BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lamch Ł, Kulbacka J, Dubińska-magiera M, Saczko J, Wilk KA. Folate-directed zinc (II) phthalocyanine loaded polymeric micelles engineered to generate reactive oxygen species for efficacious photodynamic therapy of cancer. Photodiagnosis and Photodynamic Therapy 2019;25:480-91. [DOI: 10.1016/j.pdpdt.2019.02.014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
Number Citing Articles
1 Kotta S, Aldawsari HM, Badr-Eldin SM, Nair AB, Yt K. Progress in Polymeric Micelles for Drug Delivery Applications. Pharmaceutics 2022;14:1636. [PMID: 36015262 DOI: 10.3390/pharmaceutics14081636] [Reference Citation Analysis]
2 Dantas KCF, Rosário JDS, Silva-caldeira PP. Polymeric Nanosystems Applied for Metal-Based Drugs and Photosensitizers Delivery: The State of the Art and Recent Advancements. Pharmaceutics 2022;14:1506. [DOI: 10.3390/pharmaceutics14071506] [Reference Citation Analysis]
3 Santos KLM, Nunes AMA, de Mendonça Y Araujo SED, de Melo DF, de Lima Damasceno BPG, Sato MR, Oshiro-Junior JA. Photodynamic potential of hexadecafluoro zinc phthalocyanine in nanostructured lipid carriers: physicochemical characterization, drug delivery and antimicrobial effect against Candida albicans. Lasers Med Sci 2022. [PMID: 35723829 DOI: 10.1007/s10103-022-03594-0] [Reference Citation Analysis]
4 Bae IK, Shin JY, Son JH, Wang KK, Han WS. Antibacterial effect of singlet oxygen depending on bacteria surface charge. Photodiagnosis Photodyn Ther 2022;:102975. [PMID: 35724937 DOI: 10.1016/j.pdpdt.2022.102975] [Reference Citation Analysis]
5 Obata M, Ishihara E, Hirohara S. Effect of tertiary amino groups in the hydrophobic segment of an amphiphilic block copolymer on zinc phthalocyanine encapsulation and photodynamic activity. RSC Adv 2022;12:18144-53. [DOI: 10.1039/d2ra02224a] [Reference Citation Analysis]
6 Guo S, Shi Y, Liang Y, Liu L, Sun K, Li Y. Relationship and improvement strategies between drug nanocarrier characteristics and hemocompatibility: What can we learn from the literature. Asian J Pharm Sci 2021;16:551-76. [PMID: 34849162 DOI: 10.1016/j.ajps.2020.12.002] [Reference Citation Analysis]
7 Pivetta TP, Botteon CEA, Ribeiro PA, Marcato PD, Raposo M. Nanoparticle Systems for Cancer Phototherapy: An Overview. Nanomaterials (Basel) 2021;11:3132. [PMID: 34835896 DOI: 10.3390/nano11113132] [Reference Citation Analysis]
8 Borzęcka W, Domiński A, Kowalczuk M. Recent Progress in Phthalocyanine-Polymeric Nanoparticle Delivery Systems for Cancer Photodynamic Therapy. Nanomaterials (Basel) 2021;11:2426. [PMID: 34578740 DOI: 10.3390/nano11092426] [Reference Citation Analysis]
9 Zeinali S, Tuncel A, Yüzer A, Yurt F. Imaging and detection of cell apoptosis byIn vitrophotodynamic therapy applications of zinc (II) phthalocyanine on human melanoma cancer. Photodiagnosis Photodyn Ther 2021;36:102518. [PMID: 34478898 DOI: 10.1016/j.pdpdt.2021.102518] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Dag A, Cakilkaya E, Omurtag Ozgen PS, Atasoy S, Yigit Erdem G, Cetin B, Çavuş Kokuroǧlu A, Gürek AG. Phthalocyanine-Conjugated Glyconanoparticles for Chemo-photodynamic Combination Therapy. Biomacromolecules 2021;22:1555-67. [PMID: 33793222 DOI: 10.1021/acs.biomac.0c01811] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Obata M, Masuda S, Takahashi M, Yazaki K, Hirohara S. Effect of the hydrophobic segment of an amphiphilic block copolymer on micelle formation, zinc phthalocyanine loading, and photodynamic activity. European Polymer Journal 2021;147:110325. [DOI: 10.1016/j.eurpolymj.2021.110325] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Ye Q, Xiao S, Lin T, Jiang Y, Peng Y, Huang Y. Mesoporous silica-coated gold nanorods loaded with tetrazolyl phthalocyanine as NIR light-activated nano-switches for synergistic photothermal and photodynamic inactivation of antibiotic-resistant Escherichia coli. Mater Adv 2021;2:1695-705. [DOI: 10.1039/d0ma00782j] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
13 Darwish W. Polymers for enhanced photodynamic cancer therapy: Phthalocyanines as a photosensitzer model. Polym Adv Technol 2021;32:919-30. [DOI: 10.1002/pat.5154] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
14 Yang H, Khan AR, Liu M, Fu M, Ji J, Chi L, Zhai G. Stimuli-responsive polymeric micelles for the delivery of paclitaxel. Journal of Drug Delivery Science and Technology 2020;56:101523. [DOI: 10.1016/j.jddst.2020.101523] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
15 Revuelta-Maza MÁ, Mascaraque M, González-Jiménez P, González-Camuñas A, Nonell S, Juarranz Á, de la Torre G, Torres T. Assessing Amphiphilic ABAB Zn(II) Phthalocyanines with Enhanced Photosensitization Abilities in In Vitro Photodynamic Therapy Studies Against Cancer. Molecules 2020;25:E213. [PMID: 31947934 DOI: 10.3390/molecules25010213] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
16 Uribe-robles M, Ortiz-islas E, Rodriguez-perez E, Lim T, Martinez-morales AA. TiO2 hollow nanospheres functionalized with folic acid and ZnPc for targeted photodynamic therapy in glioblastoma cancer. MRS Communications 2019;9:1242-8. [DOI: 10.1557/mrc.2019.142] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Liu J, Zhang Y, Liu W, Zhang K, Shi J, Zhang Z. Tumor Antigen Mediated Conformational Changes of Nanoplatform for Activated Photodynamic Therapy. Adv Healthc Mater 2019;8:e1900791. [PMID: 31532896 DOI: 10.1002/adhm.201900791] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]