BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tse K, Chow K, Leung W, Wong Y, Wise H. Lipopolysaccharide differentially modulates expression of cytokines and cyclooxygenases in dorsal root ganglion cells via Toll-like receptor-4 dependent pathways. Neuroscience 2014;267:241-51. [DOI: 10.1016/j.neuroscience.2014.02.041] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 5.9] [Reference Citation Analysis]
Number Citing Articles
1 Deng S, Yu K, Zhang B, Yao Y, Wang Z, Zhang J, Zhang X, Liu G, Li N, Liu Y, Lian Z. Toll-Like Receptor 4 Promotes NO Synthesis by Upregulating GCHI Expression under Oxidative Stress Conditions in Sheep Monocytes/Macrophages. Oxid Med Cell Longev 2015;2015:359315. [PMID: 26576220 DOI: 10.1155/2015/359315] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
2 Kaewpitak A, Bauer CS, Seward EP, Boissonade FM, Douglas CWI. Porphyromonas gingivalis lipopolysaccharide rapidly activates trigeminal sensory neurons and may contribute to pulpal pain. Int Endod J 2020;53:846-58. [DOI: 10.1111/iej.13282] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Sun Y, Yang M, Tang H, Ma Z, Liang Y, Li Z. The over-production of TNF-α via Toll-like receptor 4 in spinal dorsal horn contributes to the chronic postsurgical pain in rat. J Anesth 2015;29:734-40. [PMID: 25895164 DOI: 10.1007/s00540-015-2011-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
4 Hu YS, Han X, Yu PJ, Jiao MM, Liu XH, Shi JB. Novel paeonol derivatives: Design, synthesis and anti-inflammatory activity in vitro and in vivo. Bioorg Chem 2020;98:103735. [PMID: 32171986 DOI: 10.1016/j.bioorg.2020.103735] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
5 Kunda PE, Cavicchia JC, Acosta CG. Lipopolysaccharides and trophic factors regulate the LPS receptor complex in nodose and trigeminal neurons. Neuroscience 2014;280:60-72. [PMID: 25218806 DOI: 10.1016/j.neuroscience.2014.08.053] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
6 Jayakumar T, Huang H, Hsia C, Fong T, Khamrang T, Velusamy M, Manubolu M, Sheu J, Hsia C. Ruthenium derivatives attenuate LPS-induced inflammatory responses and liver injury via suppressing NF-κB signaling and free radical production. Bioorganic Chemistry 2020;96:103639. [DOI: 10.1016/j.bioorg.2020.103639] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
7 Yang NJ, Chiu IM. Bacterial Signaling to the Nervous System through Toxins and Metabolites. J Mol Biol 2017;429:587-605. [PMID: 28065740 DOI: 10.1016/j.jmb.2016.12.023] [Cited by in Crossref: 65] [Cited by in F6Publishing: 62] [Article Influence: 13.0] [Reference Citation Analysis]
8 Chen H, Jiang YS, Sun Y, Xiong YC. p38 and interleukin-1 beta pathway via toll-like receptor 4 contributed to the skin and muscle incision and retraction-induced allodynia. J Surg Res 2015;197:339-47. [PMID: 25979559 DOI: 10.1016/j.jss.2015.04.061] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
9 Teng X, Wei N, Chen H, Zhai K. RETRACTED ARTICLE: TN-2 Exerts Anti-Inflammatory Effects on LPS-Induced Rat Dorsal Root Ganglion Neurons by Inhibiting TLR4-Mediated NF-κB and MAPK Pathways. J Mol Neurosci 2015;57:315-315. [DOI: 10.1007/s12031-015-0624-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
10 Tse KH, Chow KB, Leung WK, Wong YH, Wise H. Primary sensory neurons regulate Toll-like receptor-4-dependent activity of glial cells in dorsal root ganglia. Neuroscience 2014;279:10-22. [PMID: 25171787 DOI: 10.1016/j.neuroscience.2014.08.033] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
11 Zhang J, Harada Y, Hayashi Y. A TLR-CXCL1 pathway in DRG neurons induces neutrophil accumulation in the DRG and mechanical allodynia in EAE mice. Sci Rep 2019;9:12003. [PMID: 31427756 DOI: 10.1038/s41598-019-48558-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
12 Due MR, Yang XF, Allette YM, Randolph AL, Ripsch MS, Wilson SM, Dustrude ET, Khanna R, White FA. Carbamazepine potentiates the effectiveness of morphine in a rodent model of neuropathic pain. PLoS One 2014;9:e107399. [PMID: 25221944 DOI: 10.1371/journal.pone.0107399] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
13 Tang M, Zhong C, Liu Z, Peng P, Liu X, Sun X. Discovery of novel sesquistilbene indanone analogues as potent anti-inflammatory agents. European Journal of Medicinal Chemistry 2016;113:63-74. [DOI: 10.1016/j.ejmech.2016.02.021] [Cited by in Crossref: 34] [Cited by in F6Publishing: 23] [Article Influence: 5.7] [Reference Citation Analysis]
14 Tse KH, Chow KBS, Wise H. PGE2 released by primary sensory neurons modulates Toll-like receptor 4 activities through an EP4 receptor-dependent process. J Neuroimmunol 2016;293:8-16. [PMID: 27049555 DOI: 10.1016/j.jneuroim.2016.02.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
15 Lan L, Xu M, Li J, Liu L, Xu M, Zhou C, Shen L, Tang Z, Wan F. Mas-related G protein-coupled receptor D participates in inflammatory pain by promoting NF-κB activation through interaction with TAK1 and IKK complex. Cellular Signalling 2020;76:109813. [DOI: 10.1016/j.cellsig.2020.109813] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Nair M, Jagadeeshan S, Katselis G, Luan X, Momeni Z, Henao-Romero N, Chumala P, Tam JS, Yamamoto Y, Ianowski JP, Campanucci VA. Lipopolysaccharides induce a RAGE-mediated sensitization of sensory neurons and fluid hypersecretion in the upper airways. Sci Rep 2021;11:8336. [PMID: 33863932 DOI: 10.1038/s41598-021-86069-6] [Reference Citation Analysis]
17 Gowayed MA, El Achy S, Kamel MA, El-Tahan RA. Polymyxin B prevents the development of adjuvant arthritis via modulation of TLR/Cox-2 signaling pathway. Life Sci 2020;259:118250. [PMID: 32791152 DOI: 10.1016/j.lfs.2020.118250] [Reference Citation Analysis]
18 Helley M, Abate W, Jackson S, Bennett J, Thompson S. The expression of Toll-like receptor 4, 7 and co-receptors in neurochemical sub-populations of rat trigeminal ganglion sensory neurons. Neuroscience 2015;310:686-98. [DOI: 10.1016/j.neuroscience.2015.09.069] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
19 Li B, Yang Y, Chen L, Chen S, Zhang J, Tang W. 18α-Glycyrrhetinic acid monoglucuronide as an anti-inflammatory agent through suppression of the NF-κB and MAPK signaling pathway. Medchemcomm 2017;8:1498-504. [PMID: 30108861 DOI: 10.1039/c7md00210f] [Cited by in Crossref: 20] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
20 Woller SA, Ravula SB, Tucci FC, Beaton G, Corr M, Isseroff RR, Soulika AM, Chigbrow M, Eddinger KA, Yaksh TL. Systemic TAK-242 prevents intrathecal LPS evoked hyperalgesia in male, but not female mice and prevents delayed allodynia following intraplantar formalin in both male and female mice: The role of TLR4 in the evolution of a persistent pain state. Brain Behav Immun 2016;56:271-80. [PMID: 27044335 DOI: 10.1016/j.bbi.2016.03.026] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 7.3] [Reference Citation Analysis]
21 Arnaboldi F, Sommariva M, Opizzi E, Rasile M, Camelliti S, Busnelli M, Menegola E, Di Renzo F, Menon A, Barajon I. Expression of Toll-like receptors 4 and 7 in murine peripheral nervous system development. Ann Anat 2020;231:151526. [PMID: 32380196 DOI: 10.1016/j.aanat.2020.151526] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Vaz ER, Fujimura PT, Araujo GR, da Silva CA, Silva RL, Cunha TM, Lopes-Ferreira M, Lima C, Ferreira MJ, Cunha-Junior JP, Taketomi EA, Goulart LR, Ueira-Vieira C. A Short Peptide That Mimics the Binding Domain of TGF-β1 Presents Potent Anti-Inflammatory Activity. PLoS One 2015;10:e0136116. [PMID: 26312490 DOI: 10.1371/journal.pone.0136116] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
23 Allette YM, Kim Y, Randolph AL, Smith JA, Ripsch MS, White FA. Decoy peptide targeted to Toll-IL-1R domain inhibits LPS and TLR4-active metabolite morphine-3 glucuronide sensitization of sensory neurons. Sci Rep 2017;7:3741. [PMID: 28623271 DOI: 10.1038/s41598-017-03447-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
24 Lin SS, Zhang RQ, Shen L, Xu XJ, Li K, Bazhin AV, Fichna J, Li YY. Alterations in the gut barrier and involvement of Toll-like receptor 4 in murine postoperative ileus. Neurogastroenterol Motil 2018;30:e13286. [PMID: 29314441 DOI: 10.1111/nmo.13286] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
25 Wang X, Zhang Y, Peng Y, Hutchinson MR, Rice KC, Yin H, Watkins LR. Pharmacological characterization of the opioid inactive isomers (+)-naltrexone and (+)-naloxone as antagonists of toll-like receptor 4. Br J Pharmacol 2016;173:856-69. [PMID: 26603732 DOI: 10.1111/bph.13394] [Cited by in Crossref: 81] [Cited by in F6Publishing: 82] [Article Influence: 13.5] [Reference Citation Analysis]
26 Tomasello DL, Hurley E, Wrabetz L, Bhattacharjee A. Slick (Kcnt2) Sodium-Activated Potassium Channels Limit Peptidergic Nociceptor Excitability and Hyperalgesia. J Exp Neurosci 2017;11:1179069517726996. [PMID: 28943756 DOI: 10.1177/1179069517726996] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
27 Piotrowska A, Kwiatkowski K, Rojewska E, Slusarczyk J, Makuch W, Basta-kaim A, Przewlocka B, Mika J. Direct and indirect pharmacological modulation of CCL2/CCR2 pathway results in attenuation of neuropathic pain — In vivo and in vitro evidence. Journal of Neuroimmunology 2016;297:9-19. [DOI: 10.1016/j.jneuroim.2016.04.017] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 5.7] [Reference Citation Analysis]
28 Guerrero AT, Pinto LG, Cunha FQ, Ferreira SH, Alves-Filho JC, Verri WA Jr, Cunha TM. Mechanisms underlying the hyperalgesic responses triggered by joint activation of TLR4. Pharmacol Rep 2016;68:1293-300. [PMID: 27689757 DOI: 10.1016/j.pharep.2016.08.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
29 Blom AB, van den Bosch MH, Blaney Davidson EN, Roth J, Vogl T, van de Loo FA, Koenders M, van der Kraan PM, Geven EJ, van Lent PL. The alarmins S100A8 and S100A9 mediate acute pain in experimental synovitis. Arthritis Res Ther 2020;22:199. [PMID: 32854769 DOI: 10.1186/s13075-020-02295-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Wang S, Song X, Zhang K, Deng S, Jiao P, Qi M, Lian Z, Yao Y. Overexpression of Toll-Like Receptor 4 Affects Autophagy, Oxidative Stress, and Inflammatory Responses in Monocytes of Transgenic Sheep. Front Cell Dev Biol 2020;8:248. [PMID: 32432106 DOI: 10.3389/fcell.2020.00248] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
31 Chen S, Xiong J, Zhan Y, Liu W, Wang X. Wogonin inhibits LPS-induced inflammatory responses in rat dorsal root ganglion neurons via inhibiting TLR4-MyD88-TAK1-mediated NF-κB and MAPK signaling pathway. Cell Mol Neurobiol 2015;35:523-31. [PMID: 25504431 DOI: 10.1007/s10571-014-0148-4] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
32 Miller RJ, Malfait AM, Miller RE. The innate immune response as a mediator of osteoarthritis pain. Osteoarthritis Cartilage 2020;28:562-71. [PMID: 31862470 DOI: 10.1016/j.joca.2019.11.006] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
33 Hashemian S, Alhouayek M, Fowler CJ. TLR4 receptor expression and function in F11 dorsal root ganglion × neuroblastoma hybrid cells. Innate Immun 2017;23:687-96. [PMID: 28958207 DOI: 10.1177/1753425917732824] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
34 Fehrenbacher JC, Guo C, Kelley MR, Vasko MR. DNA damage mediates changes in neuronal sensitivity induced by the inflammatory mediators, MCP-1 and LPS, and can be reversed by enhancing the DNA repair function of APE1. Neuroscience 2017;366:23-35. [PMID: 28965839 DOI: 10.1016/j.neuroscience.2017.09.039] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
35 Jang Y, Kim M, Hwang SW. Molecular mechanisms underlying the actions of arachidonic acid-derived prostaglandins on peripheral nociception. J Neuroinflammation 2020;17:30. [PMID: 31969159 DOI: 10.1186/s12974-020-1703-1] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 13.0] [Reference Citation Analysis]
36 Gu J, Su S, Guo J, Zhu Y, Zhao M, Duan J. Anti-inflammatory and anti-apoptotic effects of the combination of Ligusticum chuanxiong and Radix Paeoniae against focal cerebral ischaemia via TLR4/MyD88/MAPK/NF-κB signalling pathway in MCAO rats. Journal of Pharmacy and Pharmacology 2018;70:268-77. [DOI: 10.1111/jphp.12841] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 4.6] [Reference Citation Analysis]
37 Woller SA, Choi SH, An EJ, Low H, Schneider DA, Ramachandran R, Kim J, Bae YS, Sviridov D, Corr M, Yaksh TL, Miller YI. Inhibition of Neuroinflammation by AIBP: Spinal Effects upon Facilitated Pain States. Cell Rep 2018;23:2667-77. [PMID: 29847797 DOI: 10.1016/j.celrep.2018.04.110] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
38 Zhang X, Zhang Q, Huang L, Liu M, Cheng Z, Zheng Y, Xu W, Lu J, Liu J, Huang M. Pien-Tze-Huang attenuates neuroinflammation in cerebral ischaemia-reperfusion injury in rats through the TLR4/NF-κB/MAPK pathway. Pharm Biol 2021;59:828-39. [PMID: 34196587 DOI: 10.1080/13880209.2021.1942926] [Reference Citation Analysis]
39 Jiang J, Shi D, Zhou XQ, Hu Y, Feng L, Liu Y, Jiang WD, Zhao Y. In vitro and in vivo protective effect of arginine against lipopolysaccharide induced inflammatory response in the intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Fish Shellfish Immunol 2015;42:457-64. [PMID: 25433136 DOI: 10.1016/j.fsi.2014.11.030] [Cited by in Crossref: 47] [Cited by in F6Publishing: 40] [Article Influence: 5.9] [Reference Citation Analysis]
40 Xing F, Zhang W, Wen J, Bai L, Gu H, Li Z, Zhang J, Tao YX, Xu JT. TLR4/NF-κB signaling activation in plantar tissue and dorsal root ganglion involves in the development of postoperative pain. Mol Pain 2018;14:1744806918807050. [PMID: 30270727 DOI: 10.1177/1744806918807050] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
41 Blum E, Procacci P, Conte V, Sartori P, Hanani M. Long term effects of lipopolysaccharide on satellite glial cells in mouse dorsal root ganglia. Experimental Cell Research 2017;350:236-41. [DOI: 10.1016/j.yexcr.2016.11.026] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
42 Yin P, Zhang Z, Li J, Shi Y, Jin N, Zou W, Gao Q, Wang W, Liu F. Ferulic acid inhibits bovine endometrial epithelial cells against LPS-induced inflammation via suppressing NK-κB and MAPK pathway. Research in Veterinary Science 2019;126:164-9. [DOI: 10.1016/j.rvsc.2019.08.018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
43 Du XJ, Lu JM, Sha Y. MiR-181a inhibits vascular inflammation induced by ox-LDL via targeting TLR4 in human macrophages. J Cell Physiol. 2018;233:6996-7003. [PMID: 29737518 DOI: 10.1002/jcp.26622] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
44 Zhang H, Wang J, Yang L, Yang W, Luo T, Yuan Y, Gu J, Zou H, Bian J, Liu Z, Liu X. Effect of oleic acid on induction of steatosis and cytotoxicity in BRL 3A cells. J Cell Biochem 2019;120:19541-54. [PMID: 31264285 DOI: 10.1002/jcb.29262] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
45 Harada Y, Zhang J, Imari K, Yamasaki R, Ni J, Wu Z, Yamamoto K, Kira JI, Nakanishi H, Hayashi Y. Cathepsin E in neutrophils contributes to the generation of neuropathic pain in experimental autoimmune encephalomyelitis. Pain 2019;160:2050-62. [PMID: 31095099 DOI: 10.1097/j.pain.0000000000001596] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
46 Silva CR, Melo BMS, Silva JR, Lopes AH, Pereira JA, Cecilio NT, Berlink J, Souza GG, Lucas G, Vogl T, Cunha FQ, Alves-Filho JC, Cunha TM. S100A9 plays a pivotal role in a mouse model of herpetic neuralgia via TLR4/TNF pathway. Brain Behav Immun 2020;88:353-62. [PMID: 32243898 DOI: 10.1016/j.bbi.2020.03.033] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
47 Ding HW, Huang AL, Zhang YL, Li B, Huang C, Ma TT, Meng XM, Li J. Design, synthesis and biological evaluation of hesperetin derivatives as potent anti-inflammatory agent. Fitoterapia 2017;121:212-22. [PMID: 28774689 DOI: 10.1016/j.fitote.2017.07.016] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]