BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Librenza-Garcia D, Kotzian BJ, Yang J, Mwangi B, Cao B, Pereira Lima LN, Bermudez MB, Boeira MV, Kapczinski F, Passos IC. The impact of machine learning techniques in the study of bipolar disorder: A systematic review. Neurosci Biobehav Rev 2017;80:538-54. [PMID: 28728937 DOI: 10.1016/j.neubiorev.2017.07.004] [Cited by in Crossref: 76] [Cited by in F6Publishing: 49] [Article Influence: 15.2] [Reference Citation Analysis]
Number Citing Articles
1 Yang Z, Gu S, Honnorat N, Linn KA, Shinohara RT, Aselcioglu I, Bruce S, Oathes DJ, Davatzikos C, Satterthwaite TD, Bassett DS, Sheline YI. Network changes associated with transdiagnostic depressive symptom improvement following cognitive behavioral therapy in MDD and PTSD. Mol Psychiatry 2018;23:2314-23. [PMID: 30104727 DOI: 10.1038/s41380-018-0201-7] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
2 Harrison PJ, Geddes JR, Tunbridge EM. The Emerging Neurobiology of Bipolar Disorder. Trends Neurosci 2018;41:18-30. [PMID: 29169634 DOI: 10.1016/j.tins.2017.10.006] [Cited by in Crossref: 85] [Cited by in F6Publishing: 65] [Article Influence: 17.0] [Reference Citation Analysis]
3 Lee HE, Park JH, Kim TJ, Im D, Shin JH, Kim DH, Mohammad B, Kang I, Lee KJ. Novel Electronics for Flexible and Neuromorphic Computing. Adv Funct Mater 2018;28:1801690. [DOI: 10.1002/adfm.201801690] [Cited by in Crossref: 71] [Cited by in F6Publishing: 55] [Article Influence: 17.8] [Reference Citation Analysis]
4 Aksoy SH, Yurdaışık I, Timurağaoğlu A. Ionizing Radiation Exposure due to Medical Imaging in Hematopoietic Stem Cell Transplant Recipients. Istanbul Med J 2022;23:119-24. [DOI: 10.4274/imj.galenos.2022.40771] [Reference Citation Analysis]
5 Acosta JR, Librenza-Garcia D, Watts D, Francisco AP, Zórtea F, Raffa B, Kohmann A, Mugnol FE, Motta GL, Tramontina S, Passos IC. Bullying and psychotic symptoms in youth with bipolar disorder. J Affect Disord 2020;265:603-10. [PMID: 31787423 DOI: 10.1016/j.jad.2019.11.101] [Reference Citation Analysis]
6 Yin T, Ma P, Tian Z, Xie K, He Z, Sun R, Zeng F. Machine Learning in Neuroimaging: A New Approach to Understand Acupuncture for Neuroplasticity. Neural Plast 2020;2020:8871712. [PMID: 32908491 DOI: 10.1155/2020/8871712] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Shen Z, Cui L, Mou S, Ren L, Yuan Y, Shen X, Li G. Combining S100B and Cytokines as Neuro-Inflammatory Biomarkers for Diagnosing Generalized Anxiety Disorder: A Proof-of-Concept Study Based on Machine Learning. Front Psychiatry 2022;13:881241. [DOI: 10.3389/fpsyt.2022.881241] [Reference Citation Analysis]
8 Tamura JK, Mcintyre RS. Current and Future Vistas in Bipolar Disorder. Curr Behav Neurosci Rep 2020;7:68-75. [DOI: 10.1007/s40473-020-00202-9] [Reference Citation Analysis]
9 [DOI: 10.1109/i-smac.2018.8653654] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Wang Y, Sun K, Liu Z, Chen G, Jia Y, Zhong S, Pan J, Huang L, Tian J. Classification of Unmedicated Bipolar Disorder Using Whole-Brain Functional Activity and Connectivity: A Radiomics Analysis. Cereb Cortex 2020;30:1117-28. [PMID: 31408101 DOI: 10.1093/cercor/bhz152] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
11 Beijers L, van Loo HM, Romeijn J, Lamers F, Schoevers RA, Wardenaar KJ. Investigating data-driven biological subtypes of psychiatric disorders using specification-curve analysis. Psychol Med . [DOI: 10.1017/s0033291720002846] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Ramos-Lima LF, Waikamp V, Antonelli-Salgado T, Passos IC, Freitas LHM. The use of machine learning techniques in trauma-related disorders: a systematic review. J Psychiatr Res 2020;121:159-72. [PMID: 31830722 DOI: 10.1016/j.jpsychires.2019.12.001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 8] [Article Influence: 6.7] [Reference Citation Analysis]
13 Cummins N, Matcham F, Klapper J, Schuller B. Artificial intelligence to aid the detection of mood disorders. Artificial Intelligence in Precision Health. Elsevier; 2020. pp. 231-55. [DOI: 10.1016/b978-0-12-817133-2.00010-0] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Wollenhaupt-Aguiar B, Librenza-Garcia D, Bristot G, Przybylski L, Stertz L, Kubiachi Burque R, Ceresér KM, Spanemberg L, Caldieraro MA, Frey BN, Fleck MP, Kauer-Sant'Anna M, Passos IC, Kapczinski F. Differential biomarker signatures in unipolar and bipolar depression: A machine learning approach. Aust N Z J Psychiatry 2020;54:393-401. [PMID: 31789053 DOI: 10.1177/0004867419888027] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
15 Huang Y, Talwar A, Chatterjee S, Aparasu RR. Application of machine learning in predicting hospital readmissions: a scoping review of the literature. BMC Med Res Methodol 2021;21:96. [PMID: 33952192 DOI: 10.1186/s12874-021-01284-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 [DOI: 10.1109/aciiasia.2018.8470362] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
17 Triantafyllidis AK, Tsanas A. Applications of Machine Learning in Real-Life Digital Health Interventions: Review of the Literature. J Med Internet Res 2019;21:e12286. [PMID: 30950797 DOI: 10.2196/12286] [Cited by in Crossref: 63] [Cited by in F6Publishing: 36] [Article Influence: 21.0] [Reference Citation Analysis]
18 Ramos BR, Librenza-garcia D, Zortea F, Watts D, Zeni CP, Tramontina S, Passos IC. Clinical differences between patients with pediatric bipolar disorder with and without a parental history of bipolar disorder. Psychiatry Research 2019;280:112501. [DOI: 10.1016/j.psychres.2019.112501] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
19 Colombo F, Calesella F, Mazza MG, Melloni EMT, Morelli MJ, Scotti GM, Benedetti F, Bollettini I, Vai B. Machine learning approaches for prediction of bipolar disorder based on biological, clinical and neuropsychological markers: a systematic review and meta-analysis. Neurosci Biobehav Rev 2022;:104552. [PMID: 35120970 DOI: 10.1016/j.neubiorev.2022.104552] [Reference Citation Analysis]
20 Walter M, Alizadeh S, Jamalabadi H, Lueken U, Dannlowski U, Walter H, Olbrich S, Colic L, Kambeitz J, Koutsouleris N, Hahn T, Dwyer DB. Translational machine learning for psychiatric neuroimaging. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2019;91:113-21. [DOI: 10.1016/j.pnpbp.2018.09.014] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 8.7] [Reference Citation Analysis]
21 Song DY, Topriceanu CC, Ilie-Ablachim DC, Kinali M, Bisdas S. Machine learning with neuroimaging data to identify autism spectrum disorder: a systematic review and meta-analysis. Neuroradiology 2021. [PMID: 34420058 DOI: 10.1007/s00234-021-02774-z] [Reference Citation Analysis]
22 Sajedianfard F, Salehi S, Zarshenas L. Comparison of the effect of postdischarge education with multimedia and group discussion methods on family caregiving for patients with bipolar disorder in Shiraz Psychiatric Hospitals. J Family Med Prim Care 2019;8:3840-4. [PMID: 31879622 DOI: 10.4103/jfmpc.jfmpc_664_19] [Reference Citation Analysis]
23 Vai B, Bertocchi C, Benedetti F. Cortico-limbic connectivity as a possible biomarker for bipolar disorder: where are we now? Expert Rev Neurother 2019;19:159-72. [PMID: 30599797 DOI: 10.1080/14737175.2019.1562338] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
24 Kinreich S, Meyers JL, Maron-Katz A, Kamarajan C, Pandey AK, Chorlian DB, Zhang J, Pandey G, Subbie-Saenz de Viteri S, Pitti D, Anokhin AP, Bauer L, Hesselbrock V, Schuckit MA, Edenberg HJ, Porjesz B. Predicting risk for Alcohol Use Disorder using longitudinal data with multimodal biomarkers and family history: a machine learning study. Mol Psychiatry 2021;26:1133-41. [PMID: 31595034 DOI: 10.1038/s41380-019-0534-x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
25 Mansourian M, Khademi S, Marateb HR. A Comprehensive Review of Computer-Aided Diagnosis of Major Mental and Neurological Disorders and Suicide: A Biostatistical Perspective on Data Mining. Diagnostics (Basel) 2021;11:393. [PMID: 33669114 DOI: 10.3390/diagnostics11030393] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Gao Y, Xiong Z, Wang X, Ren H, Liu R, Bai B, Zhang L, Li D. Abnormal degree centrality as a potential imaging biomarker for right temporal lobe epilepsy: A resting-state fMRI study and support vector machine analysis. Neuroscience 2022. [DOI: 10.1016/j.neuroscience.2022.02.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
27 Zhang W, Nery FG, Tallman MJ, Patino LR, Adler CM, Strawn JR, Fleck DE, Barzman DH, Sweeney JA, Strakowski SM, Lui S, DelBello MP. Individual prediction of symptomatic converters in youth offspring of bipolar parents using proton magnetic resonance spectroscopy. Eur Child Adolesc Psychiatry 2021;30:55-64. [PMID: 32008167 DOI: 10.1007/s00787-020-01483-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
28 Passos IC, Ballester P, Rabelo-da-Ponte FD, Kapczinski F. Precision Psychiatry: The Future Is Now. Can J Psychiatry 2021;:706743721998044. [PMID: 33757313 DOI: 10.1177/0706743721998044] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
29 Song JW, Yoon NR, Jang SM, Lee GY, Kim BN. Neuroimaging-Based Deep Learning in Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder. Soa Chongsonyon Chongsin Uihak 2020;31:97-104. [PMID: 32665754 DOI: 10.5765/jkacap.200021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Zhang J, Liu T, Shi Z, Tan S, Suo D, Dai C, Wang L, Wu J, Funahashi S, Liu M. Impaired Self-Referential Cognitive Processing in Bipolar Disorder: A Functional Connectivity Analysis. Front Aging Neurosci 2022;14:754600. [DOI: 10.3389/fnagi.2022.754600] [Reference Citation Analysis]
31 Ganasigamony WJ, Antony Arul Selvaraj M. Computer assisted diagnosis of bipolar disorder using invariant features. Concurrency and Computation. [DOI: 10.1002/cpe.6984] [Reference Citation Analysis]
32 Tatay-Manteiga A, Correa-Ghisays P, Cauli O, Kapczinski FP, Tabarés-Seisdedos R, Balanzá-Martínez V. Staging, Neurocognition and Social Functioning in Bipolar Disorder. Front Psychiatry 2018;9:709. [PMID: 30618879 DOI: 10.3389/fpsyt.2018.00709] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
33 Sonkurt HO, Altınöz AE, Çimen E, Köşger F, Öztürk G. The role of cognitive functions in the diagnosis of bipolar disorder: A machine learning model. Int J Med Inform 2021;145:104311. [PMID: 33202371 DOI: 10.1016/j.ijmedinf.2020.104311] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 Sadeghi D, Shoeibi A, Ghassemi N, Moridian P, Khadem A, Alizadehsani R, Teshnehlab M, Gorriz JM, Khozeimeh F, Zhang Y, Nahavandi S, Acharya UR. An overview of artificial intelligence techniques for diagnosis of Schizophrenia based on magnetic resonance imaging modalities: Methods, challenges, and future works. Computers in Biology and Medicine 2022;146:105554. [DOI: 10.1016/j.compbiomed.2022.105554] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
35 Appaji A, Nagendra B, Chako DM, Padmanabha A, Jacob A, Hiremath CV, Varambally S, Kesavan M, Venkatasubramanian G, Rao SV, Webers CAB, Berendschot TTJM, Rao NP. Examination of retinal vascular trajectory in schizophrenia and bipolar disorder. Psychiatry Clin Neurosci 2019;73:738-44. [PMID: 31400288 DOI: 10.1111/pcn.12921] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
36 Silveira ÉDM, Passos IC, Scott J, Bristot G, Scotton E, Teixeira Mendes LS, Umpierre Knackfuss AC, Gerchmann L, Fijtman A, Trasel AR, Salum GA, Kauer-sant’anna M. Decoding rumination: A machine learning approach to a transdiagnostic sample of outpatients with anxiety, mood and psychotic disorders. Journal of Psychiatric Research 2020;121:207-13. [DOI: 10.1016/j.jpsychires.2019.12.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
37 Van Rheenen TE, Lewandowski KE, Bauer IE, Kapczinski F, Miskowiak K, Burdick KE, Balanzá-Martínez V. Current understandings of the trajectory and emerging correlates of cognitive impairment in bipolar disorder: An overview of evidence. Bipolar Disord 2020;22:13-27. [PMID: 31408230 DOI: 10.1111/bdi.12821] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
38 Walsh CG, Chaudhry B, Dua P, Goodman KW, Kaplan B, Kavuluru R, Solomonides A, Subbian V. Stigma, biomarkers, and algorithmic bias: recommendations for precision behavioral health with artificial intelligence. JAMIA Open 2020;3:9-15. [PMID: 32607482 DOI: 10.1093/jamiaopen/ooz054] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
39 Wang C, Zhao H, Zhang H. Chinese College Students Have Higher Anxiety in New Semester of Online Learning During COVID-19: A Machine Learning Approach. Front Psychol 2020;11:587413. [PMID: 33343461 DOI: 10.3389/fpsyg.2020.587413] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
40 Guo W, Yu Z, Gao Y, Lan X, Zang Y, Yu P, Wang Z, Sun W, Hao X, Gao F. A Machine Learning Model to Predict Risperidone Active Moiety Concentration Based on Initial Therapeutic Drug Monitoring. Front Psychiatry 2021;12:711868. [PMID: 34867511 DOI: 10.3389/fpsyt.2021.711868] [Reference Citation Analysis]
41 Sánchez-Morla EM, Fuentes JL, Miguel-Jiménez JM, Boquete L, Ortiz M, Orduna E, Satue M, Garcia-Martin E. Automatic Diagnosis of Bipolar Disorder Using Optical Coherence Tomography Data and Artificial Intelligence. J Pers Med 2021;11:803. [PMID: 34442447 DOI: 10.3390/jpm11080803] [Reference Citation Analysis]
42 Passos IC, Ballester PL, Barros RC, Librenza-Garcia D, Mwangi B, Birmaher B, Brietzke E, Hajek T, Lopez Jaramillo C, Mansur RB, Alda M, Haarman BCM, Isometsa E, Lam RW, McIntyre RS, Minuzzi L, Kessing LV, Yatham LN, Duffy A, Kapczinski F. Machine learning and big data analytics in bipolar disorder: A position paper from the International Society for Bipolar Disorders Big Data Task Force. Bipolar Disord 2019;21:582-94. [PMID: 31465619 DOI: 10.1111/bdi.12828] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
43 Harvey D, Lobban F, Rayson P, Warner A, Jones S. Natural Language Processing Methods and Bipolar Disorder: Scoping Review. JMIR Ment Health 2022;9:e35928. [PMID: 35451984 DOI: 10.2196/35928] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
44 Kapadia M, Desai M, Parikh R. Fractures in the framework: limitations of classification systems in psychiatry
. Dialogues Clin Neurosci 2020;22:17-26. [PMID: 32699502 DOI: 10.31887/DCNS.2020.22.1/rparikh] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
45 Scaini G, Valvassori SS, Diaz AP, Lima CN, Benevenuto D, Fries GR, Quevedo J. Neurobiology of bipolar disorders: a review of genetic components, signaling pathways, biochemical changes, and neuroimaging findings. Braz J Psychiatry 2020;42:536-51. [PMID: 32267339 DOI: 10.1590/1516-4446-2019-0732] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
46 Liu L, Fan J, Zhan H, Huang J, Cao R, Xiang X, Tian S, Ren H, Tong M, Li Q. Abnormal regional signal in the left cerebellum as a potential neuroimaging biomarker of sudden sensorineural hearing loss. Front Psychiatry 2022;13:967391. [DOI: 10.3389/fpsyt.2022.967391] [Reference Citation Analysis]
47 Daus H, Bloecher T, Egeler R, De Klerk R, Stork W, Backenstrass M. Development of an Emotion-Sensitive mHealth Approach for Mood-State Recognition in Bipolar Disorder. JMIR Ment Health 2020;7:e14267. [PMID: 32618577 DOI: 10.2196/14267] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
48 Claude LA, Houenou J, Duchesnay E, Favre P. Will machine learning applied to neuroimaging in bipolar disorder help the clinician? A critical review and methodological suggestions. Bipolar Disord 2020;22:334-55. [PMID: 32108409 DOI: 10.1111/bdi.12895] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
49 Belizario GO, Junior RGB, Salvini R, Lafer B, Dias RDS. Predominant polarity classification and associated clinical variables in bipolar disorder: A machine learning approach. Journal of Affective Disorders 2019;245:279-82. [DOI: 10.1016/j.jad.2018.11.051] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
50 Low DM, Bentley KH, Ghosh SS. Automated assessment of psychiatric disorders using speech: A systematic review. Laryngoscope Investig Otolaryngol 2020;5:96-116. [PMID: 32128436 DOI: 10.1002/lio2.354] [Cited by in Crossref: 32] [Cited by in F6Publishing: 22] [Article Influence: 16.0] [Reference Citation Analysis]
51 Bracher-Smith M, Crawford K, Escott-Price V. Machine learning for genetic prediction of psychiatric disorders: a systematic review. Mol Psychiatry 2021;26:70-9. [PMID: 32591634 DOI: 10.1038/s41380-020-0825-2] [Cited by in Crossref: 31] [Cited by in F6Publishing: 17] [Article Influence: 15.5] [Reference Citation Analysis]
52 Zhang J, Wong SM, Richardson JD, Jetly R, Dunkley BT. Predicting PTSD severity using longitudinal magnetoencephalography with a multi-step learning framework. J Neural Eng 2020. [PMID: 33166947 DOI: 10.1088/1741-2552/abc8d6] [Reference Citation Analysis]
53 Borges do Nascimento IJ, Marcolino MS, Abdulazeem HM, Weerasekara I, Azzopardi-Muscat N, Gonçalves MA, Novillo-Ortiz D. Impact of Big Data Analytics on People's Health: Overview of Systematic Reviews and Recommendations for Future Studies. J Med Internet Res 2021;23:e27275. [PMID: 33847586 DOI: 10.2196/27275] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
54 Diaz AP, Bauer IE, Sanches M, Soares JC. Neuroanatomic and Functional Neuroimaging Findings. Curr Top Behav Neurosci 2021;48:173-96. [PMID: 33040316 DOI: 10.1007/7854_2020_174] [Reference Citation Analysis]
55 Serafini G, Pardini M, Monacelli F, Orso B, Girtler N, Brugnolo A, Amore M, Nobili F, Team On Dementia Of The Irccs Ospedale Policlinico San Martino DM. Neuroprogression as an Illness Trajectory in Bipolar Disorder: A Selective Review of the Current Literature. Brain Sci 2021;11:276. [PMID: 33672401 DOI: 10.3390/brainsci11020276] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Scott J, Etain B, Bellivier F. Can an Integrated Science Approach to Precision Medicine Research Improve Lithium Treatment in Bipolar Disorders? Front Psychiatry 2018;9:360. [PMID: 30186186 DOI: 10.3389/fpsyt.2018.00360] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
57 Qiu Q, Nian YJ, Guo Y, Tang L, Lu N, Wen LZ, Wang B, Chen DF, Liu KJ. Development and validation of three machine-learning models for predicting multiple organ failure in moderately severe and severe acute pancreatitis. BMC Gastroenterol 2019;19:118. [PMID: 31272385 DOI: 10.1186/s12876-019-1016-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
58 Jan Z, Ai-Ansari N, Mousa O, Abd-Alrazaq A, Ahmed A, Alam T, Househ M. The Role of Machine Learning in Diagnosing Bipolar Disorder: Scoping Review. J Med Internet Res 2021;23:e29749. [PMID: 34806996 DOI: 10.2196/29749] [Reference Citation Analysis]
59 Zhu Y, Qi S, Zhang B, He D, Teng Y, Hu J, Wei X. Connectome-Based Biomarkers Predict Subclinical Depression and Identify Abnormal Brain Connections With the Lateral Habenula and Thalamus. Front Psychiatry 2019;10:371. [PMID: 31244688 DOI: 10.3389/fpsyt.2019.00371] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
60 Peng D, Yao Z. Neuroimaging Advance in Depressive Disorder. In: Fang Y, editor. Depressive Disorders: Mechanisms, Measurement and Management. Singapore: Springer; 2019. pp. 59-83. [DOI: 10.1007/978-981-32-9271-0_3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
61 Tietbohl-santos B, Chiamenti P, Librenza-garcia D, Cassidy R, Zimerman A, Manfro GG, Kapczinski F, Passos IC. Risk factors for suicidality in patients with panic disorder: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews 2019;105:34-8. [DOI: 10.1016/j.neubiorev.2019.07.022] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
62 van der Markt A, Klumpers UMH, Dols A, Boks MP, Vreeker A, Beekman ATF, Kupka RW. Clinical profiles of subsequent stages in bipolar disorder: Results from the Dutch Bipolar Cohort. Bipolar Disord 2021. [PMID: 34821429 DOI: 10.1111/bdi.13159] [Reference Citation Analysis]
63 Achalia R, Sinha A, Jacob A, Achalia G, Kaginalkar V, Venkatasubramanian G, Rao NP. A proof of concept machine learning analysis using multimodal neuroimaging and neurocognitive measures as predictive biomarker in bipolar disorder. Asian J Psychiatr 2020;50:101984. [PMID: 32143176 DOI: 10.1016/j.ajp.2020.101984] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
64 Rabelo-da-Ponte FD, Feiten JG, Mwangi B, Barros FC, Wehrmeister FC, Menezes AM, Kapczinski F, Passos IC, Kunz M. Early identification of bipolar disorder among young adults - a 22-year community birth cohort. Acta Psychiatr Scand 2020;142:476-85. [PMID: 32936930 DOI: 10.1111/acps.13233] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
65 Sun Q, Yue Q, Zhu F, Shu K. The Identification research of bipolar disorder based on CNN. J Phys : Conf Ser 2019;1168:032125. [DOI: 10.1088/1742-6596/1168/3/032125] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
66 Cazes J, Dimick MK, Kennedy KG, Fiksenbaum L, Zai CC, Patel R, Islam AH, Tampakeras M, Freeman N, Kennedy JL, MacIntosh BJ, Goldstein BI. Structural neuroimaging phenotypes of a novel multi-gene risk score in youth bipolar disorder. J Affect Disord 2021;289:135-43. [PMID: 33979723 DOI: 10.1016/j.jad.2021.04.040] [Reference Citation Analysis]
67 dos Santos BS, Steiner MTA, Fenerich AT, Lima RHP. Data mining and machine learning techniques applied to public health problems: A bibliometric analysis from 2009 to 2018. Computers & Industrial Engineering 2019;138:106120. [DOI: 10.1016/j.cie.2019.106120] [Cited by in Crossref: 25] [Cited by in F6Publishing: 2] [Article Influence: 8.3] [Reference Citation Analysis]