BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pistollato F, Canovas-jorda D, Zagoura D, Bal-price A. Nrf2 pathway activation upon rotenone treatment in human iPSC-derived neural stem cells undergoing differentiation towards neurons and astrocytes. Neurochemistry International 2017;108:457-71. [DOI: 10.1016/j.neuint.2017.06.006] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 5.4] [Reference Citation Analysis]
Number Citing Articles
1 Lauvås AJ, Lislien M, Holme JA, Dirven H, Paulsen RE, Alm IM, Andersen JM, Skarpen E, Sørensen V, Macko P, Pistollato F, Duale N, Myhre O. Developmental neurotoxicity of acrylamide and its metabolite glycidamide in a human mixed culture of neurons and astrocytes undergoing differentiation in concentrations relevant for human exposure. Neurotoxicology 2022;92:33-48. [PMID: 35835329 DOI: 10.1016/j.neuro.2022.07.001] [Reference Citation Analysis]
2 Calabrese EJ. Induced Pluripotent Stem Cells and Hormesis. Dose-Response 2022;20:155932582210755. [DOI: 10.1177/15593258221075504] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Koch K, Bartmann K, Hartmann J, Kapr J, Klose J, Kuchovská E, Pahl M, Schlüppmann K, Zühr E, Fritsche E. Scientific Validation of Human Neurosphere Assays for Developmental Neurotoxicity Evaluation. Front Toxicol 2022;4:816370. [DOI: 10.3389/ftox.2022.816370] [Reference Citation Analysis]
4 Calabrese EJ. Hormesis and embryonic stem cells. Chem Biol Interact 2021;352:109783. [PMID: 34932953 DOI: 10.1016/j.cbi.2021.109783] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
5 Calabrese EJ, Calabrese V, Dhawan G, Kapoor R, Giordano J. Hormesis and neural stem cells. Free Radic Biol Med 2021;178:314-29. [PMID: 34871764 DOI: 10.1016/j.freeradbiomed.2021.12.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
6 Guo Q, Wang B, Wang X, Smith WW, Zhu Y, Liu Z. Activation of Nrf2 in Astrocytes Suppressed PD-Like Phenotypes via Antioxidant and Autophagy Pathways in Rat and Drosophila Models. Cells 2021;10:1850. [PMID: 34440619 DOI: 10.3390/cells10081850] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Nishimura Y, Kanda Y, Sone H, Aoyama H. Oxidative Stress as a Common Key Event in Developmental Neurotoxicity. Oxid Med Cell Longev 2021;2021:6685204. [PMID: 34336113 DOI: 10.1155/2021/6685204] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
8 Bellanti F, di Bello G, Iannelli G, Pannone G, Pedicillo MC, Boulter L, Lu WY, Tamborra R, Villani R, Vendemiale G, Forbes SJ, Serviddio G. Inhibition of nuclear factor (erythroid-derived 2)-like 2 promotes hepatic progenitor cell activation and differentiation. NPJ Regen Med 2021;6:28. [PMID: 34039998 DOI: 10.1038/s41536-021-00137-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
9 Schmitz A, Dempewolf S, Tan S, Bicker G, Stern M. Developmental Neurotoxicity of Fipronil and Rotenone on a Human Neuronal In Vitro Test System. Neurotox Res 2021;39:1189-202. [PMID: 33871813 DOI: 10.1007/s12640-021-00364-8] [Reference Citation Analysis]
10 Ramires Júnior OV, Alves BDS, Barros PAB, Rodrigues JL, Ferreira SP, Monteiro LKS, Araújo GMS, Fernandes SS, Vaz GR, Dora CL, Hort MA. Nanoemulsion Improves the Neuroprotective Effects of Curcumin in an Experimental Model of Parkinson's Disease. Neurotox Res 2021;39:787-99. [PMID: 33860897 DOI: 10.1007/s12640-021-00362-w] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
11 Siena A, Yuzawa JMC, Ramos AC, Henrique E, Brito MD, Calvazara MB, Rosenstock TR. Neonatal Rotenone Administration Induces Psychiatric Disorder-Like Behavior and Changes in Mitochondrial Biogenesis and Synaptic Proteins in Adulthood. Mol Neurobiol 2021;58:3015-30. [PMID: 33608825 DOI: 10.1007/s12035-021-02317-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Kahroba H, Ramezani B, Maadi H, Sadeghi MR, Jaberie H, Ramezani F. The role of Nrf2 in neural stem/progenitors cells: From maintaining stemness and self-renewal to promoting differentiation capability and facilitating therapeutic application in neurodegenerative disease. Ageing Res Rev 2021;65:101211. [PMID: 33186670 DOI: 10.1016/j.arr.2020.101211] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 26.0] [Reference Citation Analysis]
13 Davidsen N, Lauvås AJ, Myhre O, Ropstad E, Carpi D, Gyves EM, Berntsen HF, Dirven H, Paulsen RE, Bal-Price A, Pistollato F. Exposure to human relevant mixtures of halogenated persistent organic pollutants (POPs) alters neurodevelopmental processes in human neural stem cells undergoing differentiation. Reprod Toxicol 2021;100:17-34. [PMID: 33333158 DOI: 10.1016/j.reprotox.2020.12.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
14 de Leeuw VC, van Oostrom CTM, Westerink RHS, Piersma AH, Heusinkveld HJ, Hessel EVS. An efficient neuron-astrocyte differentiation protocol from human embryonic stem cell-derived neural progenitors to assess chemical-induced developmental neurotoxicity. Reprod Toxicol 2020;98:107-16. [PMID: 32931842 DOI: 10.1016/j.reprotox.2020.09.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
15 Zhang H, Lu J, Wu S. Sp4 controls constitutive expression of neuronal serine racemase and NF-E2-related factor-2 mediates its induction by valproic acid. Biochim Biophys Acta Gene Regul Mech 2020;1863:194597. [PMID: 32603878 DOI: 10.1016/j.bbagrm.2020.194597] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
16 Kobolak J, Teglasi A, Bellak T, Janstova Z, Molnar K, Zana M, Bock I, Laszlo L, Dinnyes A. Human Induced Pluripotent Stem Cell-Derived 3D-Neurospheres are Suitable for Neurotoxicity Screening. Cells 2020;9:E1122. [PMID: 32369990 DOI: 10.3390/cells9051122] [Cited by in Crossref: 6] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
17 Nimtz L, Hartmann J, Tigges J, Masjosthusmann S, Schmuck M, Keßel E, Theiss S, Köhrer K, Petzsch P, Adjaye J, Wigmann C, Wieczorek D, Hildebrandt B, Bendt F, Hübenthal U, Brockerhoff G, Fritsche E. Characterization and application of electrically active neuronal networks established from human induced pluripotent stem cell-derived neural progenitor cells for neurotoxicity evaluation. Stem Cell Res 2020;45:101761. [PMID: 32244191 DOI: 10.1016/j.scr.2020.101761] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
18 Dai X, Yan X, Wintergerst KA, Cai L, Keller BB, Tan Y. Nrf2: Redox and Metabolic Regulator of Stem Cell State and Function. Trends Mol Med. 2020;26:185-200. [PMID: 31679988 DOI: 10.1016/j.molmed.2019.09.007] [Cited by in Crossref: 34] [Cited by in F6Publishing: 63] [Article Influence: 11.3] [Reference Citation Analysis]
19 Wei PC, Lee-Chen GJ, Chen CM, Wu YR, Chen YJ, Lin JL, Lo YS, Yao CF, Chang KH. Neuroprotection of Indole-Derivative Compound NC001-8 by the Regulation of the NRF2 Pathway in Parkinson's Disease Cell Models. Oxid Med Cell Longev 2019;2019:5074367. [PMID: 31781339 DOI: 10.1155/2019/5074367] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
20 Fritsche E, Barenys M, Klose J, Masjosthusmann S, Nimtz L, Schmuck M, Wuttke S, Tigges J. Current Availability of Stem Cell-Based In Vitro Methods for Developmental Neurotoxicity (DNT) Testing. Toxicol Sci 2018;165:21-30. [PMID: 29982830 DOI: 10.1093/toxsci/kfy178] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
21 Richardson JR, Fitsanakis V, Westerink RHS, Kanthasamy AG. Neurotoxicity of pesticides. Acta Neuropathol 2019;138:343-62. [PMID: 31197504 DOI: 10.1007/s00401-019-02033-9] [Cited by in Crossref: 127] [Cited by in F6Publishing: 109] [Article Influence: 42.3] [Reference Citation Analysis]
22 Liu D, Xue J, Liu Y, Gu H, Wei X, Ma W, Luo W, Ma L, Jia S, Dong N, Huang J, Wang Y, Yuan Z. Inhibition of NRF2 signaling and increased reactive oxygen species during embryogenesis in a rat model of retinoic acid-induced neural tube defects. Neurotoxicology 2018;69:84-92. [PMID: 30267739 DOI: 10.1016/j.neuro.2018.09.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
23 di Bello G, Vendemiale G, Bellanti F. Redox cell signaling and hepatic progenitor cells. Eur J Cell Biol. 2018;97:546-556. [PMID: 30278988 DOI: 10.1016/j.ejcb.2018.09.004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
24 Battino M, Giampieri F, Pistollato F, Sureda A, de Oliveira MR, Pittalà V, Fallarino F, Nabavi SF, Atanasov AG, Nabavi SM. Nrf2 as regulator of innate immunity: A molecular Swiss army knife! Biotechnology Advances 2018;36:358-70. [DOI: 10.1016/j.biotechadv.2017.12.012] [Cited by in Crossref: 60] [Cited by in F6Publishing: 78] [Article Influence: 15.0] [Reference Citation Analysis]
25 Bal-Price A, Pistollato F, Sachana M, Bopp SK, Munn S, Worth A. Strategies to improve the regulatory assessment of developmental neurotoxicity (DNT) using in vitro methods. Toxicol Appl Pharmacol 2018;354:7-18. [PMID: 29476865 DOI: 10.1016/j.taap.2018.02.008] [Cited by in Crossref: 58] [Cited by in F6Publishing: 57] [Article Influence: 14.5] [Reference Citation Analysis]
26 Pamies D, Block K, Lau P, Gribaldo L, Pardo CA, Barreras P, Smirnova L, Wiersma D, Zhao L, Harris G, Hartung T, Hogberg HT. Rotenone exerts developmental neurotoxicity in a human brain spheroid model. Toxicol Appl Pharmacol 2018;354:101-14. [PMID: 29428530 DOI: 10.1016/j.taap.2018.02.003] [Cited by in Crossref: 53] [Cited by in F6Publishing: 56] [Article Influence: 13.3] [Reference Citation Analysis]