 10.1016/j.coph.2019.11.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
24 Qiao M, Jiang QS, Liu YJ, Hu XY, Wang LJ, Zhou QX, Qiu HM. Antidepressant mechanisms of venlafaxine involving increasing histone acetylation and modulating tyrosine hydroxylase and tryptophan hydroxylase expression in hippocampus of depressive rats. Neuroreport 2019;30:255-61. [PMID: 30640193 DOI: 10.1097/WNR.0000000000001191] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
25 Caspani G, Kennedy S, Foster JA, Swann J. Gut microbial metabolites in depression: understanding the biochemical mechanisms. Microb Cell 2019;6:454-81. [PMID: 31646148 DOI: 10.15698/mic2019.10.693] [Cited by in Crossref: 48] [Cited by in F6Publishing: 62] [Article Influence: 16.0] [Reference Citation Analysis]
26 Chen WY, Zhang H, Gatta E, Glover EJ, Pandey SC, Lasek AW. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) alleviates depression-like behavior and normalizes epigenetic changes in the hippocampus during ethanol withdrawal. Alcohol 2019;78:79-87. [PMID: 30851364 DOI: 10.1016/j.alcohol.2019.02.005] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
27 Kaliman P. Epigenetics and meditation. Current Opinion in Psychology 2019;28:76-80. [DOI: 10.1016/j.copsyc.2018.11.010] [Cited by in Crossref: 15] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
28 Citraro R, Leo A, De Caro C, Nesci V, Gallo Cantafio ME, Amodio N, Mattace Raso G, Lama A, Russo R, Calignano A, Tallarico M, Russo E, De Sarro G. Effects of Histone Deacetylase Inhibitors on the Development of Epilepsy and Psychiatric Comorbidity in WAG/Rij Rats. Mol Neurobiol 2020;57:408-21. [PMID: 31368023 DOI: 10.1007/s12035-019-01712-8] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 7.7] [Reference Citation Analysis]
29 Kuehner JN, Bruggeman EC, Wen Z, Yao B. Epigenetic Regulations in Neuropsychiatric Disorders. Front Genet 2019;10:268. [PMID: 31019524 DOI: 10.3389/fgene.2019.00268] [Cited by in Crossref: 52] [Cited by in F6Publishing: 49] [Article Influence: 17.3] [Reference Citation Analysis]
30 Liu Y, Li M, Fan M, Song Y, Yu H, Zhi X, Xiao K, Lai S, Zhang J, Jin X, Shang Y, Liang J, Huang Z. Chromodomain Y-like Protein–Mediated Histone Crotonylation Regulates Stress-Induced Depressive Behaviors. Biological Psychiatry 2019;85:635-49. [DOI: 10.1016/j.biopsych.2018.11.025] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 13.0] [Reference Citation Analysis]
31 Iaconelli J, Xuan L, Karmacharya R. HDAC6 Modulates Signaling Pathways Relevant to Synaptic Biology and Neuronal Differentiation in Human Stem-Cell-Derived Neurons. Int J Mol Sci 2019;20:E1605. [PMID: 30935091 DOI: 10.3390/ijms20071605] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
32 Jiang Z, You Q, Zhang X. Medicinal chemistry of metal chelating fragments in metalloenzyme active sites: A perspective. Eur J Med Chem 2019;165:172-97. [PMID: 30684796 DOI: 10.1016/j.ejmech.2019.01.018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
33 Adhikari N, Amin SA, Jha T. Selective and nonselective HDAC8 inhibitors: a therapeutic patent review. Pharm Pat Anal 2018;7:259-76. [PMID: 30632447 DOI: 10.4155/ppa-2018-0019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]