BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Doan NT, Kaufmann T, Bettella F, Jørgensen KN, Brandt CL, Moberget T, Alnæs D, Douaud G, Duff E, Djurovic S, Melle I, Ueland T, Agartz I, Andreassen OA, Westlye LT. Distinct multivariate brain morphological patterns and their added predictive value with cognitive and polygenic risk scores in mental disorders. Neuroimage Clin 2017;15:719-31. [PMID: 28702349 DOI: 10.1016/j.nicl.2017.06.014] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Zou Y, Ni K, Wang Y, Yu E, Lui SSY, Zhou F, Yang H, Cohen AS, Strauss GP, Cheung EFC, Chan RCK. Effort–cost computation in a transdiagnostic psychiatric sample: Differences among patients with schizophrenia, bipolar disorder, and major depressive disorder. Psych J 2020;9:210-22. [DOI: 10.1002/pchj.316] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
2 Wolfers T, Rokicki J, Alnaes D, Berthet P, Agartz I, Kia SM, Kaufmann T, Zabihi M, Moberget T, Melle I, Beckmann CF, Andreassen OA, Marquand AF, Westlye LT. Replicating extensive brain structural heterogeneity in individuals with schizophrenia and bipolar disorder. Hum Brain Mapp 2021;42:2546-55. [PMID: 33638594 DOI: 10.1002/hbm.25386] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
3 Wolfers T, Doan NT, Kaufmann T, Alnæs D, Moberget T, Agartz I, Buitelaar JK, Ueland T, Melle I, Franke B, Andreassen OA, Beckmann CF, Westlye LT, Marquand AF. Mapping the Heterogeneous Phenotype of Schizophrenia and Bipolar Disorder Using Normative Models. JAMA Psychiatry 2018;75:1146-55. [PMID: 30304337 DOI: 10.1001/jamapsychiatry.2018.2467] [Cited by in Crossref: 122] [Cited by in F6Publishing: 95] [Article Influence: 40.7] [Reference Citation Analysis]
4 Bracher-Smith M, Rees E, Menzies G, Walters JTR, O'Donovan MC, Owen MJ, Kirov G, Escott-Price V. Machine learning for prediction of schizophrenia using genetic and demographic factors in the UK biobank. Schizophr Res 2022;246:156-64. [PMID: 35779327 DOI: 10.1016/j.schres.2022.06.006] [Reference Citation Analysis]
5 Jiang W, Andreassen OA, Agartz I, Lagerberg TV, Westlye LT, Calhoun VD, Turner JA. Distinct structural brain circuits indicate mood and apathy profiles in bipolar disorder. Neuroimage Clin 2020;26:101989. [PMID: 31451406 DOI: 10.1016/j.nicl.2019.101989] [Reference Citation Analysis]
6 Pigoni A, Dwyer D, Squarcina L, Borgwardt S, Crespo-Facorro B, Dazzan P, Smesny S, Spaniel F, Spalletta G, Sanfelici R, Antonucci LA, Reuf A, Oeztuerk OF, Schmidt A, Ciufolini S, Schönborn-Harrisberger F, Langbein K, Gussew A, Reichenbach JR, Zaytseva Y, Piras F, Delvecchio G, Bellani M, Ruggeri M, Lasalvia A, Tordesillas-Gutiérrez D, Ortiz V, Murray RM, Reis-Marques T, Di Forti M, Koutsouleris N, Brambilla P; ClassiFEP group. Classification of first-episode psychosis using cortical thickness: A large multicenter MRI study. Eur Neuropsychopharmacol 2021;47:34-47. [PMID: 33957410 DOI: 10.1016/j.euroneuro.2021.04.002] [Reference Citation Analysis]
7 Lerman-Sinkoff DB, Kandala S, Calhoun VD, Barch DM, Mamah DT. Transdiagnostic Multimodal Neuroimaging in Psychosis: Structural, Resting-State, and Task Magnetic Resonance Imaging Correlates of Cognitive Control. Biol Psychiatry Cogn Neurosci Neuroimaging 2019;4:870-80. [PMID: 31327685 DOI: 10.1016/j.bpsc.2019.05.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
8 Colombo F, Calesella F, Mazza MG, Melloni EMT, Morelli MJ, Scotti GM, Benedetti F, Bollettini I, Vai B. Machine learning approaches for prediction of bipolar disorder based on biological, clinical and neuropsychological markers: a systematic review and meta-analysis. Neurosci Biobehav Rev 2022;:104552. [PMID: 35120970 DOI: 10.1016/j.neubiorev.2022.104552] [Reference Citation Analysis]
9 Cattarinussi G, Delvecchio G, Sambataro F, Brambilla P. The effect of polygenic risk scores for major depressive disorder, bipolar disorder and schizophrenia on morphological brain measures: A systematic review of the evidence. J Affect Disord 2022:S0165-0327(22)00509-2. [PMID: 35533776 DOI: 10.1016/j.jad.2022.05.007] [Reference Citation Analysis]
10 Liu L, Cui L, Wu X, Fei N, Xu Z, Wu D, Xi Y, Huang P, von Deneen KM, Qi S, Zhang Y, Wang H, Yin H, Qin W. Cortical abnormalities and identification for first-episode schizophrenia via high-resolution magnetic resonance imaging. Biomarkers in Neuropsychiatry 2020;3:100022. [DOI: 10.1016/j.bionps.2020.100022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Arslan A. Mapping the Schizophrenia Genes by Neuroimaging: The Opportunities and the Challenges. Int J Mol Sci 2018;19:E219. [PMID: 29324666 DOI: 10.3390/ijms19010219] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
12 Doan NT, Engvig A, Zaske K, Persson K, Lund MJ, Kaufmann T, Cordova-Palomera A, Alnæs D, Moberget T, Brækhus A, Barca ML, Nordvik JE, Engedal K, Agartz I, Selbæk G, Andreassen OA, Westlye LT; Alzheimer's Disease Neuroimaging Initiative. Distinguishing early and late brain aging from the Alzheimer's disease spectrum: consistent morphological patterns across independent samples. Neuroimage 2017;158:282-95. [PMID: 28666881 DOI: 10.1016/j.neuroimage.2017.06.070] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 4.4] [Reference Citation Analysis]
13 Alnæs D, Kaufmann T, van der Meer D, Córdova-Palomera A, Rokicki J, Moberget T, Bettella F, Agartz I, Barch DM, Bertolino A, Brandt CL, Cervenka S, Djurovic S, Doan NT, Eisenacher S, Fatouros-Bergman H, Flyckt L, Di Giorgio A, Haatveit B, Jönsson EG, Kirsch P, Lund MJ, Meyer-Lindenberg A, Pergola G, Schwarz E, Smeland OB, Quarto T, Zink M, Andreassen OA, Westlye LT; Karolinska Schizophrenia Project Consortium. Brain Heterogeneity in Schizophrenia and Its Association With Polygenic Risk. JAMA Psychiatry 2019;76:739-48. [PMID: 30969333 DOI: 10.1001/jamapsychiatry.2019.0257] [Cited by in Crossref: 76] [Cited by in F6Publishing: 58] [Article Influence: 38.0] [Reference Citation Analysis]
14 [DOI: 10.1101/2020.05.08.20095091] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Janiri D, Kotzalidis GD, di Luzio M, Giuseppin G, Simonetti A, Janiri L, Sani G. Genetic neuroimaging of bipolar disorder: a systematic 2017-2020 update. Psychiatr Genet 2021;31:50-64. [PMID: 33492063 DOI: 10.1097/YPG.0000000000000274] [Reference Citation Analysis]
16 Bauer M, Andreassen OA, Geddes JR, Vedel Kessing L, Lewitzka U, Schulze TG, Vieta E. Areas of uncertainties and unmet needs in bipolar disorders: clinical and research perspectives. Lancet Psychiatry 2018;5:930-9. [PMID: 30146246 DOI: 10.1016/S2215-0366(18)30253-0] [Cited by in Crossref: 59] [Cited by in F6Publishing: 34] [Article Influence: 14.8] [Reference Citation Analysis]
17 Ranlund S, Rosa MJ, de Jong S, Cole JH, Kyriakopoulos M, Fu CHY, Mehta MA, Dima D. Associations between polygenic risk scores for four psychiatric illnesses and brain structure using multivariate pattern recognition. Neuroimage Clin 2018;20:1026-36. [PMID: 30340201 DOI: 10.1016/j.nicl.2018.10.008] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
18 Chen J, Li X, Calhoun VD, Turner JA, van Erp TGM, Wang L, Andreassen OA, Agartz I, Westlye LT, Jönsson E, Ford JM, Mathalon DH, Macciardi F, O'Leary DS, Liu J, Ji S. Sparse deep neural networks on imaging genetics for schizophrenia case-control classification. Hum Brain Mapp 2021;42:2556-68. [PMID: 33724588 DOI: 10.1002/hbm.25387] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
19 Liu X, Tyler LK, Rowe JB, Tsvetanov KA; Cam-CAN. Multimodal fusion analysis of functional, cerebrovascular and structural neuroimaging in healthy aging subjects. Hum Brain Mapp 2022. [PMID: 35855641 DOI: 10.1002/hbm.26025] [Reference Citation Analysis]
20 Claude LA, Houenou J, Duchesnay E, Favre P. Will machine learning applied to neuroimaging in bipolar disorder help the clinician? A critical review and methodological suggestions. Bipolar Disord 2020;22:334-55. [PMID: 32108409 DOI: 10.1111/bdi.12895] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
21 Norbom LB, Rokicki J, Meer DV, Alnæs D, Doan NT, Moberget T, Kaufmann T, Andreassen OA, Westlye LT, Tamnes CK. Testing relationships between multimodal modes of brain structural variation and age, sex and polygenic scores for neuroticism in children and adolescents. Transl Psychiatry 2020;10:251. [PMID: 32710012 DOI: 10.1038/s41398-020-00931-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Mitelman SA. Transdiagnostic neuroimaging in psychiatry: A review. Psychiatry Research 2019;277:23-38. [DOI: 10.1016/j.psychres.2019.01.026] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
23 Tracey I, Woolf CJ, Andrews NA. Composite Pain Biomarker Signatures for Objective Assessment and Effective Treatment. Neuron 2019;101:783-800. [PMID: 30844399 DOI: 10.1016/j.neuron.2019.02.019] [Cited by in Crossref: 54] [Cited by in F6Publishing: 47] [Article Influence: 18.0] [Reference Citation Analysis]
24 Bykowsky O, Harrisberger F, Schmidt A, Smieskova R, Hauke DJ, Egloff L, Riecher-Rössler A, Fusar-Poli P, Huber CG, Lang UE, Andreou C, Borgwardt S. Association of antidepressants with brain morphology in early stages of psychosis: an imaging genomics approach. Sci Rep 2019;9:8516. [PMID: 31186482 DOI: 10.1038/s41598-019-44903-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
25 Andica C, Kamagata K, Hatano T, Saito Y, Uchida W, Ogawa T, Takeshige-Amano H, Hagiwara A, Murata S, Oyama G, Shimo Y, Umemura A, Akashi T, Wada A, Kumamaru KK, Hori M, Hattori N, Aoki S. Neurocognitive and psychiatric disorders-related axonal degeneration in Parkinson's disease. J Neurosci Res 2020;98:936-49. [PMID: 32026517 DOI: 10.1002/jnr.24584] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
26 Fjellvang M, Grøning L, Haukvik UK. Imaging Violence in Schizophrenia: A Systematic Review and Critical Discussion of the MRI Literature. Front Psychiatry 2018;9:333. [PMID: 30083111 DOI: 10.3389/fpsyt.2018.00333] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
27 Smith S, Duff E, Groves A, Nichols TE, Jbabdi S, Westlye LT, Tamnes CK, Engvig A, Walhovd KB, Fjell AM, Johansen-Berg H, Douaud G. Structural Variability in the Human Brain Reflects Fine-Grained Functional Architecture at the Population Level. J Neurosci 2019;39:6136-49. [PMID: 31152123 DOI: 10.1523/JNEUROSCI.2912-18.2019] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 5.3] [Reference Citation Analysis]
28 Tønnesen S, Kaufmann T, Doan NT, Alnæs D, Córdova-Palomera A, Meer DV, Rokicki J, Moberget T, Gurholt TP, Haukvik UK, Ueland T, Lagerberg TV, Agartz I, Andreassen OA, Westlye LT. White matter aberrations and age-related trajectories in patients with schizophrenia and bipolar disorder revealed by diffusion tensor imaging. Sci Rep 2018;8:14129. [PMID: 30237410 DOI: 10.1038/s41598-018-32355-9] [Cited by in Crossref: 33] [Cited by in F6Publishing: 20] [Article Influence: 8.3] [Reference Citation Analysis]
29 Abé C, Liberg B, Song J, Bergen SE, Petrovic P, Ekman CJ, Sellgren CM, Ingvar M, Landén M. Longitudinal Cortical Thickness Changes in Bipolar Disorder and the Relationship to Genetic Risk, Mania, and Lithium Use. Biol Psychiatry 2020;87:271-81. [PMID: 31635761 DOI: 10.1016/j.biopsych.2019.08.015] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
30 Schwarz E, Doan NT, Pergola G, Westlye LT, Kaufmann T, Wolfers T, Brecheisen R, Quarto T, Ing AJ, Di Carlo P, Gurholt TP, Harms RL, Noirhomme Q, Moberget T, Agartz I, Andreassen OA, Bellani M, Bertolino A, Blasi G, Brambilla P, Buitelaar JK, Cervenka S, Flyckt L, Frangou S, Franke B, Hall J, Heslenfeld DJ, Kirsch P, McIntosh AM, Nöthen MM, Papassotiropoulos A, de Quervain DJ, Rietschel M, Schumann G, Tost H, Witt SH, Zink M, Meyer-Lindenberg A; IMAGEMEND Consortium, Karolinska Schizophrenia Project (KaSP) Consortium. Reproducible grey matter patterns index a multivariate, global alteration of brain structure in schizophrenia and bipolar disorder. Transl Psychiatry 2019;9:12. [PMID: 30664633 DOI: 10.1038/s41398-018-0225-4] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 6.7] [Reference Citation Analysis]
31 Nunes A, Schnack HG, Ching CRK, Agartz I, Akudjedu TN, Alda M, Alnæs D, Alonso-Lana S, Bauer J, Baune BT, Bøen E, Bonnin CDM, Busatto GF, Canales-Rodríguez EJ, Cannon DM, Caseras X, Chaim-Avancini TM, Dannlowski U, Díaz-Zuluaga AM, Dietsche B, Doan NT, Duchesnay E, Elvsåshagen T, Emden D, Eyler LT, Fatjó-Vilas M, Favre P, Foley SF, Fullerton JM, Glahn DC, Goikolea JM, Grotegerd D, Hahn T, Henry C, Hibar DP, Houenou J, Howells FM, Jahanshad N, Kaufmann T, Kenney J, Kircher TTJ, Krug A, Lagerberg TV, Lenroot RK, López-Jaramillo C, Machado-Vieira R, Malt UF, McDonald C, Mitchell PB, Mwangi B, Nabulsi L, Opel N, Overs BJ, Pineda-Zapata JA, Pomarol-Clotet E, Redlich R, Roberts G, Rosa PG, Salvador R, Satterthwaite TD, Soares JC, Stein DJ, Temmingh HS, Trappenberg T, Uhlmann A, van Haren NEM, Vieta E, Westlye LT, Wolf DH, Yüksel D, Zanetti MV, Andreassen OA, Thompson PM, Hajek T; ENIGMA Bipolar Disorders Working Group. Using structural MRI to identify bipolar disorders - 13 site machine learning study in 3020 individuals from the ENIGMA Bipolar Disorders Working Group. Mol Psychiatry 2020;25:2130-43. [PMID: 30171211 DOI: 10.1038/s41380-018-0228-9] [Cited by in Crossref: 55] [Cited by in F6Publishing: 36] [Article Influence: 13.8] [Reference Citation Analysis]