BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kolluru GK, Shen X, Bir SC, Kevil CG. Hydrogen sulfide chemical biology: pathophysiological roles and detection. Nitric Oxide 2013;35:5-20. [PMID: 23850632 DOI: 10.1016/j.niox.2013.07.002] [Cited by in Crossref: 248] [Cited by in F6Publishing: 228] [Article Influence: 27.6] [Reference Citation Analysis]
Number Citing Articles
1 Bamesberger A, Kim G, Woo J, Cao H. Reduction of Nitro Group on Derivative of 1,8-Napthalimide for Quantitative Detection of Hydrogen Sulfide. J Fluoresc 2015;25:25-9. [DOI: 10.1007/s10895-014-1494-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
2 Yu X, Cui L, Wu K, Zheng X, Cayabyab FS, Chen Z, Tang C. Hydrogen sulfide as a potent cardiovascular protective agent. Clinica Chimica Acta 2014;437:78-87. [DOI: 10.1016/j.cca.2014.07.012] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 5.3] [Reference Citation Analysis]
3 Sulen A, Gullaksen S, Bader L, Mcclymont DW, Skavland J, Gavasso S, Gjertsen BT. Signaling effects of sodium hydrosulfide in healthy donor peripheral blood mononuclear cells. Pharmacological Research 2016;113:216-27. [DOI: 10.1016/j.phrs.2016.08.018] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
4 Jurkowska H, Roman HB, Hirschberger LL, Sasakura K, Nagano T, Hanaoka K, Krijt J, Stipanuk MH. Primary hepatocytes from mice lacking cysteine dioxygenase show increased cysteine concentrations and higher rates of metabolism of cysteine to hydrogen sulfide and thiosulfate. Amino Acids 2014;46:1353-65. [PMID: 24609271 DOI: 10.1007/s00726-014-1700-8] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
5 Pozzi G, Gobbi G, Masselli E, Carubbi C, Presta V, Ambrosini L, Vitale M, Mirandola P. Buffering Adaptive Immunity by Hydrogen Sulfide. Cells 2022;11:325. [DOI: 10.3390/cells11030325] [Reference Citation Analysis]
6 Rajendran S, Shen X, Glawe J, Kolluru GK, Kevil CG. Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Growth and Remodeling. Compr Physiol 2019;9:1213-47. [PMID: 31187898 DOI: 10.1002/cphy.c180026] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
7 Zhao Y, Henthorn HA, Pluth MD. Kinetic Insights into Hydrogen Sulfide Delivery from Caged-Carbonyl Sulfide Isomeric Donor Platforms. J Am Chem Soc 2017;139:16365-76. [PMID: 29056039 DOI: 10.1021/jacs.7b09527] [Cited by in Crossref: 55] [Cited by in F6Publishing: 49] [Article Influence: 11.0] [Reference Citation Analysis]
8 Dou Y, Wang Z, Chen G. The role of hydrogen sulfide in stroke. Med Gas Res 2016;6:79-84. [PMID: 27867473 DOI: 10.4103/2045-9912.184717] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
9 Jensen BS, Fago A. Sulfide metabolism and the mechanism of torpor. J Exp Biol 2021;224:jeb215764. [PMID: 34487173 DOI: 10.1242/jeb.215764] [Reference Citation Analysis]
10 Kolluru GK, Bir SC, Yuan S, Shen X, Pardue S, Wang R, Kevil CG. Cystathionine γ-lyase regulates arteriogenesis through NO-dependent monocyte recruitment. Cardiovasc Res 2015;107:590-600. [PMID: 26194202 DOI: 10.1093/cvr/cvv198] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 4.7] [Reference Citation Analysis]
11 Song F, Li Z, Li J, Wu S, Qiu X, Xi Z, Yi L. Investigation of thiolysis of NBD amines for the development of H 2 S probes and evaluating the stability of NBD dyes. Org Biomol Chem 2016;14:11117-24. [DOI: 10.1039/c6ob02354a] [Cited by in Crossref: 24] [Article Influence: 4.0] [Reference Citation Analysis]
12 Li H, Yao Y, Shi H, Lei Y, Huang Y, Wang K, He X, Liu J. A near-infrared light-responsive nanocomposite for photothermal release of H 2 S and suppression of cell viability. J Mater Chem B 2019;7:5992-7. [DOI: 10.1039/c9tb01611b] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
13 Miranda KM, Wink DA. Persulfides and the cellular thiol landscape. Proc Natl Acad Sci U S A 2014;111:7505-6. [PMID: 24828533 DOI: 10.1073/pnas.1405665111] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
14 Huang S, Li H, Ge J. A cardioprotective insight of the cystathionine γ-lyase/hydrogen sulfide pathway. Int J Cardiol Heart Vasc 2015;7:51-7. [PMID: 28785645 DOI: 10.1016/j.ijcha.2015.01.010] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
15 Donertas Ayaz B, Oliveira AC, Malphurs WL, Redler T, de Araujo AM, Sharma RK, Sirmagul B, Zubcevic J. Central Administration of Hydrogen Sulfide Donor NaHS Reduces Iba1-Positive Cells in the PVN and Attenuates Rodent Angiotensin II Hypertension. Front Neurosci 2021;15:690919. [PMID: 34602965 DOI: 10.3389/fnins.2021.690919] [Reference Citation Analysis]
16 Kolluru GK, Shen X, Kevil CG. Reactive Sulfur Species: A New Redox Player in Cardiovascular Pathophysiology. Arterioscler Thromb Vasc Biol 2020;40:874-84. [PMID: 32131614 DOI: 10.1161/ATVBAHA.120.314084] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 8.5] [Reference Citation Analysis]
17 Cao X, Cao L, Ding L, Bian JS. A New Hope for a Devastating Disease: Hydrogen Sulfide in Parkinson's Disease. Mol Neurobiol 2018;55:3789-99. [PMID: 28536975 DOI: 10.1007/s12035-017-0617-0] [Cited by in Crossref: 17] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
18 Hancock JT, Whiteman M. Hydrogen sulfide signaling: interactions with nitric oxide and reactive oxygen species: H 2 S interacts with other signaling pathways. Ann N Y Acad Sci 2016;1365:5-14. [DOI: 10.1111/nyas.12733] [Cited by in Crossref: 83] [Cited by in F6Publishing: 70] [Article Influence: 11.9] [Reference Citation Analysis]
19 Hsu K, Lien C, Lin C, Chang H, Huang C. Immobilization of iron hydroxide/oxide on reduced graphene oxide: peroxidase-like activity and selective detection of sulfide ions. RSC Adv 2014;4:37705. [DOI: 10.1039/c4ra05047a] [Cited by in Crossref: 25] [Cited by in F6Publishing: 1] [Article Influence: 3.1] [Reference Citation Analysis]
20 He W, Han X, Jia H, Cai J, Zhou Y, Zheng Z. AuPt Alloy Nanostructures with Tunable Composition and Enzyme-like Activities for Colorimetric Detection of Bisulfide. Sci Rep 2017;7:40103. [PMID: 28051159 DOI: 10.1038/srep40103] [Cited by in Crossref: 50] [Cited by in F6Publishing: 37] [Article Influence: 10.0] [Reference Citation Analysis]
21 Carbajo JM, Maraver F. Sulphurous Mineral Waters: New Applications for Health. Evid Based Complement Alternat Med 2017;2017:8034084. [PMID: 28484507 DOI: 10.1155/2017/8034084] [Cited by in Crossref: 39] [Cited by in F6Publishing: 26] [Article Influence: 7.8] [Reference Citation Analysis]
22 Kolluru GK, Shen X, Yuan S, Kevil CG. Gasotransmitter Heterocellular Signaling. Antioxid Redox Signal 2017;26:936-60. [PMID: 28068782 DOI: 10.1089/ars.2016.6909] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 5.2] [Reference Citation Analysis]
23 Kang J, Huo F, Yin C. A novel ratiometric fluorescent H 2 S probe based on tandem nucleophilic substitution/cyclization reaction and its bioimaging. Dyes and Pigments 2017;146:287-92. [DOI: 10.1016/j.dyepig.2017.07.016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 6.2] [Reference Citation Analysis]
24 Shen J, Walsh BJC, Flores-Mireles AL, Peng H, Zhang Y, Zhang Y, Trinidad JC, Hultgren SJ, Giedroc DP. Hydrogen Sulfide Sensing through Reactive Sulfur Species (RSS) and Nitroxyl (HNO) in Enterococcus faecalis. ACS Chem Biol 2018;13:1610-20. [PMID: 29712426 DOI: 10.1021/acschembio.8b00230] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
25 Zhao Y, Kang J, Park CM, Bagdon PE, Peng B, Xian M. Thiol-activated gem-dithiols: a new class of controllable hydrogen sulfide donors. Org Lett 2014;16:4536-9. [PMID: 25141097 DOI: 10.1021/ol502088m] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 4.8] [Reference Citation Analysis]
26 Friederich MW, Elias AF, Kuster A, Laugwitz L, Larson AA, Landry AP, Ellwood-Digel L, Mirsky DM, Dimmock D, Haven J, Jiang H, MacLean KN, Styren K, Schoof J, Goujon L, Lefrancois T, Friederich M, Coughlin CR 2nd, Banerjee R, Haack TB, Van Hove JLK. Pathogenic variants in SQOR encoding sulfide:quinone oxidoreductase are a potentially treatable cause of Leigh disease. J Inherit Metab Dis 2020;43:1024-36. [PMID: 32160317 DOI: 10.1002/jimd.12232] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
27 Kevil C, Cortese-krott MM, Nagy P, Papapetropoulos A, Feelisch M, Szabo C. Cooperative Interactions Between NO and H 2 S: Chemistry, Biology, Physiology, Pathophysiology. Nitric Oxide. Elsevier; 2017. pp. 57-83. [DOI: 10.1016/b978-0-12-804273-1.00005-3] [Cited by in Crossref: 7] [Article Influence: 1.4] [Reference Citation Analysis]
28 Zhao Y, Pacheco A, Xian M. Medicinal Chemistry: Insights into the Development of Novel H2S Donors. In: Moore PK, Whiteman M, editors. Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide. Cham: Springer International Publishing; 2015. pp. 365-88. [DOI: 10.1007/978-3-319-18144-8_18] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 4.7] [Reference Citation Analysis]
29 Markó L, Szijártó IA, Filipovic MR, Kaßmann M, Balogh A, Park JK, Przybyl L, N'diaye G, Krämer S, Anders J, Ishii I, Müller DN, Gollasch M. Role of Cystathionine Gamma-Lyase in Immediate Renal Impairment and Inflammatory Response in Acute Ischemic Kidney Injury. Sci Rep 2016;6:27517. [PMID: 27273292 DOI: 10.1038/srep27517] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
30 Zhang X, Xin Y, Chen Z, Xia Y, Xun L, Liu H. Sulfide-quinone oxidoreductase is required for cysteine synthesis and indispensable to mitochondrial health. Redox Biol 2021;47:102169. [PMID: 34688157 DOI: 10.1016/j.redox.2021.102169] [Reference Citation Analysis]
31 Cao J, Lopez R, Thacker JM, Moon JY, Jiang C, Morris SN, Bauer JH, Tao P, Mason RP, Lippert AR. Chemiluminescent Probes for Imaging H2S in Living Animals. Chem Sci 2015;6:1979-85. [PMID: 25709805 DOI: 10.1039/C4SC03516J] [Cited by in Crossref: 97] [Cited by in F6Publishing: 24] [Article Influence: 13.9] [Reference Citation Analysis]
32 Dugbartey GJ, Juriasingani S, Zhang MY, Sener A. H2S donor molecules against cold ischemia-reperfusion injury in preclinical models of solid organ transplantation. Pharmacol Res 2021;172:105842. [PMID: 34450311 DOI: 10.1016/j.phrs.2021.105842] [Reference Citation Analysis]
33 Guo Z, Chen G, Zeng G, Li Z, Chen A, Wang J, Jiang L. Fluorescence chemosensors for hydrogen sulfide detection in biological systems. Analyst 2015;140:1772-86. [PMID: 25529122 DOI: 10.1039/c4an01909a] [Cited by in Crossref: 75] [Cited by in F6Publishing: 7] [Article Influence: 10.7] [Reference Citation Analysis]
34 Xuan G, Lv C, Xu H, Li K, Liu H, Xia Y, Xun L. Sulfane Sulfur Regulates LasR-Mediated Quorum Sensing and Virulence in Pseudomonas aeruginosa PAO1. Antioxidants (Basel) 2021;10:1498. [PMID: 34573130 DOI: 10.3390/antiox10091498] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 McCook O, Radermacher P, Volani C, Asfar P, Ignatius A, Kemmler J, Möller P, Szabó C, Whiteman M, Wood ME, Wang R, Georgieff M, Wachter U. H2S during circulatory shock: some unresolved questions. Nitric Oxide 2014;41:48-61. [PMID: 24650697 DOI: 10.1016/j.niox.2014.03.163] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 5.6] [Reference Citation Analysis]
36 Terzić V, Padovani D, Balland V, Artaud I, Galardon E. Electrophilic sulfhydration of 8-nitro-cGMP involves sulfane sulfur. Org Biomol Chem 2014;12:5360-4. [PMID: 24955554 DOI: 10.1039/c4ob00868e] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
37 Caprnda M, Qaradakhi T, Hart JL, Kobyliak N, Opatrilova R, Kruzliak P, Zulli A. H2S causes contraction and relaxation of major arteries of the rabbit. Biomed Pharmacother 2017;89:56-60. [PMID: 28214688 DOI: 10.1016/j.biopha.2017.01.057] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
38 Christoforidis T, Driver TG, Rehman J, Eddington DT. Generation of controllable gaseous H2S concentrations using microfluidics. RSC Adv 2018;8:4078-83. [PMID: 30294423 DOI: 10.1039/C7RA12220A] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
39 Ismail I, Chen Z, Sun L, Ji X, Ye H, Kang X, Huang H, Song H, Bolton SG, Xi Z, Pluth MD, Yi L. Highly efficient H2S scavengers via thiolysis of positively-charged NBD amines. Chem Sci 2020;11:7823-8. [PMID: 34094155 DOI: 10.1039/d0sc01518k] [Cited by in Crossref: 13] [Article Influence: 6.5] [Reference Citation Analysis]
40 Tran BH, Yu Y, Chang L, Tan B, Jia W, Xiong Y, Dai T, Zhong R, Zhang W, Le VM, Rose P, Wang Z, Mao Y, Zhu YZ. A Novel Liposomal S-Propargyl-Cysteine: A Sustained Release of Hydrogen Sulfide Reducing Myocardial Fibrosis via TGF-β1/Smad Pathway. Int J Nanomedicine 2019;14:10061-77. [PMID: 31920303 DOI: 10.2147/IJN.S216667] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
41 Chen HJ, Ngowi EE, Qian L, Li T, Qin YZ, Zhou JJ, Li K, Ji XY, Wu DD. Role of Hydrogen Sulfide in the Endocrine System. Front Endocrinol (Lausanne) 2021;12:704620. [PMID: 34335475 DOI: 10.3389/fendo.2021.704620] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
42 Peng B, Liu C, Li Z, Day JJ, Lu Y, Lefer DJ, Xian M. Slow generation of hydrogen sulfide from sulfane sulfurs and NADH models. Bioorg Med Chem Lett 2017;27:542-5. [PMID: 28003140 DOI: 10.1016/j.bmcl.2016.12.023] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
43 Magli E, Perissutti E, Santagada V, Caliendo G, Corvino A, Esposito G, Esposito G, Fiorino F, Migliaccio M, Scognamiglio A, Severino B, Sparaco R, Frecentese F. H2S Donors and Their Use in Medicinal Chemistry. Biomolecules 2021;11:1899. [PMID: 34944543 DOI: 10.3390/biom11121899] [Reference Citation Analysis]
44 Shoji T, Hayashi M, Sumi C, Kusunoki M, Uba T, Matsuo Y, Kimura H, Hirota K. Pharmacological polysulfide suppresses glucose-stimulated insulin secretion in an ATP-sensitive potassium channel-dependent manner. Sci Rep 2019;9:19377. [PMID: 31852936 DOI: 10.1038/s41598-019-55848-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
45 Sun X, Kong B, Wang W, Chandran P, Selomulya C, Zhang H, Zhu K, Liu Y, Yang W, Guo C, Zhao D, Wang C. Mesoporous silica nanoparticles for glutathione-triggered long-range and stable release of hydrogen sulfide. J Mater Chem B 2015;3:4451-7. [PMID: 32262789 DOI: 10.1039/c5tb00354g] [Cited by in Crossref: 17] [Cited by in F6Publishing: 2] [Article Influence: 2.4] [Reference Citation Analysis]
46 Soto-Pantoja DR, Kaur S, Roberts DD. CD47 signaling pathways controlling cellular differentiation and responses to stress. Crit Rev Biochem Mol Biol 2015;50:212-30. [PMID: 25708195 DOI: 10.3109/10409238.2015.1014024] [Cited by in Crossref: 78] [Cited by in F6Publishing: 71] [Article Influence: 11.1] [Reference Citation Analysis]
47 Peng B, Xian M. Fluorescent Probes for Hydrogen Sulfide Detection. Asian Journal of Organic Chemistry 2014;3:914-24. [DOI: 10.1002/ajoc.201402064] [Cited by in Crossref: 35] [Cited by in F6Publishing: 24] [Article Influence: 4.4] [Reference Citation Analysis]
48 Kolluru GK, Yuan S, Shen X, Kevil CG. H2S regulation of nitric oxide metabolism. Methods Enzymol 2015;554:271-97. [PMID: 25725527 DOI: 10.1016/bs.mie.2014.11.040] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 3.9] [Reference Citation Analysis]
49 Donnarumma E, Trivedi RK, Lefer DJ. Protective Actions of H2S in Acute Myocardial Infarction and Heart Failure. Compr Physiol 2017;7:583-602. [PMID: 28333381 DOI: 10.1002/cphy.c160023] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 5.8] [Reference Citation Analysis]
50 Aghagolzadeh P, Radpour R, Bachtler M, van Goor H, Smith ER, Lister A, Odermatt A, Feelisch M, Pasch A. Hydrogen sulfide attenuates calcification of vascular smooth muscle cells via KEAP1/NRF2/NQO1 activation. Atherosclerosis 2017;265:78-86. [PMID: 28865326 DOI: 10.1016/j.atherosclerosis.2017.08.012] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 9.4] [Reference Citation Analysis]
51 Ding H, Chang J, He F, Gai S, Yang P. Hydrogen Sulfide: An Emerging Precision Strategy for Gas Therapy. Adv Healthc Mater 2021;:e2101984. [PMID: 34788499 DOI: 10.1002/adhm.202101984] [Reference Citation Analysis]
52 Feng L, Zhao Y. Research progress in endogenous H 2 S‐activatable nanoplatforms for cancer theranostics. View 2020;1. [DOI: 10.1002/viw2.15] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
53 Pacitti D, Scotton CJ, Kumar V, Khan H, Wark PAB, Torregrossa R, Hansbro PM, Whiteman M. Gasping for Sulfide: A Critical Appraisal of Hydrogen Sulfide in Lung Disease and Accelerated Aging. Antioxid Redox Signal 2021;35:551-79. [PMID: 33736455 DOI: 10.1089/ars.2021.0039] [Reference Citation Analysis]
54 Tsou C, Chiu W, Ke C, Tsai J, Wang Y, Chiang M, Liaw W. Iron(III) Bound by Hydrosulfide Anion Ligands: NO-Promoted Stabilization of the [Fe III –SH] Motif. J Am Chem Soc 2014;136:9424-33. [DOI: 10.1021/ja503683y] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
55 Donertas Ayaz B, Zubcevic J. Gut microbiota and neuroinflammation in pathogenesis of hypertension: A potential role for hydrogen sulfide. Pharmacol Res 2020;153:104677. [PMID: 32023431 DOI: 10.1016/j.phrs.2020.104677] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
56 Cortese-krott MM. Red Blood Cells as a “Central Hub” for Sulfide Bioactivity: Scavenging, Metabolism, Transport, and Cross-Talk with Nitric Oxide. Antioxidants & Redox Signaling 2020;33:1332-49. [DOI: 10.1089/ars.2020.8171] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
57 Aroca Á, Serna A, Gotor C, Romero LC. S-sulfhydration: a cysteine posttranslational modification in plant systems. Plant Physiol 2015;168:334-42. [PMID: 25810097 DOI: 10.1104/pp.15.00009] [Cited by in Crossref: 151] [Cited by in F6Publishing: 119] [Article Influence: 21.6] [Reference Citation Analysis]
58 Gheibi S, Samsonov AP, Gheibi S, Vazquez AB, Kashfi K. Regulation of carbohydrate metabolism by nitric oxide and hydrogen sulfide: Implications in diabetes. Biochem Pharmacol 2020;176:113819. [PMID: 31972170 DOI: 10.1016/j.bcp.2020.113819] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
59 Mahato SK, Bhattacherjee D, Bhabak KP. The biothiol-triggered organotrisulfide-based self-immolative fluorogenic donors of hydrogen sulfide enable lysosomal trafficking. Chem Commun (Camb) 2020;56:7769-72. [PMID: 32555887 DOI: 10.1039/d0cc00613k] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
60 Xu S, Yang CT, Meng FH, Pacheco A, Chen L, Xian M. Ammonium tetrathiomolybdate as a water-soluble and slow-release hydrogen sulfide donor. Bioorg Med Chem Lett 2016;26:1585-8. [PMID: 26898812 DOI: 10.1016/j.bmcl.2016.02.005] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 3.5] [Reference Citation Analysis]
61 Arbelo-lopez HD, Simakov NA, Smith JC, Lopez-garriga J, Wymore T. Homolytic Cleavage of Both Heme-Bound Hydrogen Peroxide and Hydrogen Sulfide Leads to the Formation of Sulfheme. J Phys Chem B 2016;120:7319-31. [DOI: 10.1021/acs.jpcb.6b02839] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
62 Hellmich MR, Szabo C. Hydrogen Sulfide and Cancer. Handb Exp Pharmacol 2015;230:233-41. [PMID: 26162838 DOI: 10.1007/978-3-319-18144-8_12] [Cited by in Crossref: 101] [Cited by in F6Publishing: 94] [Article Influence: 14.4] [Reference Citation Analysis]
63 Bianco CL, Savitsky A, Feelisch M, Cortese-krott MM. Investigations on the role of hemoglobin in sulfide metabolism by intact human red blood cells. Biochemical Pharmacology 2018;149:163-73. [DOI: 10.1016/j.bcp.2018.01.045] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
64 Zhang J, Wu H, Zhao Y, Zu H. Therapeutic Effects of Hydrogen Sulfide in Treating Delayed Encephalopathy After Acute Carbon Monoxide Poisoning. Am J Ther 2016;23:e1709-14. [PMID: 26164025 DOI: 10.1097/MJT.0000000000000290] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
65 Shen X, Chakraborty S, Dugas TR, Kevil CG. Hydrogen sulfide measurement using sulfide dibimane: critical evaluation with electrospray ion trap mass spectrometry. Nitric Oxide 2014;41:97-104. [PMID: 24932544 DOI: 10.1016/j.niox.2014.06.002] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
66 Liu Z, Zhu Z, He Y, Kang Q, Li F, Zhang W, He Y, Lin Y, Huang B, Mo M, Xu P, Zhu X. A Novel Hydrogen Sulfide Donor Reduces Pilocarpine-Induced Status Epilepticus and Regulates Microglial Inflammatory Profile. Front Cell Neurosci 2021;15:780447. [PMID: 34924959 DOI: 10.3389/fncel.2021.780447] [Reference Citation Analysis]
67 Zhu X, He Y, Liu Z, Zhu Z, He Y, Qiu J, Liu D, Mo M, Wang P, Tian X, Xu P. A novel carbazole-based hydrogen-sulfide donor suppresses seizures and upregulates ATP-sensitive potassium channels. Applied Materials Today 2020;19:100559. [DOI: 10.1016/j.apmt.2020.100559] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Kolluru GK, Prasai PK, Kaskas AM, Letchuman V, Pattillo CB. Oxygen tension, H 2 S, and NO bioavailability: is there an interaction? Journal of Applied Physiology 2016;120:263-70. [DOI: 10.1152/japplphysiol.00365.2015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
69 Lee S, Sung DB, Lee JS, Han MS. A Fluorescent Probe for Selective Facile Detection of H2S in Serum Based on an Albumin-Binding Fluorophore and Effective Masking Reagent. ACS Omega 2020;5:32507-14. [PMID: 33376888 DOI: 10.1021/acsomega.0c04659] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
70 Velázquez-moyado JA, Navarrete A. The detection and quantification, in vivo and in real time, of hydrogen sulfide in ethanol-induced lesions in rat stomachs using an ion sensitive electrode. Journal of Pharmacological and Toxicological Methods 2018;89:54-8. [DOI: 10.1016/j.vascn.2017.10.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
71 Pluth MD, Zhao Y, Cerda MM. H2S donors with optical responses. Methods Enzymol 2020;641:149-64. [PMID: 32713521 DOI: 10.1016/bs.mie.2020.04.039] [Reference Citation Analysis]
72 Jensen B, Fago A. Reactions of ferric hemoglobin and myoglobin with hydrogen sulfide under physiological conditions. Journal of Inorganic Biochemistry 2018;182:133-40. [DOI: 10.1016/j.jinorgbio.2018.02.007] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
73 Harvey HM, Gross AJ, Brooksby P, Downard AJ, Green SJ, Winlove CP, Benjamin N, Winyard PG, Whiteman M, Hammond JL, Estrela P, Marken F. Boron-Doped Diamond Dual-Plate Deep-Microtrench Device for Generator-Collector Sulfide Sensing. Electroanalysis 2015;27:2645-53. [DOI: 10.1002/elan.201500288] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
74 Cui J, Zhang T, Sun Y, Li D, Liu J, Zhao B. A highly sensitive and selective fluorescent probe for H2S detection with large fluorescence enhancement. Sensors and Actuators B: Chemical 2016;232:705-11. [DOI: 10.1016/j.snb.2016.04.025] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 4.3] [Reference Citation Analysis]
75 Ngowi EE, Sarfraz M, Afzal A, Khan NH, Khattak S, Zhang X, Li T, Duan SF, Ji XY, Wu DD. Roles of Hydrogen Sulfide Donors in Common Kidney Diseases. Front Pharmacol 2020;11:564281. [PMID: 33364941 DOI: 10.3389/fphar.2020.564281] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
76 Tomita M, Nagahara N, Ito T. Expression of 3-Mercaptopyruvate Sulfurtransferase in the Mouse. Molecules 2016;21:E1707. [PMID: 27973427 DOI: 10.3390/molecules21121707] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
77 Biswal HS. Hydrogen Bonds Involving Sulfur: New Insights from ab Initio Calculations and Gas Phase Laser Spectroscopy. In: Scheiner S, editor. Noncovalent Forces. Cham: Springer International Publishing; 2015. pp. 15-45. [DOI: 10.1007/978-3-319-14163-3_2] [Cited by in Crossref: 31] [Cited by in F6Publishing: 18] [Article Influence: 4.4] [Reference Citation Analysis]
78 Feelisch M, Olson KR. Embracing sulfide and CO to understand nitric oxide biology. Nitric Oxide 2013;35:2-4. [PMID: 23769946 DOI: 10.1016/j.niox.2013.06.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
79 Heine CL, Schmidt R, Geckl K, Schrammel A, Gesslbauer B, Schmidt K, Mayer B, Gorren AC. Selective Irreversible Inhibition of Neuronal and Inducible Nitric-oxide Synthase in the Combined Presence of Hydrogen Sulfide and Nitric Oxide. J Biol Chem 2015;290:24932-44. [PMID: 26296888 DOI: 10.1074/jbc.M115.660316] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 1.9] [Reference Citation Analysis]
80 Alyan AK, Hanafi RS, Gad MZ. Point-of-care testing and optimization of sample treatment for fluorometric determination of hydrogen sulphide in plasma of cardiovascular patients. J Adv Res 2021;27:1-10. [PMID: 33318861 DOI: 10.1016/j.jare.2019.11.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
81 Wu D, Wang J, Li H, Xue M, Ji A, Li Y. Role of Hydrogen Sulfide in Ischemia-Reperfusion Injury. Oxid Med Cell Longev 2015;2015:186908. [PMID: 26064416 DOI: 10.1155/2015/186908] [Cited by in Crossref: 60] [Cited by in F6Publishing: 65] [Article Influence: 8.6] [Reference Citation Analysis]
82 Xu Z, Wu Z, Tan H, Yan J, Liu X, Li J, Xu Z, Dong C, Zhang L. Piperazine-tuned NBD-based colorimetric and fluorescent turn-off probes for hydrogen sulfide. Anal Methods 2018;10:3375-9. [DOI: 10.1039/c8ay00797g] [Cited by in Crossref: 11] [Article Influence: 2.8] [Reference Citation Analysis]
83 Zhang K, Zhang J, Xi Z, Li LY, Gu X, Zhang QZ, Yi L. A new H2S-specific near-infrared fluorescence-enhanced probe that can visualize the H2S level in colorectal cancer cells in mice. Chem Sci 2017;8:2776-81. [PMID: 28553513 DOI: 10.1039/c6sc05646f] [Cited by in Crossref: 117] [Cited by in F6Publishing: 15] [Article Influence: 23.4] [Reference Citation Analysis]
84 Wang H, Shi X, Qiu M, Lv S, Liu H. Hydrogen Sulfide Plays an Important Protective Role through Influencing Endoplasmic Reticulum Stress in Diseases. Int J Biol Sci 2020;16:264-71. [PMID: 31929754 DOI: 10.7150/ijbs.38143] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
85 Dillon KM, Matson JB. A Review of Chemical Tools for Studying Small Molecule Persulfides: Detection and Delivery. ACS Chem Biol 2021;16:1128-41. [PMID: 34114796 DOI: 10.1021/acschembio.1c00255] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Leskova A, Pardue S, Glawe JD, Kevil CG, Shen X. Role of thiosulfate in hydrogen sulfide-dependent redox signaling in endothelial cells. Am J Physiol Heart Circ Physiol 2017;313:H256-64. [PMID: 28550177 DOI: 10.1152/ajpheart.00723.2016] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
87 Whiteman M, Perry A, Zhou Z, Bucci M, Papapetropoulos A, Cirino G, Wood ME. Phosphinodithioate and Phosphoramidodithioate Hydrogen Sulfide Donors. In: Moore PK, Whiteman M, editors. Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide. Cham: Springer International Publishing; 2015. pp. 337-63. [DOI: 10.1007/978-3-319-18144-8_17] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 5.9] [Reference Citation Analysis]
88 Coavoy-Sánchez SA, Costa SKP, Muscará MN. Hydrogen sulfide and dermatological diseases. Br J Pharmacol 2020;177:857-65. [PMID: 31051046 DOI: 10.1111/bph.14699] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
89 Sun HJ, Wu ZY, Nie XW, Wang XY, Bian JS. An Updated Insight Into Molecular Mechanism of Hydrogen Sulfide in Cardiomyopathy and Myocardial Ischemia/Reperfusion Injury Under Diabetes. Front Pharmacol 2021;12:651884. [PMID: 34764865 DOI: 10.3389/fphar.2021.651884] [Reference Citation Analysis]
90 Myszkowska J, Derevenkov I, Makarov SV, Spiekerkoetter U, Hannibal L. Biosynthesis, Quantification and Genetic Diseases of the Smallest Signaling Thiol Metabolite: Hydrogen Sulfide. Antioxidants (Basel) 2021;10:1065. [PMID: 34356298 DOI: 10.3390/antiox10071065] [Reference Citation Analysis]
91 Chen Y, Zhang F, Yin J, Wu S, Zhou X. Protective mechanisms of hydrogen sulfide in myocardial ischemia. J Cell Physiol 2020;235:9059-70. [PMID: 32542668 DOI: 10.1002/jcp.29761] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
92 Cao X, Ding L, Xie ZZ, Yang Y, Whiteman M, Moore PK, Bian JS. A Review of Hydrogen Sulfide Synthesis, Metabolism, and Measurement: Is Modulation of Hydrogen Sulfide a Novel Therapeutic for Cancer? Antioxid Redox Signal 2019;31:1-38. [PMID: 29790379 DOI: 10.1089/ars.2017.7058] [Cited by in Crossref: 105] [Cited by in F6Publishing: 99] [Article Influence: 26.3] [Reference Citation Analysis]
93 Peng B, Zhang C, Marutani E, Pacheco A, Chen W, Ichinose F, Xian M. Trapping hydrogen sulfide (H₂S) with diselenides: the application in the design of fluorescent probes. Org Lett 2015;17:1541-4. [PMID: 25723840 DOI: 10.1021/acs.orglett.5b00431] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 5.3] [Reference Citation Analysis]
94 Garattini EG, Santos BM, Ferrari DP, Capel CP, Francescato HD, Coimbra TM, Leite-panissi CR, Branco LG, Nascimento GC. Propargylglycine decreases neuro-immune interaction inducing pain response in temporomandibular joint inflammation model. Nitric Oxide 2019;93:90-101. [DOI: 10.1016/j.niox.2019.10.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
95 Fukami K, Kawabata A. Hydrogen sulfide and neuronal differentiation: focus on Ca2+ channels. Nitric Oxide 2015;46:50-4. [PMID: 25660006 DOI: 10.1016/j.niox.2015.02.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
96 Ono K, Akaike T, Sawa T, Kumagai Y, Wink DA, Tantillo DJ, Hobbs AJ, Nagy P, Xian M, Lin J, Fukuto JM. Redox chemistry and chemical biology of H2S, hydropersulfides, and derived species: implications of their possible biological activity and utility. Free Radic Biol Med 2014;77:82-94. [PMID: 25229186 DOI: 10.1016/j.freeradbiomed.2014.09.007] [Cited by in Crossref: 255] [Cited by in F6Publishing: 238] [Article Influence: 31.9] [Reference Citation Analysis]
97 Cen SD, Yu WB, Ren MM, Chen LJ, Sun CF, Ye ZL, Deng H, Hu RD. Endogenous hydrogen sulfide is involved in osteogenic differentiation in human periodontal ligament cells. Arch Oral Biol 2016;68:1-8. [PMID: 27035752 DOI: 10.1016/j.archoralbio.2016.03.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
98 Peng B, Xian M. Hydrogen Sulfide Detection Using Nucleophilic Substitution–Cyclization-Based Fluorescent Probes. Hydrogen Sulfide in Redox Biology, Part A. Elsevier; 2015. pp. 47-62. [DOI: 10.1016/bs.mie.2014.11.030] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
99 Xia Y, Lü C, Hou N, Xin Y, Liu J, Liu H, Xun L. Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions. ISME J 2017;11:2754-66. [PMID: 28777380 DOI: 10.1038/ismej.2017.125] [Cited by in Crossref: 58] [Cited by in F6Publishing: 47] [Article Influence: 11.6] [Reference Citation Analysis]
100 Zhu J, Ligi S, Yang G. An evolutionary perspective on the interplays between hydrogen sulfide and oxygen in cellular functions. Arch Biochem Biophys 2021;707:108920. [PMID: 34019852 DOI: 10.1016/j.abb.2021.108920] [Reference Citation Analysis]
101 Cheng Z, Kishore R. Potential role of hydrogen sulfide in diabetes-impaired angiogenesis and ischemic tissue repair. Redox Biol 2020;37:101704. [PMID: 32942144 DOI: 10.1016/j.redox.2020.101704] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
102 Zhang JY, Ding YP, Wang Z, Kong Y, Gao R, Chen G. Hydrogen sulfide therapy in brain diseases: from bench to bedside. Med Gas Res 2017;7:113-9. [PMID: 28744364 DOI: 10.4103/2045-9912.208517] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 7.4] [Reference Citation Analysis]
103 Farrugia G, Szurszewski JH. Carbon monoxide, hydrogen sulfide, and nitric oxide as signaling molecules in the gastrointestinal tract. Gastroenterology. 2014;147:303-313. [PMID: 24798417 DOI: 10.1053/j.gastro.2014.04.041] [Cited by in Crossref: 94] [Cited by in F6Publishing: 83] [Article Influence: 11.8] [Reference Citation Analysis]
104 Citi V, Martelli A, Gorica E, Brogi S, Testai L, Calderone V. Role of hydrogen sulfide in endothelial dysfunction: Pathophysiology and therapeutic approaches. J Adv Res 2021;27:99-113. [PMID: 33318870 DOI: 10.1016/j.jare.2020.05.015] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
105 Yang L, Zhu Y, Liang L, Wang C, Ning X, Feng X. Self-Assembly of Intelligent Nanoplatform for Endogenous H 2 S-Triggered Multimodal Cascade Therapy of Colon Cancer. Nano Lett . [DOI: 10.1021/acs.nanolett.2c01131] [Reference Citation Analysis]
106 Lu Y, Wang X, Pu H, Lin Y, Li D, Liu SQ, Huang D. Moringin and Its Structural Analogues as Slow H 2 S Donors: Their Mechanisms and Bioactivity. J Agric Food Chem 2020;68:7235-45. [DOI: 10.1021/acs.jafc.0c02358] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
107 Chen Z, Chen C, Huang H, Luo F, Guo L, Zhang L, Lin Z, Chen G. Target-Induced Horseradish Peroxidase Deactivation for Multicolor Colorimetric Assay of Hydrogen Sulfide in Rat Brain Microdialysis. Anal Chem 2018;90:6222-8. [DOI: 10.1021/acs.analchem.8b00752] [Cited by in Crossref: 84] [Cited by in F6Publishing: 59] [Article Influence: 21.0] [Reference Citation Analysis]
108 Roda B, Zhang N, Gambari L, Grigolo B, Eller-vainicher C, Gennari L, Zappi A, Giordani S, Marassi V, Zattoni A, Reschiglian P, Grassi F. Optimization of a Monobromobimane (MBB) Derivatization and RP-HPLC-FLD Detection Method for Sulfur Species Measurement in Human Serum after Sulfur Inhalation Treatment. Antioxidants 2022;11:939. [DOI: 10.3390/antiox11050939] [Reference Citation Analysis]
109 Wedmann R, Bertlein S, Macinkovic I, Böltz S, Miljkovic JLj, Muñoz LE, Herrmann M, Filipovic MR. Working with "H2S": facts and apparent artifacts. Nitric Oxide 2014;41:85-96. [PMID: 24932545 DOI: 10.1016/j.niox.2014.06.003] [Cited by in Crossref: 72] [Cited by in F6Publishing: 69] [Article Influence: 9.0] [Reference Citation Analysis]
110 Orlov SN, Gusakova SV, Smaglii LV, Koltsova SV, Sidorenko SV. Vasoconstriction triggered by hydrogen sulfide: Evidence for Na+,K+,2Cl-cotransport and L-type Ca2+ channel-mediated pathway. Biochem Biophys Rep 2017;12:220-7. [PMID: 29159314 DOI: 10.1016/j.bbrep.2017.09.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
111 Vanin AF, Mikoyan VD, Borodulin RR, Burbaev DS, Kubrina LN. Dinitrosyl Iron Complexes with Persulfide Ligands: EPR and Optical Studies. Appl Magn Reson 2016;47:277-95. [DOI: 10.1007/s00723-015-0744-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
112 Shen X, Kolluru GK, Yuan S, Kevil CG. Measurement of H2S in vivo and in vitro by the monobromobimane method. Methods Enzymol 2015;554:31-45. [PMID: 25725514 DOI: 10.1016/bs.mie.2014.11.039] [Cited by in Crossref: 48] [Cited by in F6Publishing: 43] [Article Influence: 6.9] [Reference Citation Analysis]
113 Swan KW, Song BM, Chen AL, Chen TJ, Chan RA, Guidry BT, Katakam PVG, Kerut EK, Giles TD, Kadowitz PJ. Analysis of decreases in systemic arterial pressure and heart rate in response to the hydrogen sulfide donor sodium sulfide. Am J Physiol Heart Circ Physiol 2017;313:H732-43. [PMID: 28667054 DOI: 10.1152/ajpheart.00729.2016] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
114 Zhao Y, Biggs TD, Xian M. Hydrogen sulfide (H2S) releasing agents: chemistry and biological applications. Chem Commun (Camb) 2014;50:11788-805. [PMID: 25019301 DOI: 10.1039/c4cc00968a] [Cited by in Crossref: 213] [Cited by in F6Publishing: 68] [Article Influence: 30.4] [Reference Citation Analysis]
115 Zhou Y, Yang T, Liang K, Chandrawati R. Metal-organic frameworks for therapeutic gas delivery. Adv Drug Deliv Rev 2021;171:199-214. [PMID: 33561450 DOI: 10.1016/j.addr.2021.02.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
116 Kasinath BS. Hydrogen sulfide to the rescue in obstructive kidney injury. Kidney Int 2014;85:1255-8. [PMID: 24875544 DOI: 10.1038/ki.2013.529] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
117 Luebke JL, Giedroc DP. Cysteine sulfur chemistry in transcriptional regulators at the host-bacterial pathogen interface. Biochemistry 2015;54:3235-49. [PMID: 25946648 DOI: 10.1021/acs.biochem.5b00085] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
118 Xu JW, Gao DD, Peng L, Qiu ZE, Ke LJ, Zhu YX, Zhang YL, Zhou WL. The gasotransmitter hydrogen sulfide inhibits transepithelial anion secretion of pregnant mouse endometrial epithelium. Nitric Oxide 2019;90:37-46. [PMID: 31175932 DOI: 10.1016/j.niox.2019.05.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
119 Thorson MK, Ung P, Leaver FM, Corbin TS, Tuck KL, Graham B, Barrios AM. Lanthanide complexes as luminogenic probes to measure sulfide levels in industrial samples. Anal Chim Acta 2015;896:160-5. [PMID: 26482000 DOI: 10.1016/j.aca.2015.09.024] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
120 Li M, Mao J, Zhu Y. New Therapeutic Approaches Using Hydrogen Sulfide Donors in Inflammation and Immune Response. Antioxid Redox Signal 2021;35:341-56. [PMID: 33789440 DOI: 10.1089/ars.2020.8249] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
121 Ding Y, Li X, Chen C, Ling J, Li W, Guo Y, Yan J, Zha L, Cai J. A rapid evaluation of acute hydrogen sulfide poisoning in blood based on DNA-Cu/Ag nanocluster fluorescence probe. Sci Rep 2017;7:9638. [PMID: 28852006 DOI: 10.1038/s41598-017-09960-1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
122 Liu Q, Zhong Y, Su Y, Zhao L, Peng J. Real-Time Imaging of Hepatic Inflammation Using Hydrogen Sulfide-Activatable Second Near-Infrared Luminescent Nanoprobes. Nano Lett 2021;21:4606-14. [PMID: 34014668 DOI: 10.1021/acs.nanolett.1c00548] [Reference Citation Analysis]
123 Mitidieri E, Tramontano T, Gurgone D, Citi V, Calderone V, Brancaleone V, Katsouda A, Nagahara N, Papapetropoulos A, Cirino G, d'Emmanuele di Villa Bianca R, Sorrentino R. Mercaptopyruvate acts as endogenous vasodilator independently of 3-mercaptopyruvate sulfurtransferase activity. Nitric Oxide 2018;75:53-9. [PMID: 29452248 DOI: 10.1016/j.niox.2018.02.003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
124 Mohamed A, Fahim AM, Ibrahim MA. Theoretical investigation on hydrogen bond interaction between adrenaline and hydrogen sulfide. J Mol Model 2020;26:354. [PMID: 33244644 DOI: 10.1007/s00894-020-04602-2] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
125 Wei C, Wang R, Zhang C, Xu G, Li Y, Zhang Q, Li L, Yi L, Xi Z. Dual-Reactable Fluorescent Probes for Highly Selective and Sensitive Detection of Biological H 2 S. Chem Asian J 2016;11:1376-81. [DOI: 10.1002/asia.201600262] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
126 Xiao AY, Maynard MR, Piett CG, Nagel ZD, Alexander JS, Kevil CG, Berridge MV, Pattillo CB, Rosen LR, Miriyala S, Harrison L. Sodium sulfide selectively induces oxidative stress, DNA damage, and mitochondrial dysfunction and radiosensitizes glioblastoma (GBM) cells. Redox Biol 2019;26:101220. [PMID: 31176262 DOI: 10.1016/j.redox.2019.101220] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
127 Kasinath BS, Feliers D, Lee HJ. Hydrogen sulfide as a regulatory factor in kidney health and disease. Biochemical Pharmacology 2018;149:29-41. [DOI: 10.1016/j.bcp.2017.12.005] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
128 Rajpal S, Katikaneni P, Deshotels M, Pardue S, Glawe J, Shen X, Akkus N, Modi K, Bhandari R, Dominic P, Reddy P, Kolluru GK, Kevil CG. Total sulfane sulfur bioavailability reflects ethnic and gender disparities in cardiovascular disease. Redox Biol 2018;15:480-9. [PMID: 29413960 DOI: 10.1016/j.redox.2018.01.007] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 5.5] [Reference Citation Analysis]
129 Wu L, Sun Y, Sugimoto K, Luo Z, Ishigaki Y, Pu K, Suzuki T, Chen HY, Ye D. Engineering of Electrochromic Materials as Activatable Probes for Molecular Imaging and Photodynamic Therapy. J Am Chem Soc 2018;140:16340-52. [PMID: 30384600 DOI: 10.1021/jacs.8b10176] [Cited by in Crossref: 75] [Cited by in F6Publishing: 63] [Article Influence: 18.8] [Reference Citation Analysis]
130 Ditrói T, Nagy A, Martinelli D, Rosta A, Kožich V, Nagy P. Comprehensive analysis of how experimental parameters affect H2S measurements by the monobromobimane method. Free Radic Biol Med 2019;136:146-58. [PMID: 30970274 DOI: 10.1016/j.freeradbiomed.2019.04.006] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 5.7] [Reference Citation Analysis]
131 Rochette L, Gudjoncik A, Guenancia C, Zeller M, Cottin Y, Vergely C. The iron-regulatory hormone hepcidin: A possible therapeutic target? Pharmacology & Therapeutics 2015;146:35-52. [DOI: 10.1016/j.pharmthera.2014.09.004] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 6.3] [Reference Citation Analysis]
132 Panthi S, Manandhar S, Gautam K. Hydrogen sulfide, nitric oxide, and neurodegenerative disorders. Transl Neurodegener 2018;7:3. [PMID: 29456842 DOI: 10.1186/s40035-018-0108-x] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 7.5] [Reference Citation Analysis]
133 Gahlaut SK, Kalyani N, Sharan C, Mishra P, Singh J. Smartphone based dual mode in situ detection of viability of bacteria using Ag nanorods array. Biosensors and Bioelectronics 2019;126:478-84. [DOI: 10.1016/j.bios.2018.11.025] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
134 Yi L, Wei L, Wang R, Zhang C, Zhang J, Tan T, Xi Z. A Dual-Response Fluorescent Probe Reveals the H 2 O 2 -Induced H 2 S Biogenesis through a Cystathionine β-Synthase Pathway. Chem Eur J 2015;21:15167-72. [DOI: 10.1002/chem.201502832] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 5.7] [Reference Citation Analysis]
135 Huang Y, Ning K, Li W, Lin G, Hou C, Wang M, Zhu Y. Hydrogen sulfide accumulates LDL receptor precursor via downregulating PCSK9 in HepG2 cells. American Journal of Physiology-Cell Physiology 2020;319:C1082-96. [DOI: 10.1152/ajpcell.00244.2019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
136 Shen J, Keithly ME, Armstrong RN, Higgins KA, Edmonds KA, Giedroc DP. Staphylococcus aureus CstB Is a Novel Multidomain Persulfide Dioxygenase-Sulfurtransferase Involved in Hydrogen Sulfide Detoxification. Biochemistry 2015;54:4542-54. [PMID: 26177047 DOI: 10.1021/acs.biochem.5b00584] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 5.4] [Reference Citation Analysis]
137 Pardue S, Kolluru GK, Shen X, Lewis SE, Saffle CB, Kelley EE, Kevil CG. Hydrogen sulfide stimulates xanthine oxidoreductase conversion to nitrite reductase and formation of NO. Redox Biol 2020;34:101447. [PMID: 32035920 DOI: 10.1016/j.redox.2020.101447] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
138 Polhemus DJ, Li Z, Pattillo CB, Gojon G Sr, Gojon G Jr, Giordano T, Krum H. A novel hydrogen sulfide prodrug, SG1002, promotes hydrogen sulfide and nitric oxide bioavailability in heart failure patients. Cardiovasc Ther 2015;33:216-26. [PMID: 25930144 DOI: 10.1111/1755-5922.12128] [Cited by in Crossref: 71] [Cited by in F6Publishing: 67] [Article Influence: 11.8] [Reference Citation Analysis]
139 Montoya LA, Pluth MD. Hydrogen sulfide deactivates common nitrobenzofurazan-based fluorescent thiol labeling reagents. Anal Chem 2014;86:6032-9. [PMID: 24852143 DOI: 10.1021/ac501193r] [Cited by in Crossref: 63] [Cited by in F6Publishing: 59] [Article Influence: 7.9] [Reference Citation Analysis]
140 Guo H, Xiao T, Zhou H, Xie Y, Shen W. Hydrogen sulfide: a versatile regulator of environmental stress in plants. Acta Physiol Plant 2016;38. [DOI: 10.1007/s11738-015-2038-x] [Cited by in Crossref: 57] [Cited by in F6Publishing: 29] [Article Influence: 8.1] [Reference Citation Analysis]
141 Jiang Y, Ji X, Zhang C, Xi Z, Sun L, Yi L. Dual-quenching NBD-based fluorescent probes for separate detection of H 2 S and Cys/Hcy in living cells. Org Biomol Chem 2019;17:8435-42. [DOI: 10.1039/c9ob01535c] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
142 Tabassum R, Jeong NY, Jung J. Therapeutic importance of hydrogen sulfide in age-associated neurodegenerative diseases. Neural Regen Res 2020;15:653-62. [PMID: 31638087 DOI: 10.4103/1673-5374.266911] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
143 Wang B, Jiang N, Sun W, Wang Q, Zheng G. A ratiometric fluorescence probe for detection of hydrogen sulfide in cells. RSC Adv 2016;6:36906-9. [DOI: 10.1039/c6ra02579j] [Cited by in Crossref: 8] [Article Influence: 1.3] [Reference Citation Analysis]
144 Han S, Aydin MM, Akansel S, Usanmaz SE, Akçali C, Uludağ MO, Demirel Yilmaz E. Age- and sex-dependent alteration of functions and epigenetic modifications of vessel and endothelium related biomarkers. Turk J Biol 2018;42:286-96. [PMID: 30814892 DOI: 10.3906/biy-1803-59] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
145 Zhao Y, Yang C, Organ C, Li Z, Bhushan S, Otsuka H, Pacheco A, Kang J, Aguilar HC, Lefer DJ, Xian M. Design, Synthesis, and Cardioprotective Effects of N-Mercapto-Based Hydrogen Sulfide Donors. J Med Chem 2015;58:7501-11. [PMID: 26317692 DOI: 10.1021/acs.jmedchem.5b01033] [Cited by in Crossref: 50] [Cited by in F6Publishing: 47] [Article Influence: 7.1] [Reference Citation Analysis]
146 Fujita A, Ota M, Kato K. Urinary volatile metabolites of amygdala-kindled mice reveal novel biomarkers associated with temporal lobe epilepsy. Sci Rep 2019;9:10586. [PMID: 31332211 DOI: 10.1038/s41598-019-46373-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
147 Balne PK, Sinha NR, Hofmann AC, Martin LM, Mohan RR. Characterization of hydrogen sulfide toxicity to human corneal stromal fibroblasts. Ann N Y Acad Sci 2020;1480:207-18. [PMID: 32954509 DOI: 10.1111/nyas.14498] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
148 Mendes SS, Miranda V, Saraiva LM. Hydrogen Sulfide and Carbon Monoxide Tolerance in Bacteria. Antioxidants (Basel) 2021;10:729. [PMID: 34063102 DOI: 10.3390/antiox10050729] [Reference Citation Analysis]
149 Bieza SA, Boubeta F, Feis A, Smulevich G, Estrin DA, Boechi L, Bari SE. Reactivity of inorganic sulfide species toward a heme protein model. Inorg Chem 2015;54:527-33. [PMID: 25537304 DOI: 10.1021/ic502294z] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
150 Liu T, Mukosera GT, Blood AB. The role of gasotransmitters in neonatal physiology. Nitric Oxide 2020;95:29-44. [PMID: 31870965 DOI: 10.1016/j.niox.2019.12.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
151 Malone Rubright SL, Pearce LL, Peterson J. Environmental toxicology of hydrogen sulfide. Nitric Oxide 2017;71:1-13. [PMID: 29017846 DOI: 10.1016/j.niox.2017.09.011] [Cited by in Crossref: 66] [Cited by in F6Publishing: 40] [Article Influence: 13.2] [Reference Citation Analysis]
152 Zeng L, Chen S, Xia T, Hu W, Li C, Liu Z. Two-photon fluorescent probe for detection of exogenous and endogenous hydrogen persulfide and polysulfide in living organisms. Anal Chem 2015;87:3004-10. [PMID: 25655109 DOI: 10.1021/acs.analchem.5b00172] [Cited by in Crossref: 93] [Cited by in F6Publishing: 85] [Article Influence: 13.3] [Reference Citation Analysis]
153 Xiong B, Peng L, Cao X, He Y, Yeung ES. Optical analysis of biological hydrogen sulphide: an overview of recent advancements. Analyst 2015;140:1763-71. [DOI: 10.1039/c4an02204a] [Cited by in Crossref: 23] [Cited by in F6Publishing: 1] [Article Influence: 3.3] [Reference Citation Analysis]
154 Xu T, Scafa N, Xu L, Zhou S, Abdullah Al-ghanem K, Mahboob S, Fugetsu B, Zhang X. Electrochemical hydrogen sulfide biosensors. Analyst 2016;141:1185-95. [DOI: 10.1039/c5an02208h] [Cited by in Crossref: 78] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
155 Alcock LJ, Perkins MV, Chalker JM. Chemical methods for mapping cysteine oxidation. Chem Soc Rev 2018;47:231-68. [DOI: 10.1039/c7cs00607a] [Cited by in Crossref: 82] [Cited by in F6Publishing: 33] [Article Influence: 20.5] [Reference Citation Analysis]
156 Sutton TR, Minnion M, Barbarino F, Koster G, Fernandez BO, Cumpstey AF, Wischmann P, Madhani M, Frenneaux MP, Postle AD, Cortese-Krott MM, Feelisch M. A robust and versatile mass spectrometry platform for comprehensive assessment of the thiol redox metabolome. Redox Biol 2018;16:359-80. [PMID: 29627744 DOI: 10.1016/j.redox.2018.02.012] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 6.8] [Reference Citation Analysis]
157 Han X, Song X, Li B, Yu F, Chen L. A near-infrared fluorescent probe for sensitive detection and imaging of sulfane sulfur in living cells and in vivo. Biomater Sci 2018;6:672-82. [PMID: 29431773 DOI: 10.1039/c7bm00951h] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 3.8] [Reference Citation Analysis]
158 Pluth MD, Tonzetich ZJ. Hydrosulfide complexes of the transition elements: diverse roles in bioinorganic, cluster, coordination, and organometallic chemistry. Chem Soc Rev 2020;49:4070-134. [DOI: 10.1039/c9cs00570f] [Cited by in Crossref: 17] [Cited by in F6Publishing: 3] [Article Influence: 8.5] [Reference Citation Analysis]
159 Sun Q, Liu H, Qiu Y, Chen J, Wu FS, Luo XG, Wang DW. A highly sensitive and selective fluorescence turn-on probe for the sensing of H2S in vitro and in vivo. Spectrochim Acta A Mol Biomol Spectrosc 2021;254:119620. [PMID: 33684854 DOI: 10.1016/j.saa.2021.119620] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
160 Luo Y, Zhu C, Du D, Lin Y. A review of optical probes based on nanomaterials for the detection of hydrogen sulfide in biosystems. Analytica Chimica Acta 2019;1061:1-12. [DOI: 10.1016/j.aca.2019.02.045] [Cited by in Crossref: 31] [Cited by in F6Publishing: 21] [Article Influence: 10.3] [Reference Citation Analysis]
161 Kulkarni-Chitnis M, Mitchell-Bush L, Belford R, Robinson J, Opere CA, Ohia SE, Mbye YFN. Interaction between hydrogen sulfide, nitric oxide, and carbon monoxide pathways in the bovine isolated retina. AIMS Neurosci 2019;6:104-15. [PMID: 32341971 DOI: 10.3934/Neuroscience.2019.3.104] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
162 Gahlaut SK, Yadav K, Sharan C, Singh JP. Quick and Selective Dual Mode Detection of H 2 S Gas by Mobile App Employing Silver Nanorods Array. Anal Chem 2017;89:13582-8. [DOI: 10.1021/acs.analchem.7b04064] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 3.6] [Reference Citation Analysis]
163 Chinta KC, Saini V, Glasgow JN, Mazorodze JH, Rahman MA, Reddy D, Lancaster JR Jr, Steyn AJ. The emerging role of gasotransmitters in the pathogenesis of tuberculosis. Nitric Oxide 2016;59:28-41. [PMID: 27387335 DOI: 10.1016/j.niox.2016.06.009] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 3.5] [Reference Citation Analysis]
164 Yagdi E, Cerella C, Dicato M, Diederich M. Garlic-derived natural polysulfanes as hydrogen sulfide donors: Friend or foe? Food and Chemical Toxicology 2016;95:219-33. [DOI: 10.1016/j.fct.2016.07.016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 5.2] [Reference Citation Analysis]
165 Su Y, Su Y, Mu T, Jiang N, Zhang Q, Li M, Li Y, Li S. Evidences of ultraviolet visible spectra of hydrogen sulfide scavenging trans-crotonaldehyde induced by hydrogen peroxide through mitochondria of rat heart. Spectroscopy Letters 2017;50:557-65. [DOI: 10.1080/00387010.2017.1390767] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
166 Singh G, Patel A, Tiwari S, Gupta D, Prasad SM. Signaling molecules hydrogen sulfide (H2S) and nitric oxide (NO): role in microalgae under adverse environmental conditions. Acta Physiol Plant 2022;44. [DOI: 10.1007/s11738-022-03404-8] [Reference Citation Analysis]
167 Zlámalová M, Nesměrák K. Recent advances in electrochemical detection of important sulfhydryl-containing compounds. Monatsh Chem 2016;147:1331-8. [DOI: 10.1007/s00706-016-1757-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
168 Lippert AR. Designing reaction-based fluorescent probes for selective hydrogen sulfide detection. Journal of Inorganic Biochemistry 2014;133:136-42. [DOI: 10.1016/j.jinorgbio.2013.10.010] [Cited by in Crossref: 82] [Cited by in F6Publishing: 76] [Article Influence: 10.3] [Reference Citation Analysis]
169 Wu L, Zeng W, Feng L, Hu Y, Sun Y, Yan Y, Chen H, Ye D. An activatable ratiometric near-infrared fluorescent probe for hydrogen sulfide imaging in vivo. Sci China Chem 2020;63:741-50. [DOI: 10.1007/s11426-019-9689-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
170 Zhou M, Zhou H, Shen J, Zhang Z, Gotor C, Romero LC, Yuan X, Xie Y. H2S action in plant life cycle. Plant Growth Regul 2021;94:1-9. [DOI: 10.1007/s10725-021-00693-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
171 Szabo C. Hydrogen sulfide, an enhancer of vascular nitric oxide signaling: mechanisms and implications. Am J Physiol Cell Physiol 2017;312:C3-C15. [PMID: 27784679 DOI: 10.1152/ajpcell.00282.2016] [Cited by in Crossref: 87] [Cited by in F6Publishing: 84] [Article Influence: 14.5] [Reference Citation Analysis]
172 Xie Y, Huang H, Ismail I, Sun H, Yi L, Xi Z. A fluorogenic H2S-triggered prodrug based on thiolysis of the NBD amine. Bioorganic & Medicinal Chemistry Letters 2019;29:126627. [DOI: 10.1016/j.bmcl.2019.126627] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
173 Yi L, Xi Z. Thiolysis of NBD-based dyes for colorimetric and fluorescence detection of H 2 S and biothiols: design and biological applications. Org Biomol Chem 2017;15:3828-39. [DOI: 10.1039/c7ob00332c] [Cited by in Crossref: 69] [Cited by in F6Publishing: 5] [Article Influence: 13.8] [Reference Citation Analysis]
174 Szczesny B, Módis K, Yanagi K, Coletta C, Le Trionnaire S, Perry A, Wood ME, Whiteman M, Szabo C. AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitric Oxide 2014;41:120-30. [PMID: 24755204 DOI: 10.1016/j.niox.2014.04.008] [Cited by in Crossref: 143] [Cited by in F6Publishing: 139] [Article Influence: 17.9] [Reference Citation Analysis]
175 Li K, Xin Y, Xuan G, Zhao R, Liu H, Xia Y, Xun L. Escherichia coli Uses Separate Enzymes to Produce H2S and Reactive Sulfane Sulfur From L-cysteine. Front Microbiol 2019;10:298. [PMID: 30873134 DOI: 10.3389/fmicb.2019.00298] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 6.7] [Reference Citation Analysis]
176 Karunya R, Jayaprakash KS, Gaikwad R, Sajeesh P, Ramshad K, Muraleedharan KM, Dixit M, Thangaraj PR, Sen AK. Rapid measurement of hydrogen sulphide in human blood plasma using a microfluidic method. Sci Rep 2019;9:3258. [PMID: 30824728 DOI: 10.1038/s41598-019-39389-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
177 Pal VK, Bandyopadhyay P, Singh A. Hydrogen sulfide in physiology and pathogenesis of bacteria and viruses. IUBMB Life 2018;70:393-410. [PMID: 29601123 DOI: 10.1002/iub.1740] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 9.5] [Reference Citation Analysis]
178 Kong H, Ma Z, Wang S, Gong X, Zhang S, Zhang X. Hydrogen Sulfide Detection Based on Reflection: From a Poison Test Approach of Ancient China to Single-Cell Accurate Localization. Anal Chem 2014;86:7734-9. [DOI: 10.1021/ac5016672] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
179 Rose P, Dymock BW, Moore PK. GYY4137, a novel water-soluble, H2S-releasing molecule. Methods Enzymol 2015;554:143-67. [PMID: 25725521 DOI: 10.1016/bs.mie.2014.11.014] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 7.6] [Reference Citation Analysis]
180 Singhal R, Shah YM. Oxygen battle in the gut: Hypoxia and hypoxia-inducible factors in metabolic and inflammatory responses in the intestine. J Biol Chem 2020;295:10493-505. [PMID: 32503843 DOI: 10.1074/jbc.REV120.011188] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 10.0] [Reference Citation Analysis]
181 Ling P, Qian C, Yu J, Gao F. Metal–organic framework nanosheets with flower-like structure as probes for H 2 S detection and in situ singlet-oxygen production. Chem Commun 2019;55:6385-8. [DOI: 10.1039/c9cc02285f] [Cited by in Crossref: 19] [Article Influence: 6.3] [Reference Citation Analysis]
182 Yang X, Wang C, Zhang X, Chen S, Chen L, Lu S, Lu S, Yan X, Xiong K, Liu F, Yan J. Redox regulation in hydrogen sulfide action: From neurotoxicity to neuroprotection. Neurochem Int 2019;128:58-69. [PMID: 31015021 DOI: 10.1016/j.neuint.2019.04.011] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
183 Zheng Y, Yu B, De La Cruz LK, Roy Choudhury M, Anifowose A, Wang B. Toward Hydrogen Sulfide Based Therapeutics: Critical Drug Delivery and Developability Issues. Med Res Rev 2018;38:57-100. [PMID: 28240384 DOI: 10.1002/med.21433] [Cited by in Crossref: 76] [Cited by in F6Publishing: 74] [Article Influence: 15.2] [Reference Citation Analysis]
184 Uba T, Matsuo Y, Sumi C, Shoji T, Nishi K, Kusunoki M, Harada H, Kimura H, Bono H, Hirota K. Polysulfide inhibits hypoxia-elicited hypoxia-inducible factor activation in a mitochondria-dependent manner. Mitochondrion 2021;59:255-66. [PMID: 34133955 DOI: 10.1016/j.mito.2021.06.007] [Reference Citation Analysis]
185 Bełtowski J, Guranowski A, Jamroz-Wiśniewska A, Korolczuk A, Wojtak A. Nucleoside monophosphorothioates as the new hydrogen sulfide precursors with unique properties. Pharmacol Res 2014;81:34-43. [PMID: 24508566 DOI: 10.1016/j.phrs.2014.01.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
186 Tao Y, Lin Y, Luo F, Fu C, Lin C, He Y, Cai Z, Qiu B, Lin Z. Convenient detection of H2S based on the photothermal effect of Au@Ag nanocubes using a handheld thermometer as readout. Anal Chim Acta 2021;1149:338211. [PMID: 33551050 DOI: 10.1016/j.aca.2021.338211] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
187 Ascenção K, Szabo C. Emerging roles of cystathionine β-synthase in various forms of cancer. Redox Biology 2022. [DOI: 10.1016/j.redox.2022.102331] [Reference Citation Analysis]
188 Ferreira NL, de Cordova LM, Schramm AD, Nicoleti CR, Machado VG. Chromogenic and fluorogenic chemodosimeter derived from Meldrum's acid detects cyanide and sulfide in aqueous medium. Journal of Molecular Liquids 2019;282:142-53. [DOI: 10.1016/j.molliq.2019.02.129] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
189 Montoya LA, Shen X, McDermott JJ, Kevil CG, Pluth MD. Mechanistic investigations reveal that dibromobimane extrudes sulfur from biological sulfhydryl sources other than hydrogen sulfide†Electronic supplementary information (ESI) available: Experimental details, pH stability data for BTE, NMR spectra. See DOI: 10.1039/c4sc01875cClick here for additional data file. Chem Sci 2015;6:294-300. [PMID: 25632344 DOI: 10.1039/c4sc01875c] [Cited by in Crossref: 21] [Cited by in F6Publishing: 6] [Article Influence: 2.6] [Reference Citation Analysis]
190 Olson KR, DeLeon ER, Liu F. Controversies and conundrums in hydrogen sulfide biology. Nitric Oxide. 2014;41:11-26. [PMID: 24928561 DOI: 10.1016/j.niox.2014.05.012] [Cited by in Crossref: 95] [Cited by in F6Publishing: 88] [Article Influence: 11.9] [Reference Citation Analysis]
191 Wang J, Huo F, Yue Y, Yin C. A review: Red/near-infrared (NIR) fluorescent probes based on nucleophilic reactions of H2 S since 2015. Luminescence 2020;35:1156-73. [PMID: 32954618 DOI: 10.1002/bio.3831] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
192 Kim G, Jang E, Page AM, Ding T, Carlson KA, Cao H. Investigation of a sensing approach based on a rapid reduction of azide to selectively measure bioavailability of H 2 S. RSC Adv 2016;6:95920-4. [DOI: 10.1039/c6ra20478c] [Cited by in Crossref: 8] [Article Influence: 1.3] [Reference Citation Analysis]
193 Mateus I, Prip-Buus C. Hydrogen sulphide in liver glucose/lipid metabolism and non-alcoholic fatty liver disease. Eur J Clin Invest 2021;:e13680. [PMID: 34519030 DOI: 10.1111/eci.13680] [Reference Citation Analysis]
194 Mistry RK, Brewer AC. Redox regulation of gasotransmission in the vascular system: A focus on angiogenesis. Free Radic Biol Med 2017;108:500-16. [PMID: 28433660 DOI: 10.1016/j.freeradbiomed.2017.04.025] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
195 Gheibi S, Jeddi S, Kashfi K, Ghasemi A. Regulation of vascular tone homeostasis by NO and H2S: Implications in hypertension. Biochem Pharmacol 2018;149:42-59. [PMID: 29330066 DOI: 10.1016/j.bcp.2018.01.017] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 10.5] [Reference Citation Analysis]
196 Collins N, Brewer M. Development of a Clinically Applicable Protocol for Assessment of Hypoxic Response Through Measurement of the Endogenous Gasotransmitter Hydrogen Sulfide in Human Plasma. J Neurosurg Anesthesiol 2015;27:257-61. [PMID: 25514494 DOI: 10.1097/ANA.0000000000000150] [Reference Citation Analysis]
197 Peleli M, Zampas P, Papapetropoulos A. Hydrogen Sulfide and the Kidney: Physiological Roles, Contribution to Pathophysiology, and Therapeutic Potential. Antioxidants & Redox Signaling. [DOI: 10.1089/ars.2021.0014] [Reference Citation Analysis]
198 Butwong N, Srijaranai S, Luong JHT. Fluorometric determination of hydrogen sulfide via silver-doped CdS quantum dots in solution and in a test strip. Microchim Acta 2016;183:1243-9. [DOI: 10.1007/s00604-016-1755-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
199 Raggio R, Bonani W, Callone E, Dirè S, Gambari L, Grassi F, Motta A. Silk Fibroin Porous Scaffolds Loaded with a Slow-Releasing Hydrogen Sulfide Agent (GYY4137) for Applications of Tissue Engineering. ACS Biomater Sci Eng 2018;4:2956-66. [DOI: 10.1021/acsbiomaterials.8b00212] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
200 Cortese-Krott MM, Fernandez BO, Santos JL, Mergia E, Grman M, Nagy P, Kelm M, Butler A, Feelisch M. Nitrosopersulfide (SSNO(-)) accounts for sustained NO bioactivity of S-nitrosothiols following reaction with sulfide. Redox Biol 2014;2:234-44. [PMID: 24494198 DOI: 10.1016/j.redox.2013.12.031] [Cited by in Crossref: 107] [Cited by in F6Publishing: 101] [Article Influence: 13.4] [Reference Citation Analysis]
201 Teicher C, De Col R, Messlinger K. Hydrogen Sulfide Mediating both Excitatory and Inhibitory Effects in a Rat Model of Meningeal Nociception and Headache Generation. Front Neurol 2017;8:336. [PMID: 28769868 DOI: 10.3389/fneur.2017.00336] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
202 Manibalan K, Mani V, Chang PC, Huang CH, Huang ST, Marchlewicz K, Neethirajan S. Electrochemical latent redox ratiometric probes for real-time tracking and quantification of endogenous hydrogen sulfide production in living cells. Biosens Bioelectron 2017;96:233-8. [PMID: 28500947 DOI: 10.1016/j.bios.2017.05.006] [Cited by in Crossref: 39] [Cited by in F6Publishing: 31] [Article Influence: 7.8] [Reference Citation Analysis]
203 Ismail I, Wang D, Wang D, Niu C, Huang H, Yi L, Xi Z. A mitochondria-targeted red-emitting probe for imaging hydrogen sulfide in living cells and zebrafish. Org Biomol Chem 2019;17:3389-95. [DOI: 10.1039/c8ob03219j] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 3.7] [Reference Citation Analysis]
204 Levinn CM, Cerda MM, Pluth MD. Activatable Small-Molecule Hydrogen Sulfide Donors. Antioxid Redox Signal 2020;32:96-109. [PMID: 31554416 DOI: 10.1089/ars.2019.7841] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
205 Kar S, Kambis TN, Mishra PK. Hydrogen sulfide-mediated regulation of cell death signaling ameliorates adverse cardiac remodeling and diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2019;316:H1237-52. [PMID: 30925069 DOI: 10.1152/ajpheart.00004.2019] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
206 Luebke JL, Shen J, Bruce KE, Kehl-Fie TE, Peng H, Skaar EP, Giedroc DP. The CsoR-like sulfurtransferase repressor (CstR) is a persulfide sensor in Staphylococcus aureus. Mol Microbiol 2014;94:1343-60. [PMID: 25318663 DOI: 10.1111/mmi.12835] [Cited by in Crossref: 68] [Cited by in F6Publishing: 59] [Article Influence: 8.5] [Reference Citation Analysis]
207 Malard E, Valable S, Bernaudin M, Pérès E, Chatre L. The Reactive Species Interactome in the Brain. Antioxid Redox Signal 2021;35:1176-206. [PMID: 34498917 DOI: 10.1089/ars.2020.8238] [Reference Citation Analysis]
208 Hancock J, Whiteman M. Hydrogen sulfide and cell signaling: Team player or referee? Plant Physiology and Biochemistry 2014;78:37-42. [DOI: 10.1016/j.plaphy.2014.02.012] [Cited by in Crossref: 143] [Cited by in F6Publishing: 112] [Article Influence: 17.9] [Reference Citation Analysis]
209 Sun HJ, Wu ZY, Nie XW, Wang XY, Bian JS. Implications of hydrogen sulfide in liver pathophysiology: Mechanistic insights and therapeutic potential. J Adv Res 2021;27:127-35. [PMID: 33318872 DOI: 10.1016/j.jare.2020.05.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
210 Shi W, Pan M, Qiang H, Qiu Q, Huang W, Lin H, Qian H, Ge L. A novel mitochondria-targeting fluorescent probe for hydrogen sulfide in living cells. Chem Biol Drug Des 2017;90:167-74. [DOI: 10.1111/cbdd.12948] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
211 Hancock JT, Whiteman M. Hydrogen Sulfide and Reactive Friends: The Interplay with Reactive Oxygen Species and Nitric Oxide Signalling Pathways. In: De Kok LJ, Hawkesford MJ, Rennenberg H, Saito K, Schnug E, editors. Molecular Physiology and Ecophysiology of Sulfur. Cham: Springer International Publishing; 2015. pp. 153-68. [DOI: 10.1007/978-3-319-20137-5_16] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
212 Viegas J, Esteves AF, Cardoso EM, Arosa FA, Vitale M, Taborda-Barata L. Biological Effects of Thermal Water-Associated Hydrogen Sulfide on Human Airways and Associated Immune Cells: Implications for Respiratory Diseases. Front Public Health 2019;7:128. [PMID: 31231626 DOI: 10.3389/fpubh.2019.00128] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
213 Cortese-Krott MM, Koning A, Kuhnle GGC, Nagy P, Bianco CL, Pasch A, Wink DA, Fukuto JM, Jackson AA, van Goor H, Olson KR, Feelisch M. The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine. Antioxid Redox Signal 2017;27:684-712. [PMID: 28398072 DOI: 10.1089/ars.2017.7083] [Cited by in Crossref: 135] [Cited by in F6Publishing: 129] [Article Influence: 27.0] [Reference Citation Analysis]
214 Sokolov AS, Nekrasov PV, Shaposhnikov MV, Moskalev AA. Hydrogen sulfide in longevity and pathologies: Inconsistency is malodorous. Ageing Res Rev 2021;67:101262. [PMID: 33516916 DOI: 10.1016/j.arr.2021.101262] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
215 Ismail I, Wang D, Wang Z, Wang D, Zhang C, Yi L, Xi Z. A julolidine-fused coumarin-NBD dyad for highly selective and sensitive detection of H2S in biological samples. Dyes and Pigments 2019;163:700-6. [DOI: 10.1016/j.dyepig.2018.12.064] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 6.7] [Reference Citation Analysis]
216 Lanza D, Perna AF, Oliva A, Vanholder R, Pletinck A, Guastafierro S, Di Nunzio A, Vigorito C, Capasso G, Jankowski V, Jankowski J, Ingrosso D. Impact of the uremic milieu on the osteogenic potential of mesenchymal stem cells. PLoS One 2015;10:e0116468. [PMID: 25635832 DOI: 10.1371/journal.pone.0116468] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 3.7] [Reference Citation Analysis]
217 Tan B, Jin S, Sun J, Gu Z, Sun X, Zhu Y, Huo K, Cao Z, Yang P, Xin X, Liu X, Pan L, Qiu F, Jiang J, Jia Y, Ye F, Xie Y, Zhu YZ. New method for quantification of gasotransmitter hydrogen sulfide in biological matrices by LC-MS/MS. Sci Rep 2017;7:46278. [PMID: 28406238 DOI: 10.1038/srep46278] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 8.8] [Reference Citation Analysis]
218 Shefa U, Kim D, Kim MS, Jeong NY, Jung J. Roles of Gasotransmitters in Synaptic Plasticity and Neuropsychiatric Conditions. Neural Plast 2018;2018:1824713. [PMID: 29853837 DOI: 10.1155/2018/1824713] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
219 Zhang J, Wen G, Wang W, Cheng K, Guo Q, Tian S, Liu C, Hu H, Zhang Y, Zhang H, Wang L, Sun H. Controllable Cleavage of C–N Bond-Based Fluorescent and Photoacoustic Dual-Modal Probes for the Detection of H 2 S in Living Mice. ACS Appl Bio Mater 2021;4:2020-5. [DOI: 10.1021/acsabm.0c00413] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
220 Wu L, Ishigaki Y, Hu Y, Sugimoto K, Zeng W, Harimoto T, Sun Y, He J, Suzuki T, Jiang X, Chen HY, Ye D. H2S-activatable near-infrared afterglow luminescent probes for sensitive molecular imaging in vivo. Nat Commun 2020;11:446. [PMID: 31974383 DOI: 10.1038/s41467-020-14307-y] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 14.0] [Reference Citation Analysis]
221 Wang J, Wu D, Wang H. Hydrogen sulfide plays an important protective role by influencing autophagy in diseases. Physiol Res 2019;68:335-45. [PMID: 30904008 DOI: 10.33549/physiolres.933996] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
222 Hsu CN, Hou CY, Chang-Chien GP, Lin S, Tain YL. Maternal N-Acetylcysteine Therapy Prevents Hypertension in Spontaneously Hypertensive Rat Offspring: Implications of Hydrogen Sulfide-Generating Pathway and Gut Microbiota. Antioxidants (Basel) 2020;9:E856. [PMID: 32933169 DOI: 10.3390/antiox9090856] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
223 Jurkowska H, Wróbel M, Kaczor-Kamińska M, Jasek-Gajda E. A possible mechanism of inhibition of U87MG and SH-SY5Y cancer cell proliferation by diallyl trisulfide and other aspects of its activity. Amino Acids 2017;49:1855-66. [PMID: 28852876 DOI: 10.1007/s00726-017-2484-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
224 Sun J, Li X, Cao J, Sun Q, Zhang Y, Wang X, Wu T, Hu X, Feng F. Mitochondria Targeting Fluorescent Probes Based on through Bond‐Energy Transfer for Mutually Imaging Signaling Molecules H 2 S and H 2 O 2. Chem Eur J 2019;25:9164-9. [DOI: 10.1002/chem.201900959] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
225 Revsbech IG, Shen X, Chakravarti R, Jensen FB, Thiel B, Evans AL, Kindberg J, Fröbert O, Stuehr DJ, Kevil CG, Fago A. Hydrogen sulfide and nitric oxide metabolites in the blood of free-ranging brown bears and their potential roles in hibernation. Free Radic Biol Med 2014;73:349-57. [PMID: 24909614 DOI: 10.1016/j.freeradbiomed.2014.05.025] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
226 Langston JW, Toombs CF. Defining the minimally effective dose and schedule for parenteral hydrogen sulfide: long-term benefits in a rat model of hindlimb ischemia. Med Gas Res 2015;5:5. [PMID: 25918638 DOI: 10.1186/s13618-015-0027-1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
227 Meininger DJ, Arman HD, Tonzetich ZJ. Synthesis, characterization, and binding affinity of hydrosulfide complexes of synthetic iron(II) porphyrinates. Journal of Inorganic Biochemistry 2017;167:142-9. [DOI: 10.1016/j.jinorgbio.2016.08.014] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
228 Shimamoto K, Hanaoka K. Fluorescent probes for hydrogen sulfide (H2S) and sulfane sulfur and their applications to biological studies. Nitric Oxide 2015;46:72-9. [DOI: 10.1016/j.niox.2014.11.008] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 4.4] [Reference Citation Analysis]
229 Vasilieva SV, Streltsova DA. Interaction of messengers--endogenous NO and H2S gasotransmitters--in signaling and regulatory processes in bacterial cells. Dokl Biochem Biophys 2015;461:114-8. [PMID: 25937228 DOI: 10.1134/S1607672915020131] [Reference Citation Analysis]
230 Hall JR, Schoenfisch MH. Direct Electrochemical Sensing of Hydrogen Sulfide without Sulfur Poisoning. Anal Chem 2018;90:5194-200. [PMID: 29566330 DOI: 10.1021/acs.analchem.7b05421] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
231 Fosnacht KG, Cerda MM, Mullen EJ, Pigg HC, Pluth MD. Esterase-Activated Perthiocarbonate Persulfide Donors Provide Insights into Persulfide Persistence and Stability. ACS Chem Biol 2022. [PMID: 35025212 DOI: 10.1021/acschembio.1c00805] [Reference Citation Analysis]
232 Thomas DD, Heinecke JL, Ridnour LA, Cheng RY, Kesarwala AH, Switzer CH, McVicar DW, Roberts DD, Glynn S, Fukuto JM, Wink DA, Miranda KM. Signaling and stress: The redox landscape in NOS2 biology. Free Radic Biol Med 2015;87:204-25. [PMID: 26117324 DOI: 10.1016/j.freeradbiomed.2015.06.002] [Cited by in Crossref: 73] [Cited by in F6Publishing: 60] [Article Influence: 10.4] [Reference Citation Analysis]
233 Dzialowski EM, Crossley DA. The Cardiovascular System. Sturkie's Avian Physiology. Elsevier; 2015. pp. 193-283. [DOI: 10.1016/b978-0-12-407160-5.00011-7] [Cited by in Crossref: 12] [Article Influence: 1.7] [Reference Citation Analysis]
234 Cai S, Liu C, He S, Zhao L, Zeng X. Mitochondria-targeted fluorescent probe for imaging endogenous hydrogen sulfide in cellular antioxidant stress. Anal Methods 2020;12:5061-7. [PMID: 33052994 DOI: 10.1039/d0ay01200a] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
235 Chang L, Lin F, Cheng K, Li J, Sun X, Figeys D, Jiang J, Ye Y, Liu J. A simultaneous identification and quantification strategy for determination of sulfhydryl-containing metabolites in normal- and high-fat diet hamsters using stable isotope labeling combined with LC-MS. Anal Chim Acta 2021;1184:339016. [PMID: 34625243 DOI: 10.1016/j.aca.2021.339016] [Reference Citation Analysis]
236 Shen J, Peng H, Zhang Y, Trinidad JC, Giedroc DP. Staphylococcus aureus sqr Encodes a Type II Sulfide:Quinone Oxidoreductase and Impacts Reactive Sulfur Speciation in Cells. Biochemistry 2016;55:6524-34. [PMID: 27806570 DOI: 10.1021/acs.biochem.6b00714] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 4.7] [Reference Citation Analysis]
237 Ma Y, Yang X, Wang H, Qin Z, Yi C, Shi C, Luo M, Chen G, Yan J, Liu X, Liu Z. CBS-derived H2S facilitates host colonization of Vibrio cholerae by promoting the iron-dependent catalase activity of KatB. PLoS Pathog 2021;17:e1009763. [PMID: 34283874 DOI: 10.1371/journal.ppat.1009763] [Reference Citation Analysis]
238 Bogdan C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol. 2015;36:161-178. [PMID: 25687683 DOI: 10.1016/j.it.2015.01.003] [Cited by in Crossref: 431] [Cited by in F6Publishing: 397] [Article Influence: 61.6] [Reference Citation Analysis]
239 Shackelford RE, Mohammad IZ, Meram AT, Kim D, Alotaibi F, Patel S, Ghali GE, Kevil CG. Molecular Functions of Hydrogen Sulfide in Cancer. Pathophysiology 2021;28:437-56. [DOI: 10.3390/pathophysiology28030028] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
240 Dilek N, Papapetropoulos A, Toliver-Kinsky T, Szabo C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol Res 2020;161:105119. [PMID: 32781284 DOI: 10.1016/j.phrs.2020.105119] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
241 Ding L, Ma C, Li L, Zhang L, Yu J. A photoelectrochemical sensor for hydrogen sulfide in cancer cells based on the covalently and in situ grafting of CdS nanoparticles onto TiO2 nanotubes. Journal of Electroanalytical Chemistry 2016;783:176-81. [DOI: 10.1016/j.jelechem.2016.11.025] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 4.7] [Reference Citation Analysis]
242 Saini V, Chinta KC, Reddy VP, Glasgow JN, Stein A, Lamprecht DA, Rahman MA, Mackenzie JS, Truebody BE, Adamson JH, Kunota TTR, Bailey SM, Moellering DR, Lancaster JR Jr, Steyn AJC. Hydrogen sulfide stimulates Mycobacterium tuberculosis respiration, growth and pathogenesis. Nat Commun 2020;11:557. [PMID: 31992699 DOI: 10.1038/s41467-019-14132-y] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 16.0] [Reference Citation Analysis]
243 Wu D, Zhong P, Wang J, Wang H. Exogenous hydrogen sulfide mitigates LPS + ATP-induced inflammation by inhibiting NLRP3 inflammasome activation and promoting autophagy in L02 cells. Mol Cell Biochem 2019;457:145-56. [PMID: 30877511 DOI: 10.1007/s11010-019-03519-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
244 Zeng W, Wu L, Ishigaki Y, Harimoto T, Hu Y, Sun Y, Wang Y, Suzuki T, Chen HY, Ye D. An Activatable Afterglow/MRI Bimodal Nanoprobe with Fast Response to H2 S for In Vivo Imaging of Acute Hepatitis. Angew Chem Int Ed Engl 2021. [PMID: 34791772 DOI: 10.1002/anie.202111759] [Reference Citation Analysis]
245 Jimidar CC, Grunenberg J, Karge B, Fuchs HLS, Brönstrup M, Klahn P. Masked Amino Trimethyl Lock (H2 N-TML) Systems: New Molecular Entities for the Development of Turn-On Fluorophores and Their Application in Hydrogen Sulfide (H2 S) Imaging in Human Cells. Chemistry 2021. [PMID: 34713944 DOI: 10.1002/chem.202103525] [Reference Citation Analysis]
246 Otero CM, Simal GB, Scocozza MF, Rubert A, Grillo CA, Hannibal L, Lavorato G, Huergo MA, Murgida DH, Vericat C. Optimized Biocompatible Gold Nanotriangles with NIR Absorption for Photothermal Applications. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.1c03148] [Reference Citation Analysis]
247 Chiu NF, Tai MJ, Nurrohman DT, Lin TL, Wang YH, Chen CY. Immunoassay-Amplified Responses Using a Functionalized MoS2-Based SPR Biosensor to Detect PAPP-A2 in Maternal Serum Samples to Screen for Fetal Down's Syndrome. Int J Nanomedicine 2021;16:2715-33. [PMID: 33859474 DOI: 10.2147/IJN.S296406] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
248 Algieri C, Nesci S, Trombetti F, Fabbri M, Ventrella V, Pagliarani A. Mitochondrial F1FO-ATPase and permeability transition pore response to sulfide in the midgut gland of Mytilus galloprovincialis. Biochimie 2021;180:222-8. [PMID: 33212166 DOI: 10.1016/j.biochi.2020.11.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
249 Aziz NM, Elbassuoni EA, Kamel MY, Ahmed SM. Hydrogen sulfide renal protective effects: possible link between hydrogen sulfide and endogenous carbon monoxide in a rat model of renal injury. Cell Stress Chaperones 2020;25:211-21. [PMID: 32088905 DOI: 10.1007/s12192-019-01055-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
250 Sieghart D, Liszt M, Wanivenhaus A, Bröll H, Kiener H, Klösch B, Steiner G. Hydrogen sulphide decreases IL-1β-induced activation of fibroblast-like synoviocytes from patients with osteoarthritis. J Cell Mol Med 2015;19:187-97. [PMID: 25312962 DOI: 10.1111/jcmm.12405] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
251 Torres-González L, Díaz-Ayala R, Vega-Olivencia CA, López-Garriga J. Characterization of Recombinant His-Tag Protein Immobilized onto Functionalized Gold Nanoparticles. Sensors (Basel) 2018;18:E4262. [PMID: 30518079 DOI: 10.3390/s18124262] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
252 Teigen LM, Geng Z, Sadowsky MJ, Vaughn BP, Hamilton MJ, Khoruts A. Dietary Factors in Sulfur Metabolism and Pathogenesis of Ulcerative Colitis. Nutrients 2019;11:E931. [PMID: 31027194 DOI: 10.3390/nu11040931] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 4.7] [Reference Citation Analysis]
253 Zhao Q, Huo F, Zhang Y, Wen Y, Yin C. HS- induced thiolysis reaction to regulate UV- and fluorescence spectra change and their bioimaging in living cells. Spectrochim Acta A Mol Biomol Spectrosc 2019;215:297-302. [PMID: 30844677 DOI: 10.1016/j.saa.2019.02.096] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
254 Durante W. Hydrogen Sulfide Therapy in Diabetes-Accelerated Atherosclerosis: A Whiff of Success. Diabetes 2016;65:2832-4. [PMID: 27659227 DOI: 10.2337/dbi16-0042] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
255 Zhao D, Zhang J, Zhou M, Zhou H, Gotor C, Romero LC, Shen J, Yuan X, Xie Y. Current approaches for detection of hydrogen sulfide and persulfidation in biological systems. Plant Physiology and Biochemistry 2020;155:367-73. [DOI: 10.1016/j.plaphy.2020.08.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
256 Shackelford RE, Li Y, Ghali GE, Kevil CG. Bad Smells and Broken DNA: A Tale of Sulfur-Nucleic Acid Cooperation. Antioxidants (Basel) 2021;10:1820. [PMID: 34829691 DOI: 10.3390/antiox10111820] [Reference Citation Analysis]
257 Kang J, Neill DL, Xian M. Phosphonothioate-Based Hydrogen Sulfide Releasing Reagents: Chemistry and Biological Applications. Front Pharmacol 2017;8:457. [PMID: 28740467 DOI: 10.3389/fphar.2017.00457] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]