BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wolfers T, Buitelaar JK, Beckmann CF, Franke B, Marquand AF. From estimating activation locality to predicting disorder: A review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neurosci Biobehav Rev 2015;57:328-49. [PMID: 26254595 DOI: 10.1016/j.neubiorev.2015.08.001] [Cited by in Crossref: 172] [Cited by in F6Publishing: 142] [Article Influence: 24.6] [Reference Citation Analysis]
Number Citing Articles
1 Boeke EA, Holmes AJ, Phelps EA. Toward Robust Anxiety Biomarkers: A Machine Learning Approach in a Large-Scale Sample. Biol Psychiatry Cogn Neurosci Neuroimaging 2020;5:799-807. [PMID: 31447329 DOI: 10.1016/j.bpsc.2019.05.018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
2 Delvecchio G, Ciappolino V, Perlini C, Barillari M, Ruggeri M, Altamura AC, Bellani M, Brambilla P. Cingulate abnormalities in bipolar disorder relate to gender and outcome: a voxel-based morphometry study. Eur Arch Psychiatry Clin Neurosci 2019;269:777-84. [DOI: 10.1007/s00406-018-0887-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
3 Wolfers T, Beckmann CF, Hoogman M, Buitelaar JK, Franke B, Marquand AF. Individual differences v. the average patient: mapping the heterogeneity in ADHD using normative models. Psychol Med 2020;50:314-23. [PMID: 30782224 DOI: 10.1017/S0033291719000084] [Cited by in Crossref: 50] [Cited by in F6Publishing: 29] [Article Influence: 16.7] [Reference Citation Analysis]
4 Kambeitz J, Cabral C, Sacchet MD, Gotlib IH, Zahn R, Serpa MH, Walter M, Falkai P, Koutsouleris N. Detecting Neuroimaging Biomarkers for Depression: A Meta-analysis of Multivariate Pattern Recognition Studies. Biol Psychiatry 2017;82:330-8. [PMID: 28110823 DOI: 10.1016/j.biopsych.2016.10.028] [Cited by in Crossref: 81] [Cited by in F6Publishing: 67] [Article Influence: 13.5] [Reference Citation Analysis]
5 Salvador R, Canales-Rodríguez E, Guerrero-Pedraza A, Sarró S, Tordesillas-Gutiérrez D, Maristany T, Crespo-Facorro B, McKenna P, Pomarol-Clotet E. Multimodal Integration of Brain Images for MRI-Based Diagnosis in Schizophrenia. Front Neurosci 2019;13:1203. [PMID: 31787874 DOI: 10.3389/fnins.2019.01203] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
6 Cabral C, Kambeitz-Ilankovic L, Kambeitz J, Calhoun VD, Dwyer DB, von Saldern S, Urquijo MF, Falkai P, Koutsouleris N. Classifying Schizophrenia Using Multimodal Multivariate Pattern Recognition Analysis: Evaluating the Impact of Individual Clinical Profiles on the Neurodiagnostic Performance. Schizophr Bull 2016;42 Suppl 1:S110-7. [PMID: 27460614 DOI: 10.1093/schbul/sbw053] [Cited by in Crossref: 50] [Cited by in F6Publishing: 41] [Article Influence: 10.0] [Reference Citation Analysis]
7 Aksman LM, Lythgoe DJ, Williams SC, Jokisch M, Mönninghoff C, Streffer J, Jöckel KH, Weimar C, Marquand AF. Making use of longitudinal information in pattern recognition. Hum Brain Mapp 2016;37:4385-404. [PMID: 27451934 DOI: 10.1002/hbm.23317] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
8 Eitel F, Schulz MA, Seiler M, Walter H, Ritter K. Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research. Exp Neurol 2021;339:113608. [PMID: 33513353 DOI: 10.1016/j.expneurol.2021.113608] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Zhang W, Groen W, Mennes M, Greven C, Buitelaar J, Rommelse N. Revisiting subcortical brain volume correlates of autism in the ABIDE dataset: effects of age and sex. Psychol Med 2018;48:654-68. [DOI: 10.1017/s003329171700201x] [Cited by in Crossref: 27] [Cited by in F6Publishing: 13] [Article Influence: 5.4] [Reference Citation Analysis]
10 Lake EMR, Finn ES, Noble SM, Vanderwal T, Shen X, Rosenberg MD, Spann MN, Chun MM, Scheinost D, Constable RT. The Functional Brain Organization of an Individual Allows Prediction of Measures of Social Abilities Transdiagnostically in Autism and Attention-Deficit/Hyperactivity Disorder. Biol Psychiatry 2019;86:315-26. [PMID: 31010580 DOI: 10.1016/j.biopsych.2019.02.019] [Cited by in Crossref: 59] [Cited by in F6Publishing: 41] [Article Influence: 19.7] [Reference Citation Analysis]
11 Young JJ, Silber T, Bruno D, Galatzer-Levy IR, Pomara N, Marmar CR. Is there Progress? An Overview of Selecting Biomarker Candidates for Major Depressive Disorder. Front Psychiatry 2016;7:72. [PMID: 27199779 DOI: 10.3389/fpsyt.2016.00072] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 4.3] [Reference Citation Analysis]
12 Kozarzewski L, Maurer L, Mähler A, Spranger J, Weygandt M. Computational approaches to predicting treatment response to obesity using neuroimaging. Rev Endocr Metab Disord 2021. [PMID: 34951003 DOI: 10.1007/s11154-021-09701-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Nicholson AA, Densmore M, McKinnon MC, Neufeld RWJ, Frewen PA, Théberge J, Jetly R, Richardson JD, Lanius RA. Machine learning multivariate pattern analysis predicts classification of posttraumatic stress disorder and its dissociative subtype: a multimodal neuroimaging approach. Psychol Med 2019;49:2049-59. [PMID: 30306886 DOI: 10.1017/S0033291718002866] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
14 Tomaz Da Silva L, Esper NB, Ruiz DD, Meneguzzi F, Buchweitz A. Visual Explanation for Identification of the Brain Bases for Developmental Dyslexia on fMRI Data. Front Comput Neurosci 2021;15:594659. [PMID: 34566613 DOI: 10.3389/fncom.2021.594659] [Reference Citation Analysis]
15 Gheiratmand M, Rish I, Cecchi GA, Brown MRG, Greiner R, Polosecki PI, Bashivan P, Greenshaw AJ, Ramasubbu R, Dursun SM. Learning stable and predictive network-based patterns of schizophrenia and its clinical symptoms. NPJ Schizophr 2017;3:22. [PMID: 28560268 DOI: 10.1038/s41537-017-0022-8] [Cited by in Crossref: 22] [Cited by in F6Publishing: 10] [Article Influence: 4.4] [Reference Citation Analysis]
16 Yin T, Ma P, Tian Z, Xie K, He Z, Sun R, Zeng F. Machine Learning in Neuroimaging: A New Approach to Understand Acupuncture for Neuroplasticity. Neural Plast 2020;2020:8871712. [PMID: 32908491 DOI: 10.1155/2020/8871712] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Marquand AF, Rezek I, Buitelaar J, Beckmann CF. Understanding Heterogeneity in Clinical Cohorts Using Normative Models: Beyond Case-Control Studies. Biol Psychiatry 2016;80:552-61. [PMID: 26927419 DOI: 10.1016/j.biopsych.2015.12.023] [Cited by in Crossref: 228] [Cited by in F6Publishing: 163] [Article Influence: 38.0] [Reference Citation Analysis]
18 Arbabshirani MR, Plis S, Sui J, Calhoun VD. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. Neuroimage 2017;145:137-65. [PMID: 27012503 DOI: 10.1016/j.neuroimage.2016.02.079] [Cited by in Crossref: 398] [Cited by in F6Publishing: 307] [Article Influence: 66.3] [Reference Citation Analysis]
19 Chen GD, Ji F, Li GY, Lyu BX, Hu W, Zhuo CJ. Antidepressant Effects of Electroconvulsive Therapy Unrelated to the Brain's Functional Network Connectivity alterations at an Individual Level. Chin Med J (Engl) 2017;130:414-9. [PMID: 28218214 DOI: 10.4103/0366-6999.199845] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
20 Shaikh TA, Ali R. Automated atrophy assessment for Alzheimer's disease diagnosis from brain MRI images. Magnetic Resonance Imaging 2019;62:167-73. [DOI: 10.1016/j.mri.2019.06.019] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 3.3] [Reference Citation Analysis]
21 Schwarz E, Doan NT, Pergola G, Westlye LT, Kaufmann T, Wolfers T, Brecheisen R, Quarto T, Ing AJ, Di Carlo P, Gurholt TP, Harms RL, Noirhomme Q, Moberget T, Agartz I, Andreassen OA, Bellani M, Bertolino A, Blasi G, Brambilla P, Buitelaar JK, Cervenka S, Flyckt L, Frangou S, Franke B, Hall J, Heslenfeld DJ, Kirsch P, McIntosh AM, Nöthen MM, Papassotiropoulos A, de Quervain DJ, Rietschel M, Schumann G, Tost H, Witt SH, Zink M, Meyer-Lindenberg A; IMAGEMEND Consortium, Karolinska Schizophrenia Project (KaSP) Consortium. Reproducible grey matter patterns index a multivariate, global alteration of brain structure in schizophrenia and bipolar disorder. Transl Psychiatry 2019;9:12. [PMID: 30664633 DOI: 10.1038/s41398-018-0225-4] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 6.7] [Reference Citation Analysis]
22 Feder S, Sundermann B, Wersching H, Teuber A, Kugel H, Teismann H, Heindel W, Berger K, Pfleiderer B. Sample heterogeneity in unipolar depression as assessed by functional connectivity analyses is dominated by general disease effects. J Affect Disord 2017;222:79-87. [PMID: 28679115 DOI: 10.1016/j.jad.2017.06.055] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
23 He L, Li H, Holland SK, Yuan W, Altaye M, Parikh NA. Early prediction of cognitive deficits in very preterm infants using functional connectome data in an artificial neural network framework. Neuroimage Clin 2018;18:290-7. [PMID: 29876249 DOI: 10.1016/j.nicl.2018.01.032] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
24 Rive MM, Redlich R, Schmaal L, Marquand AF, Dannlowski U, Grotegerd D, Veltman DJ, Schene AH, Ruhé HG. Distinguishing medication-free subjects with unipolar disorder from subjects with bipolar disorder: state matters. Bipolar Disord 2016;18:612-23. [PMID: 27870505 DOI: 10.1111/bdi.12446] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 5.5] [Reference Citation Analysis]
25 Bruin W, Denys D, van Wingen G. Diagnostic neuroimaging markers of obsessive-compulsive disorder: Initial evidence from structural and functional MRI studies. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2019;91:49-59. [DOI: 10.1016/j.pnpbp.2018.08.005] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 6.7] [Reference Citation Analysis]
26 Yang J, Lei D, Qin K, Pinaya WHL, Suo X, Li W, Li L, Kemp GJ, Gong Q. Using deep learning to classify pediatric posttraumatic stress disorder at the individual level. BMC Psychiatry 2021;21:535. [PMID: 34711200 DOI: 10.1186/s12888-021-03503-9] [Reference Citation Analysis]
27 Yang C, Zhang A, Jia A, Ma JX, Sun N, Wang Y, Li X, Liu Z, Liu S, Xu Y, Zhang K. Identify abnormalities in resting-state brain function between first-episode, drug-naive major depressive disorder and remitted individuals: a 3-year retrospective study. Neuroreport 2018;29:907-16. [PMID: 29912848 DOI: 10.1097/WNR.0000000000001054] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
28 Wolfers T, Doan NT, Kaufmann T, Alnæs D, Moberget T, Agartz I, Buitelaar JK, Ueland T, Melle I, Franke B, Andreassen OA, Beckmann CF, Westlye LT, Marquand AF. Mapping the Heterogeneous Phenotype of Schizophrenia and Bipolar Disorder Using Normative Models. JAMA Psychiatry 2018;75:1146-55. [PMID: 30304337 DOI: 10.1001/jamapsychiatry.2018.2467] [Cited by in Crossref: 122] [Cited by in F6Publishing: 95] [Article Influence: 40.7] [Reference Citation Analysis]
29 Quaak M, van de Mortel L, Thomas RM, van Wingen G. Deep learning applications for the classification of psychiatric disorders using neuroimaging data: Systematic review and meta-analysis. Neuroimage Clin 2021;30:102584. [PMID: 33677240 DOI: 10.1016/j.nicl.2021.102584] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Maglanoc LA, Kaufmann T, van der Meer D, Marquand AF, Wolfers T, Jonassen R, Hilland E, Andreassen OA, Landrø NI, Westlye LT. Brain Connectome Mapping of Complex Human Traits and Their Polygenic Architecture Using Machine Learning. Biol Psychiatry 2020;87:717-26. [PMID: 31858985 DOI: 10.1016/j.biopsych.2019.10.011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
31 Grecucci A, Lapomarda G, Messina I, Monachesi B, Sorella S, Siugzdaite R. Structural Features Related to Affective Instability Correctly Classify Patients With Borderline Personality Disorder. A Supervised Machine Learning Approach. Front Psychiatry 2022;13:804440. [DOI: 10.3389/fpsyt.2022.804440] [Reference Citation Analysis]
32 Beijers L, van Loo HM, Romeijn J, Lamers F, Schoevers RA, Wardenaar KJ. Investigating data-driven biological subtypes of psychiatric disorders using specification-curve analysis. Psychol Med . [DOI: 10.1017/s0033291720002846] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Berwian IM, Wenzel JG, Kuehn L, Schnuerer I, Seifritz E, Stephan KE, Walter H, Huys QJM. Low predictive power of clinical features for relapse prediction after antidepressant discontinuation in a naturalistic setting. Sci Rep 2022;12:11171. [PMID: 35778458 DOI: 10.1038/s41598-022-13893-9] [Reference Citation Analysis]
34 Kim J, Nakamura T, Yamamoto Y. A momentary biomarker for depressive mood. In Silico Pharmacol 2016;4:4. [PMID: 26979449 DOI: 10.1186/s40203-016-0017-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
35 Koch SBJ, van Zuiden M, Nawijn L, Frijling JL, Veltman DJ, Olff M. ABERRANT RESTING-STATE BRAIN ACTIVITY IN POSTTRAUMATIC STRESS DISORDER: A META-ANALYSIS AND SYSTEMATIC REVIEW: Theoretical Review: Brain Activity in PTSD during Rest. Depress Anxiety 2016;33:592-605. [DOI: 10.1002/da.22478] [Cited by in Crossref: 133] [Cited by in F6Publishing: 126] [Article Influence: 22.2] [Reference Citation Analysis]
36 Loth E, Charman T, Mason L, Tillmann J, Jones EJH, Wooldridge C, Ahmad J, Auyeung B, Brogna C, Ambrosino S, Banaschewski T, Baron-Cohen S, Baumeister S, Beckmann C, Brammer M, Brandeis D, Bölte S, Bourgeron T, Bours C, de Bruijn Y, Chakrabarti B, Crawley D, Cornelissen I, Acqua FD, Dumas G, Durston S, Ecker C, Faulkner J, Frouin V, Garces P, Goyard D, Hayward H, Ham LM, Hipp J, Holt RJ, Johnson MH, Isaksson J, Kundu P, Lai MC, D'ardhuy XL, Lombardo MV, Lythgoe DJ, Mandl R, Meyer-Lindenberg A, Moessnang C, Mueller N, O'Dwyer L, Oldehinkel M, Oranje B, Pandina G, Persico AM, Ruigrok ANV, Ruggeri B, Sabet J, Sacco R, Cáceres ASJ, Simonoff E, Toro R, Tost H, Waldman J, Williams SCR, Zwiers MP, Spooren W, Murphy DGM, Buitelaar JK. The EU-AIMS Longitudinal European Autism Project (LEAP): design and methodologies to identify and validate stratification biomarkers for autism spectrum disorders. Mol Autism 2017;8:24. [PMID: 28649312 DOI: 10.1186/s13229-017-0146-8] [Cited by in Crossref: 92] [Cited by in F6Publishing: 74] [Article Influence: 18.4] [Reference Citation Analysis]
37 Rodrigue AL, Mastrovito D, Esteban O, Durnez J, Koenis MMG, Janssen R, Alexander-Bloch A, Knowles EM, Mathias SR, Mollon J, Pearlson GD, Frangou S, Blangero J, Poldrack RA, Glahn DC. Searching for Imaging Biomarkers of Psychotic Dysconnectivity. Biol Psychiatry Cogn Neurosci Neuroimaging 2020:S2451-9022(20)30372-4. [PMID: 33622655 DOI: 10.1016/j.bpsc.2020.12.002] [Reference Citation Analysis]
38 Wolfers T, Floris DL, Dinga R, van Rooij D, Isakoglou C, Kia SM, Zabihi M, Llera A, Chowdanayaka R, Kumar VJ, Peng H, Laidi C, Batalle D, Dimitrova R, Charman T, Loth E, Lai M, Jones E, Baumeister S, Moessnang C, Banaschewski T, Ecker C, Dumas G, O’muircheartaigh J, Murphy D, Buitelaar JK, Marquand AF, Beckmann CF. From pattern classification to stratification: towards conceptualizing the heterogeneity of Autism Spectrum Disorder. Neuroscience & Biobehavioral Reviews 2019;104:240-54. [DOI: 10.1016/j.neubiorev.2019.07.010] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 10.3] [Reference Citation Analysis]
39 Vaghari D, Kabir E, Henson RN. Late combination shows that MEG adds to MRI in classifying MCI versus controls. Neuroimage 2022;252:119054. [PMID: 35247546 DOI: 10.1016/j.neuroimage.2022.119054] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Koppe G, Meyer-Lindenberg A, Durstewitz D. Deep learning for small and big data in psychiatry. Neuropsychopharmacology 2021;46:176-90. [PMID: 32668442 DOI: 10.1038/s41386-020-0767-z] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 15.0] [Reference Citation Analysis]
41 Retico A, Gori I, Giuliano A, Muratori F, Calderoni S. One-Class Support Vector Machines Identify the Language and Default Mode Regions As Common Patterns of Structural Alterations in Young Children with Autism Spectrum Disorders. Front Neurosci 2016;10:306. [PMID: 27445675 DOI: 10.3389/fnins.2016.00306] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
42 Zito GA, Hartmann A, Béranger B, Weber S, Aybek S, Faouzi J, Roze E, Vidailhet M, Worbe Y. Multivariate classification provides a neural signature of Tourette disorder. Psychol Med 2021;:1-9. [PMID: 35135638 DOI: 10.1017/S0033291721004232] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
43 Li J, Joshi AA, Leahy RM. A NETWORK-BASED APPROACH TO STUDY OF ADHD USING TENSOR DECOMPOSITION OF RESTING STATE FMRI DATA. Proc IEEE Int Symp Biomed Imaging 2020;2020:544-8. [PMID: 33500749 DOI: 10.1109/isbi45749.2020.9098584] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
44 Nunes A, Schnack HG, Ching CRK, Agartz I, Akudjedu TN, Alda M, Alnæs D, Alonso-Lana S, Bauer J, Baune BT, Bøen E, Bonnin CDM, Busatto GF, Canales-Rodríguez EJ, Cannon DM, Caseras X, Chaim-Avancini TM, Dannlowski U, Díaz-Zuluaga AM, Dietsche B, Doan NT, Duchesnay E, Elvsåshagen T, Emden D, Eyler LT, Fatjó-Vilas M, Favre P, Foley SF, Fullerton JM, Glahn DC, Goikolea JM, Grotegerd D, Hahn T, Henry C, Hibar DP, Houenou J, Howells FM, Jahanshad N, Kaufmann T, Kenney J, Kircher TTJ, Krug A, Lagerberg TV, Lenroot RK, López-Jaramillo C, Machado-Vieira R, Malt UF, McDonald C, Mitchell PB, Mwangi B, Nabulsi L, Opel N, Overs BJ, Pineda-Zapata JA, Pomarol-Clotet E, Redlich R, Roberts G, Rosa PG, Salvador R, Satterthwaite TD, Soares JC, Stein DJ, Temmingh HS, Trappenberg T, Uhlmann A, van Haren NEM, Vieta E, Westlye LT, Wolf DH, Yüksel D, Zanetti MV, Andreassen OA, Thompson PM, Hajek T; ENIGMA Bipolar Disorders Working Group. Using structural MRI to identify bipolar disorders - 13 site machine learning study in 3020 individuals from the ENIGMA Bipolar Disorders Working Group. Mol Psychiatry 2020;25:2130-43. [PMID: 30171211 DOI: 10.1038/s41380-018-0228-9] [Cited by in Crossref: 55] [Cited by in F6Publishing: 36] [Article Influence: 13.8] [Reference Citation Analysis]
45 Berwian IM, Walter H, Seifritz E, Huys QJ. Predicting relapse after antidepressant withdrawal - a systematic review. Psychol Med 2017;47:426-37. [PMID: 27786144 DOI: 10.1017/S0033291716002580] [Cited by in Crossref: 39] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
46 Mentink LJ, Guimarães JPOFT, Faber M, Sprooten E, Olde Rikkert MGM, Haak KV, Beckmann CF. Functional co-activation of the default mode network in APOE ε4-carriers: A replication study. Neuroimage 2021;240:118304. [PMID: 34329959 DOI: 10.1016/j.neuroimage.2021.118304] [Reference Citation Analysis]
47 Sun J, Chen L, He J, Du Z, Ma Y, Wang Z, Guo C, Luo Y, Gao D, Hong Y, Zhang L, Xu F, Cao J, Hou X, Xiao X, Tian J, Fang J, Yu X. Altered Brain Function in First-Episode and Recurrent Depression: A Resting-State Functional Magnetic Resonance Imaging Study. Front Neurosci 2022;16:876121. [PMID: 35546875 DOI: 10.3389/fnins.2022.876121] [Reference Citation Analysis]
48 Fraza CJ, Dinga R, Beckmann CF, Marquand AF. Warped Bayesian linear regression for normative modelling of big data. Neuroimage 2021;245:118715. [PMID: 34798518 DOI: 10.1016/j.neuroimage.2021.118715] [Reference Citation Analysis]
49 Zilcha-Mano S, Zhu X, Suarez-Jimenez B, Pickover A, Tal S, Such S, Marohasy C, Chrisanthopoulos M, Salzman C, Lazarov A, Neria Y, Rutherford BR. Diagnostic and Predictive Neuroimaging Biomarkers for Posttraumatic Stress Disorder. Biol Psychiatry Cogn Neurosci Neuroimaging 2020;5:688-96. [PMID: 32507508 DOI: 10.1016/j.bpsc.2020.03.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
50 Marquand AF, Wolfers T, Mennes M, Buitelaar J, Beckmann CF. Beyond Lumping and Splitting: A Review of Computational Approaches for Stratifying Psychiatric Disorders. Biol Psychiatry Cogn Neurosci Neuroimaging 2016;1:433-47. [PMID: 27642641 DOI: 10.1016/j.bpsc.2016.04.002] [Cited by in Crossref: 61] [Cited by in F6Publishing: 74] [Article Influence: 10.2] [Reference Citation Analysis]
51 Liu G, Li Y, Zhang W, Zhang L. A Brief Review of Artificial Intelligence Applications and Algorithms for Psychiatric Disorders. Engineering 2020;6:462-7. [DOI: 10.1016/j.eng.2019.06.008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 5.5] [Reference Citation Analysis]
52 Calderoni S, Billeci L, Narzisi A, Brambilla P, Retico A, Muratori F. Rehabilitative Interventions and Brain Plasticity in Autism Spectrum Disorders: Focus on MRI-Based Studies. Front Neurosci 2016;10:139. [PMID: 27065795 DOI: 10.3389/fnins.2016.00139] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
53 Hu K, Wang M, Liu Y, Yan H, Song M, Chen J, Chen Y, Wang H, Guo H, Wan P, Lv L, Yang Y, Li P, Lu L, Yan J, Wang H, Zhang H, Zhang D, Wu H, Ning Y, Jiang T, Liu B. Multisite schizophrenia classification by integrating structural magnetic resonance imaging data with polygenic risk score. Neuroimage Clin 2021;32:102860. [PMID: 34749286 DOI: 10.1016/j.nicl.2021.102860] [Reference Citation Analysis]
54 Dadi K, Rahim M, Abraham A, Chyzhyk D, Milham M, Thirion B, Varoquaux G; Alzheimer's Disease Neuroimaging Initiative. Benchmarking functional connectome-based predictive models for resting-state fMRI. Neuroimage 2019;192:115-34. [PMID: 30836146 DOI: 10.1016/j.neuroimage.2019.02.062] [Cited by in Crossref: 87] [Cited by in F6Publishing: 60] [Article Influence: 29.0] [Reference Citation Analysis]
55 Thabtah F. Machine learning in autistic spectrum disorder behavioral research: A review and ways forward. Informatics for Health and Social Care 2018;44:278-97. [DOI: 10.1080/17538157.2017.1399132] [Cited by in Crossref: 59] [Cited by in F6Publishing: 30] [Article Influence: 14.8] [Reference Citation Analysis]
56 Cao H, Meyer-Lindenberg A, Schwarz E. Comparative Evaluation of Machine Learning Strategies for Analyzing Big Data in Psychiatry. Int J Mol Sci 2018;19:E3387. [PMID: 30380679 DOI: 10.3390/ijms19113387] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
57 Janssen RJ, Mourão-miranda J, Schnack HG. Making Individual Prognoses in Psychiatry Using Neuroimaging and Machine Learning. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 2018;3:798-808. [DOI: 10.1016/j.bpsc.2018.04.004] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 7.8] [Reference Citation Analysis]
58 Frydman I, de Salles Andrade JB, Vigne P, Fontenelle LF. Can Neuroimaging Provide Reliable Biomarkers for Obsessive-Compulsive Disorder? A Narrative Review. Curr Psychiatry Rep 2016;18:90. [PMID: 27549605 DOI: 10.1007/s11920-016-0729-7] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
59 Sudre G, Sharp W, Kundzicz P, Bouyssi-Kobar M, Norman L, Choudhury S, Shaw P. Predicting the course of ADHD symptoms through the integration of childhood genomic, neural, and cognitive features. Mol Psychiatry 2021;26:4046-54. [PMID: 33173195 DOI: 10.1038/s41380-020-00941-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
60 van Rooij D, Anagnostou E, Arango C, Auzias G, Behrmann M, Busatto GF, Calderoni S, Daly E, Deruelle C, Di Martino A, Dinstein I, Duran FLS, Durston S, Ecker C, Fair D, Fedor J, Fitzgerald J, Freitag CM, Gallagher L, Gori I, Haar S, Hoekstra L, Jahanshad N, Jalbrzikowski M, Janssen J, Lerch J, Luna B, Martinho MM, McGrath J, Muratori F, Murphy CM, Murphy DGM, O'Hearn K, Oranje B, Parellada M, Retico A, Rosa P, Rubia K, Shook D, Taylor M, Thompson PM, Tosetti M, Wallace GL, Zhou F, Buitelaar JK. Cortical and Subcortical Brain Morphometry Differences Between Patients With Autism Spectrum Disorder and Healthy Individuals Across the Lifespan: Results From the ENIGMA ASD Working Group. Am J Psychiatry 2018;175:359-69. [PMID: 29145754 DOI: 10.1176/appi.ajp.2017.17010100] [Cited by in Crossref: 173] [Cited by in F6Publishing: 141] [Article Influence: 34.6] [Reference Citation Analysis]
61 Huang X, Gong Q, Sweeney JA, Biswal BB. Progress in psychoradiology, the clinical application of psychiatric neuroimaging. Br J Radiol 2019;92:20181000. [PMID: 31170803 DOI: 10.1259/bjr.20181000] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 10.0] [Reference Citation Analysis]
62 Huang KL, Chen MH, Hsu JW, Tsai SJ, Bai YM. Using classification and regression tree modeling to investigate appetite hormones and proinflammatory cytokines as biomarkers to differentiate bipolar I depression from major depressive disorder. CNS Spectr 2021;:1-7. [PMID: 33563365 DOI: 10.1017/S109285292100016X] [Reference Citation Analysis]
63 Lei D, Qin K, Li W, Pinaya WHL, Tallman MJ, Patino LR, Strawn JR, Fleck D, Klein CC, Lui S, Gong Q, Adler CM, Mechelli A, Sweeney JA, DelBello MP. Brain morphometric features predict medication response in youth with bipolar disorder: a prospective randomized clinical trial. Psychol Med 2022;:1-11. [PMID: 35392995 DOI: 10.1017/S0033291722000757] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Alnæs D, Kaufmann T, van der Meer D, Córdova-Palomera A, Rokicki J, Moberget T, Bettella F, Agartz I, Barch DM, Bertolino A, Brandt CL, Cervenka S, Djurovic S, Doan NT, Eisenacher S, Fatouros-Bergman H, Flyckt L, Di Giorgio A, Haatveit B, Jönsson EG, Kirsch P, Lund MJ, Meyer-Lindenberg A, Pergola G, Schwarz E, Smeland OB, Quarto T, Zink M, Andreassen OA, Westlye LT; Karolinska Schizophrenia Project Consortium. Brain Heterogeneity in Schizophrenia and Its Association With Polygenic Risk. JAMA Psychiatry 2019;76:739-48. [PMID: 30969333 DOI: 10.1001/jamapsychiatry.2019.0257] [Cited by in Crossref: 76] [Cited by in F6Publishing: 58] [Article Influence: 38.0] [Reference Citation Analysis]
65 Zhang‐james Y, Buitelaar JK, Rooij D, Faraone SV; The ENIGMA‐ASD Working Group. Ensemble classification of autism spectrum disorder using structural magnetic resonance imaging features. JCPP Advances 2021;1. [DOI: 10.1002/jcv2.12042] [Reference Citation Analysis]
66 Janousova E, Montana G, Kasparek T, Schwarz D. Supervised, Multivariate, Whole-Brain Reduction Did Not Help to Achieve High Classification Performance in Schizophrenia Research. Front Neurosci 2016;10:392. [PMID: 27610072 DOI: 10.3389/fnins.2016.00392] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
67 Langer N, Plomecka MB, Tröndle M, Negi A, Popov T, Milham M, Haufe S. A benchmark for prediction of psychiatric multimorbidity from resting EEG data in a large pediatric sample. Neuroimage 2022;258:119348. [PMID: 35659998 DOI: 10.1016/j.neuroimage.2022.119348] [Reference Citation Analysis]
68 Chen YJ, Liu CM, Hsu YC, Lo YC, Hwang TJ, Hwu HG, Lin YT, Tseng WI. Individualized prediction of schizophrenia based on the whole-brain pattern of altered white matter tract integrity. Hum Brain Mapp 2018;39:575-87. [PMID: 29080229 DOI: 10.1002/hbm.23867] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
69 Vieira S, Liang X, Guiomar R, Mechelli A. Can we predict who will benefit from cognitive-behavioural therapy? A systematic review and meta-analysis of machine learning studies. Clinical Psychology Review 2022. [DOI: 10.1016/j.cpr.2022.102193] [Reference Citation Analysis]
70 Huys QJ, Maia TV, Paulus MP. Computational Psychiatry: From Mechanistic Insights to the Development of New Treatments. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 2016;1:382-5. [DOI: 10.1016/j.bpsc.2016.08.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
71 Kaufmann T, Alnæs D, Brandt CL, Bettella F, Djurovic S, Andreassen OA, Westlye LT. Stability of the Brain Functional Connectome Fingerprint in Individuals With Schizophrenia. JAMA Psychiatry 2018;75:749-51. [PMID: 29799905 DOI: 10.1001/jamapsychiatry.2018.0844] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 6.7] [Reference Citation Analysis]
72 Todeva-Radneva A, Paunova R, Kandilarova S, St Stoyanov D. The Value of Neuroimaging Techniques in the Translation and Transdiagnostic Validation of Psychiatric Diagnoses - Selective Review. Curr Top Med Chem 2020;20:540-53. [PMID: 32003690 DOI: 10.2174/1568026620666200131095328] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
73 Sundermann B, Bode J, Lueken U, Westphal D, Gerlach AL, Straube B, Wittchen HU, Ströhle A, Wittmann A, Konrad C, Kircher T, Arolt V, Pfleiderer B. Support Vector Machine Analysis of Functional Magnetic Resonance Imaging of Interoception Does Not Reliably Predict Individual Outcomes of Cognitive Behavioral Therapy in Panic Disorder with Agoraphobia. Front Psychiatry 2017;8:99. [PMID: 28649205 DOI: 10.3389/fpsyt.2017.00099] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
74 Raman S, Deserno L, Schlagenhauf F, Stephan KE. A hierarchical model for integrating unsupervised generative embedding and empirical Bayes. Journal of Neuroscience Methods 2016;269:6-20. [DOI: 10.1016/j.jneumeth.2016.04.022] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
75 Jollans L, Whelan R. Neuromarkers for Mental Disorders: Harnessing Population Neuroscience. Front Psychiatry 2018;9:242. [PMID: 29928237 DOI: 10.3389/fpsyt.2018.00242] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 6.5] [Reference Citation Analysis]
76 Hilbert K, Lueken U, Muehlhan M, Beesdo-Baum K. Separating generalized anxiety disorder from major depression using clinical, hormonal, and structural MRI data: A multimodal machine learning study. Brain Behav 2017;7:e00633. [PMID: 28293473 DOI: 10.1002/brb3.633] [Cited by in Crossref: 42] [Cited by in F6Publishing: 29] [Article Influence: 8.4] [Reference Citation Analysis]
77 Buitelaar J, Bölte S, Brandeis D, Caye A, Christmann N, Cortese S, Coghill D, Faraone SV, Franke B, Gleitz M, Greven CU, Kooij S, Leffa DT, Rommelse N, Newcorn JH, Polanczyk GV, Rohde LA, Simonoff E, Stein M, Vitiello B, Yazgan Y, Roesler M, Doepfner M, Banaschewski T. Toward Precision Medicine in ADHD. Front Behav Neurosci 2022;16:900981. [PMID: 35874653 DOI: 10.3389/fnbeh.2022.900981] [Reference Citation Analysis]
78 Zabihi M, Oldehinkel M, Wolfers T, Frouin V, Goyard D, Loth E, Charman T, Tillmann J, Banaschewski T, Dumas G, Holt R, Baron-Cohen S, Durston S, Bölte S, Murphy D, Ecker C, Buitelaar JK, Beckmann CF, Marquand AF. Dissecting the Heterogeneous Cortical Anatomy of Autism Spectrum Disorder Using Normative Models. Biol Psychiatry Cogn Neurosci Neuroimaging 2019;4:567-78. [PMID: 30799285 DOI: 10.1016/j.bpsc.2018.11.013] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 5.8] [Reference Citation Analysis]
79 Huertas I, Oldehinkel M, van Oort ESB, Garcia-Solis D, Mir P, Beckmann CF, Marquand AF. A Bayesian spatial model for neuroimaging data based on biologically informed basis functions. Neuroimage 2017;161:134-48. [PMID: 28782681 DOI: 10.1016/j.neuroimage.2017.08.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
80 Reggente N, Moody TD, Morfini F, Sheen C, Rissman J, O'Neill J, Feusner JD. Multivariate resting-state functional connectivity predicts response to cognitive behavioral therapy in obsessive-compulsive disorder. Proc Natl Acad Sci U S A 2018;115:2222-7. [PMID: 29440404 DOI: 10.1073/pnas.1716686115] [Cited by in Crossref: 47] [Cited by in F6Publishing: 40] [Article Influence: 11.8] [Reference Citation Analysis]
81 Durstewitz D, Koppe G, Meyer-lindenberg A. Deep neural networks in psychiatry. Mol Psychiatry 2019;24:1583-98. [DOI: 10.1038/s41380-019-0365-9] [Cited by in Crossref: 95] [Cited by in F6Publishing: 68] [Article Influence: 31.7] [Reference Citation Analysis]
82 Blair RJR, Mathur A, Haines N, Bajaj S. Future directions for cognitive neuroscience in psychiatry: recommendations for biomarker design based on recent test re-test reliability work. Current Opinion in Behavioral Sciences 2022;44:101102. [DOI: 10.1016/j.cobeha.2022.101102] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Marquand AF, Kia SM, Zabihi M, Wolfers T, Buitelaar JK, Beckmann CF. Conceptualizing mental disorders as deviations from normative functioning. Mol Psychiatry 2019;24:1415-24. [PMID: 31201374 DOI: 10.1038/s41380-019-0441-1] [Cited by in Crossref: 112] [Cited by in F6Publishing: 73] [Article Influence: 37.3] [Reference Citation Analysis]
84 Dubois J, Adolphs R. Building a Science of Individual Differences from fMRI. Trends Cogn Sci 2016;20:425-43. [PMID: 27138646 DOI: 10.1016/j.tics.2016.03.014] [Cited by in Crossref: 332] [Cited by in F6Publishing: 235] [Article Influence: 55.3] [Reference Citation Analysis]
85 Yamamoto M, Bagarinao E, Kushima I, Takahashi T, Sasabayashi D, Inada T, Suzuki M, Iidaka T, Ozaki N. Support vector machine-based classification of schizophrenia patients and healthy controls using structural magnetic resonance imaging from two independent sites. PLoS One 2020;15:e0239615. [PMID: 33232334 DOI: 10.1371/journal.pone.0239615] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
86 Winter NR, Leenings R, Ernsting J, Sarink K, Fisch L, Emden D, Blanke J, Goltermann J, Opel N, Barkhau C, Meinert S, Dohm K, Repple J, Mauritz M, Gruber M, Leehr EJ, Grotegerd D, Redlich R, Jansen A, Nenadic I, Nöthen MM, Forstner A, Rietschel M, Groß J, Bauer J, Heindel W, Andlauer T, Eickhoff SB, Kircher T, Dannlowski U, Hahn T. Quantifying Deviations of Brain Structure and Function in Major Depressive Disorder Across Neuroimaging Modalities. JAMA Psychiatry 2022. [PMID: 35895072 DOI: 10.1001/jamapsychiatry.2022.1780] [Reference Citation Analysis]
87 O'Halloran R, Kopell BH, Sprooten E, Goodman WK, Frangou S. Multimodal Neuroimaging-Informed Clinical Applications in Neuropsychiatric Disorders. Front Psychiatry 2016;7:63. [PMID: 27148092 DOI: 10.3389/fpsyt.2016.00063] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
88 Noirhomme Q, Brecheisen R, Lesenfants D, Antonopoulos G, Laureys S. "Look at my classifier's result": Disentangling unresponsive from (minimally) conscious patients. Neuroimage 2017;145:288-303. [PMID: 26690804 DOI: 10.1016/j.neuroimage.2015.12.006] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 4.1] [Reference Citation Analysis]
89 Sundermann B, Pfleiderer B, Minnerup H, Berger K, Douaud G. Interaction of Developmental Venous Anomalies with Resting-State Functional MRI Measures. AJNR Am J Neuroradiol 2018;39:2326-31. [PMID: 30385467 DOI: 10.3174/ajnr.A5847] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
90 Huys QJ, Maia TV, Frank MJ. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci 2016;19:404-13. [PMID: 26906507 DOI: 10.1038/nn.4238] [Cited by in Crossref: 410] [Cited by in F6Publishing: 292] [Article Influence: 68.3] [Reference Citation Analysis]
91 Sundermann B, Feder S, Wersching H, Teuber A, Schwindt W, Kugel H, Heindel W, Arolt V, Berger K, Pfleiderer B. Diagnostic classification of unipolar depression based on resting-state functional connectivity MRI: effects of generalization to a diverse sample. J Neural Transm (Vienna) 2017;124:589-605. [PMID: 28040847 DOI: 10.1007/s00702-016-1673-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
92 Khosla M, Jamison K, Ngo GH, Kuceyeski A, Sabuncu MR. Machine learning in resting-state fMRI analysis. Magn Reson Imaging 2019;64:101-21. [PMID: 31173849 DOI: 10.1016/j.mri.2019.05.031] [Cited by in Crossref: 37] [Cited by in F6Publishing: 21] [Article Influence: 12.3] [Reference Citation Analysis]
93 Wu F, Zhang Y, Yang Y, Lu X, Fang Z, Huang J, Kong L, Chen J, Ning Y, Li X, Wu K. Structural and functional brain abnormalities in drug-naive, first-episode, and chronic patients with schizophrenia: a multimodal MRI study. Neuropsychiatr Dis Treat 2018;14:2889-904. [PMID: 30464473 DOI: 10.2147/NDT.S174356] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
94 Shahamiri SR, Thabtah F. Autism AI: a New Autism Screening System Based on Artificial Intelligence. Cogn Comput 2020;12:766-77. [DOI: 10.1007/s12559-020-09743-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
95 Li M, Das T, Deng W, Wang Q, Li Y, Zhao L, Ma X, Wang Y, Yu H, Li X, Meng Y, Palaniyappan L, Li T. Clinical utility of a short resting-state MRI scan in differentiating bipolar from unipolar depression. Acta Psychiatr Scand 2017;136:288-99. [PMID: 28504840 DOI: 10.1111/acps.12752] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 8.2] [Reference Citation Analysis]
96 Menke A. Precision pharmacotherapy: psychiatry's future direction in preventing, diagnosing, and treating mental disorders. Pharmgenomics Pers Med 2018;11:211-22. [PMID: 30510440 DOI: 10.2147/PGPM.S146110] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
97 Liu M, Li B, Hu D. Autism Spectrum Disorder Studies Using fMRI Data and Machine Learning: A Review. Front Neurosci 2021;15:697870. [PMID: 34602966 DOI: 10.3389/fnins.2021.697870] [Reference Citation Analysis]
98 Holz NE, Zohsel K, Laucht M, Banaschewski T, Hohmann S, Brandeis D. Gene x environment interactions in conduct disorder: Implications for future treatments. Neuroscience & Biobehavioral Reviews 2018;91:239-58. [DOI: 10.1016/j.neubiorev.2016.08.017] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
99 Schmaal L, Veltman DJ, van Erp TG, Sämann PG, Frodl T, Jahanshad N, Loehrer E, Vernooij MW, Niessen WJ, Ikram MA, Wittfeld K, Grabe HJ, Block A, Hegenscheid K, Hoehn D, Czisch M, Lagopoulos J, Hatton SN, Hickie IB, Goya-Maldonado R, Krämer B, Gruber O, Couvy-Duchesne B, Rentería ME, Strike LT, Wright MJ, de Zubicaray GI, McMahon KL, Medland SE, Gillespie NA, Hall GB, van Velzen LS, van Tol MJ, van der Wee NJ, Veer IM, Walter H, Schramm E, Normann C, Schoepf D, Konrad C, Zurowski B, McIntosh AM, Whalley HC, Sussmann JE, Godlewska BR, Fischer FH, Penninx BW, Thompson PM, Hibar DP. Response to Dr Fried & Dr Kievit, and Dr Malhi et al. Mol Psychiatry 2016;21:726-8. [PMID: 26903270 DOI: 10.1038/mp.2016.9] [Reference Citation Analysis]
100 Reinders AATS, Marquand AF, Schlumpf YR, Chalavi S, Vissia EM, Nijenhuis ERS, Dazzan P, Jäncke L, Veltman DJ. Aiding the diagnosis of dissociative identity disorder: pattern recognition study of brain biomarkers. Br J Psychiatry 2019;215:536-44. [DOI: 10.1192/bjp.2018.255] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
101 Zhu X, Yuan F, Zhou G, Nie J, Wang D, Hu P, Ouyang L, Kong L, Liao W. Cross-network interaction for diagnosis of major depressive disorder based on resting state functional connectivity. Brain Imaging Behav 2021;15:1279-89. [PMID: 32734435 DOI: 10.1007/s11682-020-00326-2] [Reference Citation Analysis]
102 Zhou M, Hu X, Lu L, Zhang L, Chen L, Gong Q, Huang X. Intrinsic cerebral activity at resting state in adults with major depressive disorder: A meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2017;75:157-64. [PMID: 28174129 DOI: 10.1016/j.pnpbp.2017.02.001] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 7.2] [Reference Citation Analysis]
103 Orban P, Dansereau C, Desbois L, Mongeau-Pérusse V, Giguère CÉ, Nguyen H, Mendrek A, Stip E, Bellec P. Multisite generalizability of schizophrenia diagnosis classification based on functional brain connectivity. Schizophr Res 2018;192:167-71. [PMID: 28601499 DOI: 10.1016/j.schres.2017.05.027] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
104 Rutledge RB, Chekroud AM, Huys QJ. Machine learning and big data in psychiatry: toward clinical applications. Curr Opin Neurobiol 2019;55:152-9. [PMID: 30999271 DOI: 10.1016/j.conb.2019.02.006] [Cited by in Crossref: 50] [Cited by in F6Publishing: 30] [Article Influence: 16.7] [Reference Citation Analysis]
105 Rubia K. Cognitive Neuroscience of Attention Deficit Hyperactivity Disorder (ADHD) and Its Clinical Translation. Front Hum Neurosci 2018;12:100. [PMID: 29651240 DOI: 10.3389/fnhum.2018.00100] [Cited by in Crossref: 108] [Cited by in F6Publishing: 94] [Article Influence: 27.0] [Reference Citation Analysis]
106 Mothi SS, Sudarshan M, Tandon N, Tamminga C, Pearlson G, Sweeney J, Clementz B, Keshavan MS. Machine learning improved classification of psychoses using clinical and biological stratification: Update from the bipolar-schizophrenia network for intermediate phenotypes (B-SNIP). Schizophr Res 2019;214:60-9. [PMID: 29807804 DOI: 10.1016/j.schres.2018.04.037] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
107 Frangou S, Dima D, Jogia J. Towards person-centered neuroimaging markers for resilience and vulnerability in Bipolar Disorder. Neuroimage 2017;145:230-7. [PMID: 27622393 DOI: 10.1016/j.neuroimage.2016.08.066] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 4.5] [Reference Citation Analysis]
108 Franke B, Michelini G, Asherson P, Banaschewski T, Bilbow A, Buitelaar JK, Cormand B, Faraone SV, Ginsberg Y, Haavik J, Kuntsi J, Larsson H, Lesch KP, Ramos-Quiroga JA, Réthelyi JM, Ribases M, Reif A. Live fast, die young? A review on the developmental trajectories of ADHD across the lifespan. Eur Neuropsychopharmacol 2018;28:1059-88. [PMID: 30195575 DOI: 10.1016/j.euroneuro.2018.08.001] [Cited by in Crossref: 161] [Cited by in F6Publishing: 128] [Article Influence: 40.3] [Reference Citation Analysis]
109 Setoyama D, Yoshino A, Takamura M, Okada G, Iwata M, Tsunetomi K, Ohgidani M, Kuwano N, Yoshimoto J, Okamoto Y, Yamawaki S, Kanba S, Kang D, Kato TA. Personality classification enhances blood metabolome analysis and biotyping for major depressive disorders: two-species investigation. J Affect Disord 2021;279:20-30. [PMID: 33038697 DOI: 10.1016/j.jad.2020.09.118] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
110 Pläschke RN, Cieslik EC, Müller VI, Hoffstaedter F, Plachti A, Varikuti DP, Goosses M, Latz A, Caspers S, Jockwitz C, Moebus S, Gruber O, Eickhoff CR, Reetz K, Heller J, Südmeyer M, Mathys C, Caspers J, Grefkes C, Kalenscher T, Langner R, Eickhoff SB. On the integrity of functional brain networks in schizophrenia, Parkinson's disease, and advanced age: Evidence from connectivity-based single-subject classification. Hum Brain Mapp 2017;38:5845-58. [PMID: 28876500 DOI: 10.1002/hbm.23763] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 4.2] [Reference Citation Analysis]
111 Rommelse N, Buitelaar JK, Hartman CA. Structural brain imaging correlates of ASD and ADHD across the lifespan: a hypothesis-generating review on developmental ASD-ADHD subtypes. J Neural Transm (Vienna) 2017;124:259-71. [PMID: 28000020 DOI: 10.1007/s00702-016-1651-1] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
112 Zeng P, Huang J, Wu S, Qian C, Chen F, Sun W, Tao W, Liao Y, Zhang J, Yang Z, Zhong S, Zhang Z, Xiao L, Huang B. Characterizing the Structural Pattern Predicting Medication Response in Herpes Zoster Patients Using Multivoxel Pattern Analysis. Front Neurosci 2019;13:534. [PMID: 31191228 DOI: 10.3389/fnins.2019.00534] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
113 Wang YM, Cai XL, Zhang RT, Wang Y, Madsen KH, Sørensen TA, Møller A, Cheung EFC, Chan RCK. Searchlight classification based on Amplitude of Low Frequency Fluctuation and functional connectivity in individuals with obsessive-compulsive symptoms. Cogn Neuropsychiatry 2019;24:322-34. [PMID: 31451062 DOI: 10.1080/13546805.2019.1658575] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
114 Vöhringer PA, Perlis RH. Discriminating Between Bipolar Disorder and Major Depressive Disorder. Psychiatric Clinics of North America 2016;39:1-10. [DOI: 10.1016/j.psc.2015.10.001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
115 Thabtah F, Peebles D. A new machine learning model based on induction of rules for autism detection. Health Informatics J 2020;26:264-86. [PMID: 30693818 DOI: 10.1177/1460458218824711] [Cited by in Crossref: 57] [Cited by in F6Publishing: 21] [Article Influence: 19.0] [Reference Citation Analysis]
116 Chaim-Avancini TM, Doshi J, Zanetti MV, Erus G, Silva MA, Duran FLS, Cavallet M, Serpa MH, Caetano SC, Louza MR, Davatzikos C, Busatto GF. Neurobiological support to the diagnosis of ADHD in stimulant-naïve adults: pattern recognition analyses of MRI data. Acta Psychiatr Scand 2017;136:623-36. [PMID: 29080396 DOI: 10.1111/acps.12824] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
117 Doan NT, Kaufmann T, Bettella F, Jørgensen KN, Brandt CL, Moberget T, Alnæs D, Douaud G, Duff E, Djurovic S, Melle I, Ueland T, Agartz I, Andreassen OA, Westlye LT. Distinct multivariate brain morphological patterns and their added predictive value with cognitive and polygenic risk scores in mental disorders. Neuroimage Clin 2017;15:719-31. [PMID: 28702349 DOI: 10.1016/j.nicl.2017.06.014] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
118 Guo H, Yu J, Hu Z, Yi H, Hou Y, He X. A hybrid clustering algorithm for multiple-source resolving in bioluminescence tomography. J Biophotonics 2018;11:e201700056. [PMID: 28700135 DOI: 10.1002/jbio.201700056] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
119 [DOI: 10.1145/3301275.3302324] [Cited by in Crossref: 22] [Cited by in F6Publishing: 2] [Article Influence: 7.3] [Reference Citation Analysis]
120 de Filippis R, Carbone EA, Gaetano R, Bruni A, Pugliese V, Segura-Garcia C, De Fazio P. Machine learning techniques in a structural and functional MRI diagnostic approach in schizophrenia: a systematic review. Neuropsychiatr Dis Treat 2019;15:1605-27. [PMID: 31354276 DOI: 10.2147/NDT.S202418] [Cited by in Crossref: 30] [Cited by in F6Publishing: 16] [Article Influence: 10.0] [Reference Citation Analysis]
121 Salvador R, Radua J, Canales-Rodríguez EJ, Solanes A, Sarró S, Goikolea JM, Valiente A, Monté GC, Natividad MDC, Guerrero-Pedraza A, Moro N, Fernández-Corcuera P, Amann BL, Maristany T, Vieta E, McKenna PJ, Pomarol-Clotet E. Evaluation of machine learning algorithms and structural features for optimal MRI-based diagnostic prediction in psychosis. PLoS One 2017;12:e0175683. [PMID: 28426817 DOI: 10.1371/journal.pone.0175683] [Cited by in Crossref: 47] [Cited by in F6Publishing: 35] [Article Influence: 9.4] [Reference Citation Analysis]
122 [DOI: 10.1101/2020.08.17.255034] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
123 Steardo L Jr, Carbone EA, de Filippis R, Pisanu C, Segura-Garcia C, Squassina A, De Fazio P, Steardo L. Application of Support Vector Machine on fMRI Data as Biomarkers in Schizophrenia Diagnosis: A Systematic Review. Front Psychiatry 2020;11:588. [PMID: 32670113 DOI: 10.3389/fpsyt.2020.00588] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
124 Rashid B, Calhoun V. Towards a brain-based predictome of mental illness. Hum Brain Mapp. 2020;41:3468-3535. [PMID: 32374075 DOI: 10.1002/hbm.25013] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
125 Paulus MP, Huys QJ, Maia TV. A Roadmap for the Development of Applied Computational Psychiatry. Biol Psychiatry Cogn Neurosci Neuroimaging 2016;1:386-92. [PMID: 28018986 DOI: 10.1016/j.bpsc.2016.05.001] [Cited by in Crossref: 27] [Cited by in F6Publishing: 34] [Article Influence: 4.5] [Reference Citation Analysis]
126 Cabrera B, Romero-Rebollar C, Jiménez-Ángeles L, Genis-Mendoza AD, Flores J, Lanzagorta N, Arroyo M, de la Fuente-Sandoval C, Santana D, Medina-Bañuelos V, Sacristán E, Nicolini H. Neuroanatomical features and its usefulness in classification of patients with PANDAS. CNS Spectr 2019;24:533-43. [PMID: 30428956 DOI: 10.1017/S1092852918001268] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
127 Tulay EE, Metin B, Tarhan N, Arıkan MK. Multimodal Neuroimaging: Basic Concepts and Classification of Neuropsychiatric Diseases. Clin EEG Neurosci 2019;50:20-33. [DOI: 10.1177/1550059418782093] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
128 Vahid A, Bluschke A, Roessner V, Stober S, Beste C. Deep Learning Based on Event-Related EEG Differentiates Children with ADHD from Healthy Controls. J Clin Med 2019;8:E1055. [PMID: 31330961 DOI: 10.3390/jcm8071055] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
129 Vieira S, Pinaya WH, Mechelli A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications. Neurosci Biobehav Rev 2017;74:58-75. [PMID: 28087243 DOI: 10.1016/j.neubiorev.2017.01.002] [Cited by in Crossref: 240] [Cited by in F6Publishing: 139] [Article Influence: 48.0] [Reference Citation Analysis]
130 Ding X, Yang Y, Stein EA, Ross TJ. Combining Multiple Resting-State fMRI Features during Classification: Optimized Frameworks and Their Application to Nicotine Addiction. Front Hum Neurosci 2017;11:362. [PMID: 28747877 DOI: 10.3389/fnhum.2017.00362] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
131 Doucet GE, Lin D, Du Y, Fu Z, Glahn DC, Calhoun VD, Turner J, Frangou S. Personalized estimates of morphometric similarity in bipolar disorder and schizophrenia. NPJ Schizophr 2020;6:39. [PMID: 33277498 DOI: 10.1038/s41537-020-00128-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
132 Qureshi MNI, Oh J, Min B, Jo HJ, Lee B. Multi-modal, Multi-measure, and Multi-class Discrimination of ADHD with Hierarchical Feature Extraction and Extreme Learning Machine Using Structural and Functional Brain MRI. Front Hum Neurosci 2017;11:157. [PMID: 28420972 DOI: 10.3389/fnhum.2017.00157] [Cited by in Crossref: 5] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
133 Hsieh S, Yao ZF, Yang MH. Multimodal Imaging Analysis Reveals Frontal-Associated Networks in Relation to Individual Resilience Strength. Int J Environ Res Public Health 2021;18:1123. [PMID: 33513995 DOI: 10.3390/ijerph18031123] [Reference Citation Analysis]
134 Mwangi B, Wu MJ, Cao B, Passos IC, Lavagnino L, Keser Z, Zunta-Soares GB, Hasan KM, Kapczinski F, Soares JC. Individualized Prediction and Clinical Staging of Bipolar Disorders using Neuroanatomical Biomarkers. Biol Psychiatry Cogn Neurosci Neuroimaging 2016;1:186-94. [PMID: 27047994 DOI: 10.1016/j.bpsc.2016.01.001] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 6.0] [Reference Citation Analysis]
135 Heinrichs B, Eickhoff SB. Your evidence? Machine learning algorithms for medical diagnosis and prediction. Hum Brain Mapp 2020;41:1435-44. [PMID: 31804003 DOI: 10.1002/hbm.24886] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
136 Nicholson AA, Harricharan S, Densmore M, Neufeld RWJ, Ros T, McKinnon MC, Frewen PA, Théberge J, Jetly R, Pedlar D, Lanius RA. Classifying heterogeneous presentations of PTSD via the default mode, central executive, and salience networks with machine learning. Neuroimage Clin 2020;27:102262. [PMID: 32446241 DOI: 10.1016/j.nicl.2020.102262] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
137 Vieira S, Gong QY, Pinaya WHL, Scarpazza C, Tognin S, Crespo-Facorro B, Tordesillas-Gutierrez D, Ortiz-García V, Setien-Suero E, Scheepers FE, Van Haren NEM, Marques TR, Murray RM, David A, Dazzan P, McGuire P, Mechelli A. Using Machine Learning and Structural Neuroimaging to Detect First Episode Psychosis: Reconsidering the Evidence. Schizophr Bull 2020;46:17-26. [PMID: 30809667 DOI: 10.1093/schbul/sby189] [Cited by in Crossref: 42] [Cited by in F6Publishing: 32] [Article Influence: 42.0] [Reference Citation Analysis]
138 Feilong M, Nastase SA, Guntupalli JS, Haxby JV. Reliable individual differences in fine-grained cortical functional architecture. Neuroimage 2018;183:375-86. [PMID: 30118870 DOI: 10.1016/j.neuroimage.2018.08.029] [Cited by in Crossref: 29] [Cited by in F6Publishing: 17] [Article Influence: 7.3] [Reference Citation Analysis]
139 Bu X, Hu X, Zhang L, Li B, Zhou M, Lu L, Hu X, Li H, Yang Y, Tang W, Gong Q, Huang X. Investigating the predictive value of different resting-state functional MRI parameters in obsessive-compulsive disorder. Transl Psychiatry 2019;9:17. [PMID: 30655506 DOI: 10.1038/s41398-018-0362-9] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 10.7] [Reference Citation Analysis]
140 Maglanoc LA, Kaufmann T, Jonassen R, Hilland E, Beck D, Landrø NI, Westlye LT. Multimodal fusion of structural and functional brain imaging in depression using linked independent component analysis. Hum Brain Mapp 2020;41:241-55. [PMID: 31571370 DOI: 10.1002/hbm.24802] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
141 Ghiassian S, Greiner R, Jin P, Brown MR. Using Functional or Structural Magnetic Resonance Images and Personal Characteristic Data to Identify ADHD and Autism. PLoS One 2016;11:e0166934. [PMID: 28030565 DOI: 10.1371/journal.pone.0166934] [Cited by in Crossref: 46] [Cited by in F6Publishing: 29] [Article Influence: 7.7] [Reference Citation Analysis]
142 Zhou C, Cheng Y, Ping L, Xu J, Shen Z, Jiang L, Shi L, Yang S, Lu Y, Xu X. Support Vector Machine Classification of Obsessive-Compulsive Disorder Based on Whole-Brain Volumetry and Diffusion Tensor Imaging. Front Psychiatry 2018;9:524. [PMID: 30405461 DOI: 10.3389/fpsyt.2018.00524] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
143 Varoquaux G. Cross-validation failure: Small sample sizes lead to large error bars. NeuroImage 2018;180:68-77. [DOI: 10.1016/j.neuroimage.2017.06.061] [Cited by in Crossref: 196] [Cited by in F6Publishing: 149] [Article Influence: 49.0] [Reference Citation Analysis]
144 Wolfers T, van Rooij D, Oosterlaan J, Heslenfeld D, Hartman CA, Hoekstra PJ, Beckmann CF, Franke B, Buitelaar JK, Marquand AF. Quantifying patterns of brain activity: Distinguishing unaffected siblings from participants with ADHD and healthy individuals. Neuroimage Clin 2016;12:227-33. [PMID: 27489770 DOI: 10.1016/j.nicl.2016.06.020] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
145 Andrews DS, Marquand A, Ecker C, McAlonan G. Using Pattern Classification to Identify Brain Imaging Markers in Autism Spectrum Disorder. Curr Top Behav Neurosci 2018;40:413-36. [PMID: 29626339 DOI: 10.1007/7854_2018_47] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
146 Wu D, José JV, Nurnberger JI, Torres EB. A Biomarker Characterizing Neurodevelopment with applications in Autism. Sci Rep 2018;8:614. [PMID: 29330487 DOI: 10.1038/s41598-017-18902-w] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 6.5] [Reference Citation Analysis]
147 [DOI: 10.1101/2020.06.12.20129130] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
148 Nigg JT. Where Do Epigenetics and Developmental Origins Take the Field of Developmental Psychopathology? J Abnorm Child Psychol 2016;44:405-19. [PMID: 26758288 DOI: 10.1007/s10802-015-0121-9] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
149 Nicholson AA, Mckinnon MC, Jetly R, Lanius RA. Uncovering the heterogeneity of posttraumatic stress disorder: Towards a personalized medicine approach for military members and Veterans. Journal of Military, Veteran and Family Health 2020;6:68-79. [DOI: 10.3138/jmvfh.2019-0031] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
150 Yang Y, Hu J, Liu Y, Chen X. A multiperiod hybrid decision support model for medical diagnosis and treatment based on similarities and three‐way decision theory. Expert Systems 2019;36:e12377. [DOI: 10.1111/exsy.12377] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
151 de Wit S, Ziermans TB, Nieuwenhuis M, Schothorst PF, van Engeland H, Kahn RS, Durston S, Schnack HG. Individual prediction of long-term outcome in adolescents at ultra-high risk for psychosis: Applying machine learning techniques to brain imaging data. Hum Brain Mapp 2017;38:704-14. [PMID: 27699911 DOI: 10.1002/hbm.23410] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 6.5] [Reference Citation Analysis]
152 Huys QJM. Computational Psychiatry. Zeitschrift für Psychiatrie, Psychologie und Psychotherapie 2017;65:21-6. [DOI: 10.1024/1661-4747/a000297] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
153 Wolfers T, Arenas AL, Onnink AMH, Dammers J, Hoogman M, Zwiers MP, Buitelaar JK, Franke B, Marquand AF, Beckmann CF. Refinement by integration: aggregated effects of multimodal imaging markers on adult ADHD. J Psychiatry Neurosci 2017;42:386-94. [PMID: 28832320 DOI: 10.1503/jpn.160240] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
154 Ji GJ, Chen X, Bai T, Wang L, Wei Q, Gao Y, Tao L, He K, Li D, Dong Y, Hu P, Yu F, Zhu C, Tian Y, Yu Y, Wang K. Classification of schizophrenia by intersubject correlation in functional connectome. Hum Brain Mapp 2019;40:2347-57. [PMID: 30663853 DOI: 10.1002/hbm.24527] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
155 Yahata N, Kasai K, Kawato M. Computational neuroscience approach to biomarkers and treatments for mental disorders: Computational psychiatry. Psychiatry Clin Neurosci 2017;71:215-37. [DOI: 10.1111/pcn.12502] [Cited by in Crossref: 53] [Cited by in F6Publishing: 38] [Article Influence: 10.6] [Reference Citation Analysis]
156 Baadel S, Thabtah F, Lu J. A clustering approach for autistic trait classification. Inform Health Soc Care 2020;45:309-26. [PMID: 32013648 DOI: 10.1080/17538157.2019.1687482] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
157 Stephan KE, Schlagenhauf F, Huys QJM, Raman S, Aponte EA, Brodersen KH, Rigoux L, Moran RJ, Daunizeau J, Dolan RJ, Friston KJ, Heinz A. Computational neuroimaging strategies for single patient predictions. Neuroimage 2017;145:180-99. [PMID: 27346545 DOI: 10.1016/j.neuroimage.2016.06.038] [Cited by in Crossref: 80] [Cited by in F6Publishing: 67] [Article Influence: 13.3] [Reference Citation Analysis]
158 Ghoniem RM. A Novel Bio-Inspired Deep Learning Approach for Liver Cancer Diagnosis. Information 2020;11:80. [DOI: 10.3390/info11020080] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
159 Kassraian-Fard P, Matthis C, Balsters JH, Maathuis MH, Wenderoth N. Promises, Pitfalls, and Basic Guidelines for Applying Machine Learning Classifiers to Psychiatric Imaging Data, with Autism as an Example. Front Psychiatry 2016;7:177. [PMID: 27990125 DOI: 10.3389/fpsyt.2016.00177] [Cited by in Crossref: 45] [Cited by in F6Publishing: 34] [Article Influence: 7.5] [Reference Citation Analysis]
160 Kurmukov A, Dodonova Y, Zhukov LE. Machine Learning Application to Human Brain Network Studies: A Kernel Approach. In: Kalyagin VA, Nikolaev AI, Pardalos PM, Prokopyev OA, editors. Models, Algorithms, and Technologies for Network Analysis. Cham: Springer International Publishing; 2017. pp. 229-49. [DOI: 10.1007/978-3-319-56829-4_17] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
161 Hu X, Liu Q, Li B, Tang W, Sun H, Li F, Yang Y, Gong Q, Huang X. Multivariate pattern analysis of obsessive-compulsive disorder using structural neuroanatomy. Eur Neuropsychopharmacol 2016;26:246-54. [PMID: 26708318 DOI: 10.1016/j.euroneuro.2015.12.014] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.9] [Reference Citation Analysis]
162 Zhuo C, Zhu J, Wang C, Qu H, Ma X, Qin W. Different spatial patterns of brain atrophy and global functional connectivity impairments in major depressive disorder. Brain Imaging Behav 2017;11:1678-89. [PMID: 27766588 DOI: 10.1007/s11682-016-9645-z] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
163 Hahn T, Nierenberg AA, Whitfield-Gabrieli S. Predictive analytics in mental health: applications, guidelines, challenges and perspectives. Mol Psychiatry 2017;22:37-43. [PMID: 27843153 DOI: 10.1038/mp.2016.201] [Cited by in Crossref: 75] [Cited by in F6Publishing: 52] [Article Influence: 12.5] [Reference Citation Analysis]
164 Wegrzyk J, Kebets V, Richiardi J, Galli S, de Ville DV, Aybek S. Identifying motor functional neurological disorder using resting-state functional connectivity. Neuroimage Clin 2018;17:163-8. [PMID: 29071210 DOI: 10.1016/j.nicl.2017.10.012] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]