BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rey NL, Wesson DW, Brundin P. The olfactory bulb as the entry site for prion-like propagation in neurodegenerative diseases. Neurobiol Dis 2018;109:226-48. [PMID: 28011307 DOI: 10.1016/j.nbd.2016.12.013] [Cited by in Crossref: 139] [Cited by in F6Publishing: 152] [Article Influence: 19.9] [Reference Citation Analysis]
Number Citing Articles
1 Murray HC, Saar G, Bai L, Bouraoud N, Dodd S, Highet B, Ryan B, Curtis MA, Koretsky A, Belluscio L. Progressive spread of beta-amyloid pathology in an olfactory-driven APP mouse model. Neuroscience 2023:S0306-4522(23)00013-1. [PMID: 36716914 DOI: 10.1016/j.neuroscience.2023.01.009] [Reference Citation Analysis]
2 Gallegos CE, Bartos M, Gumilar F, Minetti A, Baier CJ. Behavioral and neurochemical impairments after intranasal administration of chlorpyrifos formulation in mice. Pestic Biochem Physiol 2023;189:105315. [PMID: 36549818 DOI: 10.1016/j.pestbp.2022.105315] [Reference Citation Analysis]
3 Schirinzi T, Maftei D, Passali FM, Grillo P, Zenuni H, Mascioli D, Maurizi R, Loccisano L, Vincenzi M, Rinaldi AM, Ralli M, Di Girolamo S, Stefani A, Lattanzi R, Severini C, Mercuri NB. Olfactory Neuron Prokineticin-2 as a Potential Target in Parkinson's Disease. Ann Neurol 2023;93:196-204. [PMID: 36218142 DOI: 10.1002/ana.26526] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Sharma M, Sharma N, Khairnar A. Intranasal Rotenone Induces Alpha-Synuclein Accumulation, Neuroinflammation and Dopaminergic Neurodegeneration in Middle-Aged Mice. Neurochem Res 2022. [PMID: 36571663 DOI: 10.1007/s11064-022-03847-y] [Reference Citation Analysis]
5 Rubio MA, Herrando-Grabulosa M, Navarro X. Sensory Involvement in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022;23. [PMID: 36555161 DOI: 10.3390/ijms232415521] [Reference Citation Analysis]
6 Gao L, Shuai Y, Wen L, Zhang H, Zhang Y, Zhang X. Benefit and safety of antibiotics for Alzheimer's disease: Protocol for a systematic review and meta-analysis. Medicine (Baltimore) 2022;101:e31637. [PMID: 36451430 DOI: 10.1097/MD.0000000000031637] [Reference Citation Analysis]
7 Consonni A, Miglietti M, De Luca CMG, Cazzaniga FA, Ciullini A, Dellarole IL, Bufano G, Di Fonzo A, Giaccone G, Baggi F, Moda F. Approaching the Gut and Nasal Microbiota in Parkinson’s Disease in the Era of the Seed Amplification Assays. Brain Sciences 2022;12:1579. [DOI: 10.3390/brainsci12111579] [Reference Citation Analysis]
8 Arshamian A, Iravani B, Lundström JN. Is congenital anosmia protective for Parkinson’s disease triggered by pathogenic entrance through the nose? npj Parkinsons Dis 2022;8:152. [DOI: 10.1038/s41531-022-00425-5] [Reference Citation Analysis]
9 Lad M, Sedley W, Griffiths TD. Sensory Loss and Risk of Dementia. Neuroscientist 2022;:10738584221126090. [PMID: 36169300 DOI: 10.1177/10738584221126090] [Reference Citation Analysis]
10 Pozzi FE, Conti E, Appollonio I, Ferrarese C, Tremolizzo L. Predictors of response to acetylcholinesterase inhibitors in dementia: A systematic review. Front Neurosci 2022;16:998224. [DOI: 10.3389/fnins.2022.998224] [Reference Citation Analysis]
11 Rai SN, Tiwari N, Singh P, Singh AK, Mishra D, Imran M, Singh S, Hooshmandi E, Vamanu E, Singh SK, Singh MP, Bihl J. Exploring the Paradox of COVID-19 in Neurological Complications with Emphasis on Parkinson’s and Alzheimer’s Disease. Oxidative Medicine and Cellular Longevity 2022;2022:1-16. [DOI: 10.1155/2022/3012778] [Reference Citation Analysis]
12 Irrera N, Barbieri MA, Bagnato G, Ioppolo C, Versace AG. Impact of the COVID-19 Pandemic on Chronic Neurological Disorders: Focus on Patients with Dementia. CNSNDDT 2022;21:1017-1026. [DOI: 10.2174/1871527321666220111124928] [Reference Citation Analysis]
13 Kay LM. COVID-19 and olfactory dysfunction: a looming wave of dementia? J Neurophysiol 2022. [PMID: 35894511 DOI: 10.1152/jn.00255.2022] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
14 Tremblay C, Serrano GE, Intorcia AJ, Mariner MR, Sue LI, Arce RA, Atri A, Adler CH, Belden CM, Shill HA, Driver-Dunckley E, Mehta SH, Beach TG. Olfactory Bulb Amyloid-β Correlates With Brain Thal Amyloid Phase and Severity of Cognitive Impairment. J Neuropathol Exp Neurol 2022:nlac042. [PMID: 35751438 DOI: 10.1093/jnen/nlac042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Golan N, Engelberg Y, Landau M. Structural Mimicry in Microbial and Antimicrobial Amyloids. Annu Rev Biochem 2022;91:403-22. [PMID: 35729071 DOI: 10.1146/annurev-biochem-032620-105157] [Reference Citation Analysis]
16 Koyama S, Heinbockel T. Chemical Constituents of Essential Oils Used in Olfactory Training: Focus on COVID-19 Induced Olfactory Dysfunction. Front Pharmacol 2022;13:835886. [PMID: 35721200 DOI: 10.3389/fphar.2022.835886] [Reference Citation Analysis]
17 Ji X, Liu R, Guo J, Li Y, Cheng W, Pang Y, Zheng Y, Zhang R, Tang J. Olfactory bulb microglia activation mediated neuronal death in real-ambient particulate matter exposure mice with depression-like behaviors. Sci Total Environ 2022;821:153456. [PMID: 35093369 DOI: 10.1016/j.scitotenv.2022.153456] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Murray HC, Johnson K, Sedlock A, Highet B, Dieriks BV, Anekal PV, Faull RLM, Curtis MA, Koretsky A, Maric D. Lamina-specific immunohistochemical signatures in the olfactory bulb of healthy, Alzheimer’s and Parkinson’s disease patients. Commun Biol 2022;5. [DOI: 10.1038/s42003-022-03032-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Linard M, Ravier A, Mougué L, Grgurina I, Boutillier AL, Foubert-Samier A, Blanc F, Helmer C. Infectious Agents as Potential Drivers of α-Synucleinopathies. Mov Disord 2022. [PMID: 35040520 DOI: 10.1002/mds.28925] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Chen H, Wang K, Scheperjans F, Killinger B. Environmental triggers of Parkinson's disease - Implications of the Braak and dual-hit hypotheses. Neurobiol Dis 2021;163:105601. [PMID: 34954321 DOI: 10.1016/j.nbd.2021.105601] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
21 Blesa J, Foffani G, Dehay B, Bezard E, Obeso JA. Motor and non-motor circuit disturbances in early Parkinson disease: which happens first? Nat Rev Neurosci 2021. [PMID: 34907352 DOI: 10.1038/s41583-021-00542-9] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
22 Chen F, Liu W, Liu P, Wang Z, Zhou Y, Liu X, Li A. α-Synuclein aggregation in the olfactory bulb induces olfactory deficits by perturbing granule cells and granular-mitral synaptic transmission. NPJ Parkinsons Dis 2021;7:114. [PMID: 34903719 DOI: 10.1038/s41531-021-00259-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
23 Yagita K, Honda H, Ohara T, Hamasaki H, Koyama S, Noguchi H, Mihara A, Nakazawa T, Hata J, Ninomiya T, Iwaki T. A Comparative Study of Site-Specific Distribution of Aging-Related Tau Astrogliopathy and Its Risk Factors Between Alzheimer Disease and Cognitive Healthy Brains: The Hisayama Study. J Neuropathol Exp Neurol 2021:nlab126. [PMID: 34875089 DOI: 10.1093/jnen/nlab126] [Reference Citation Analysis]
24 Rahman FU, Kim YR, Kim EK, Kim HR, Cho SM, Lee CS, Kim SJ, Araki K, Yamamura KI, Lee MN, Park SG, Yoon WK, Lee K, Won YS, Kim HC, Lee Y, Lee HY, Nam KH. Topoisomerase IIIβ Deficiency Induces Neuro-Behavioral Changes and Brain Connectivity Alterations in Mice. Int J Mol Sci 2021;22:12806. [PMID: 34884616 DOI: 10.3390/ijms222312806] [Reference Citation Analysis]
25 Yan Y, Aierken A, Wang C, Song D, Ni J, Wang Z, Quan Z, Qing H. A potential biomarker of preclinical Alzheimer's disease: The olfactory dysfunction and its pathogenesis-based neural circuitry impairments. Neurosci Biobehav Rev 2021:S0149-7634(21)00502-9. [PMID: 34810025 DOI: 10.1016/j.neubiorev.2021.11.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
26 Kincaid AE. The Role of the Nasal Cavity in the Pathogenesis of Prion Diseases. Viruses 2021;13:2287. [PMID: 34835094 DOI: 10.3390/v13112287] [Reference Citation Analysis]
27 Fan TS, Liu SC, Wu RM. Alpha-Synuclein and Cognitive Decline in Parkinson Disease. Life (Basel) 2021;11:1239. [PMID: 34833115 DOI: 10.3390/life11111239] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
28 Su MW, Ni JN, Cao TY, Wang SS, Shi J, Tian JZ. The Correlation Between Olfactory Test and Hippocampal Volume in Alzheimer's Disease and Mild Cognitive Impairment Patients: A Meta-Analysis. Front Aging Neurosci 2021;13:755160. [PMID: 34744696 DOI: 10.3389/fnagi.2021.755160] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
29 Patino J, Karagas NE, Chandra S, Thakur N, Stimming EF. Olfactory Dysfunction in Huntington's Disease. J Huntingtons Dis 2021;10:413-22. [PMID: 34719504 DOI: 10.3233/JHD-210497] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Son G, Steinbusch HWM, López-Iglesias C, Moon C, Jahanshahi A. Severe histomorphological alterations in post-mortem olfactory glomeruli in Alzheimer's disease. Brain Pathol 2021;:e13033. [PMID: 34704631 DOI: 10.1111/bpa.13033] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Cartas-Cejudo P, Lachén-Montes M, Fernández-Irigoyen J, Santamaría E. Tackling the Biological Meaning of the Human Olfactory Bulb Dyshomeostatic Proteome across Neurological Disorders: An Integrative Bioinformatic Approach. Int J Mol Sci 2021;22:11340. [PMID: 34768771 DOI: 10.3390/ijms222111340] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Tirassa P, Schirinzi T, Raspa M, Ralli M, Greco A, Polimeni A, Possenti R, Mercuri NB, Severini C. What substance P might tell us about the prognosis and mechanism of Parkinson's disease? Neurosci Biobehav Rev 2021;131:899-911. [PMID: 34653503 DOI: 10.1016/j.neubiorev.2021.10.008] [Reference Citation Analysis]
33 Lu R, Aziz NA, Reuter M, Stöcker T, Breteler MMB. Evaluation of the Neuroanatomical Basis of Olfactory Dysfunction in the General Population. JAMA Otolaryngol Head Neck Surg 2021;147:855-63. [PMID: 34436517 DOI: 10.1001/jamaoto.2021.2026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 Sevgi F, Brauchle EM, Carvajal Berrio DA, Schenke-Layland K, Casadei N, Salker MS, Riess O, Singh Y. Imaging of α-Synuclein Aggregates in a Rat Model of Parkinson's Disease Using Raman Microspectroscopy. Front Cell Dev Biol 2021;9:664365. [PMID: 34568310 DOI: 10.3389/fcell.2021.664365] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
35 Almohaimeed HM, Batawi AH, Mohammedsaleh ZM, Al Jaouni S, Mutlq Alsawat SA, Abd El Wahab MG, AbdElfattah AA, Ayuob NN. Musk (Moschus moschiferus) Attenuates Changes in Main Olfactory Bulb of Depressed Mice: Behavioral, Biochemical, and Histopathological Evidence. Front Behav Neurosci 2021;15:704180. [PMID: 34512285 DOI: 10.3389/fnbeh.2021.704180] [Reference Citation Analysis]
36 Dan X, Wechter N, Gray S, Mohanty JG, Croteau DL, Bohr VA. Olfactory dysfunction in aging and neurodegenerative diseases. Ageing Res Rev 2021;70:101416. [PMID: 34325072 DOI: 10.1016/j.arr.2021.101416] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
37 Glover A, Pillai L, Dhall R, Virmani T. Olfactory Deficits in the Freezing of Gait Phenotype of Parkinson's Disease. Front Neurol 2021;12:656379. [PMID: 34456839 DOI: 10.3389/fneur.2021.656379] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Hu B, Geng C, Guo F, Liu Y, Zong YC, Hou XY. GABAA receptor agonist muscimol rescues inhibitory microcircuit defects in the olfactory bulb and improves olfactory function in APP/PS1 transgenic mice. Neurobiol Aging 2021;108:47-57. [PMID: 34507271 DOI: 10.1016/j.neurobiolaging.2021.08.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
39 Dilsizoglu Senol A, Samarani M, Syan S, Guardia CM, Nonaka T, Liv N, Latour-Lambert P, Hasegawa M, Klumperman J, Bonifacino JS, Zurzolo C. α-Synuclein fibrils subvert lysosome structure and function for the propagation of protein misfolding between cells through tunneling nanotubes. PLoS Biol 2021;19:e3001287. [PMID: 34283825 DOI: 10.1371/journal.pbio.3001287] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
40 Son G, Jahanshahi A, Yoo S, Boonstra JT, Hopkins DA, Steinbusch HWM, Moon C. Olfactory neuropathology in Alzheimer's disease: a sign of ongoing neurodegeneration. BMB Rep 2021;54:295-304. [DOI: 10.5483/bmbrep.2021.54.6.055] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
41 Bhatia-Dey N, Heinbockel T. The Olfactory System as Marker of Neurodegeneration in Aging, Neurological and Neuropsychiatric Disorders. Int J Environ Res Public Health 2021;18:6976. [PMID: 34209997 DOI: 10.3390/ijerph18136976] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
42 Lin MS, Chiu IH, Lin CC. Ultrarapid Inflammation of the Olfactory Bulb After Spinal Cord Injury: Protective Effects of the Granulocyte Colony-Stimulating Factor on Early Neurodegeneration in the Brain. Front Aging Neurosci 2021;13:701702. [PMID: 34248610 DOI: 10.3389/fnagi.2021.701702] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
43 Bang Y, Lim J, Choi HJ. Recent advances in the pathology of prodromal non-motor symptoms olfactory deficit and depression in Parkinson's disease: clues to early diagnosis and effective treatment. Arch Pharm Res 2021;44:588-604. [PMID: 34145553 DOI: 10.1007/s12272-021-01337-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
44 Wen MM, Ismail NIK, Nasra MMA, El-Kamel AH. Repurposing ibuprofen-loaded microemulsion for the management of Alzheimer's disease: evidence of potential intranasal brain targeting. Drug Deliv 2021;28:1188-203. [PMID: 34121565 DOI: 10.1080/10717544.2021.1937383] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
45 Manca R, De Marco M, Ince PG, Venneri A. Heterogeneity in Regional Damage Detected by Neuroimaging and Neuropathological Studies in Older Adults With COVID-19: A Cognitive-Neuroscience Systematic Review to Inform the Long-Term Impact of the Virus on Neurocognitive Trajectories. Front Aging Neurosci 2021;13:646908. [PMID: 34149394 DOI: 10.3389/fnagi.2021.646908] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
46 Lachén-Montes M, Íñigo-Marco I, Cartas-Cejudo P, Fernández-Irigoyen J, Santamaría E. Olfactory Bulb Proteomics Reveals Widespread Proteostatic Disturbances in Mixed Dementia and Guides for Potential Serum Biomarkers to Discriminate Alzheimer Disease and Mixed Dementia Phenotypes. J Pers Med 2021;11:503. [PMID: 34204996 DOI: 10.3390/jpm11060503] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
47 Rethinavel HS, Ravichandran S, Radhakrishnan RK, Kandasamy M. COVID-19 and Parkinson's disease: Defects in neurogenesis as the potential cause of olfactory system impairments and anosmia. J Chem Neuroanat 2021;115:101965. [PMID: 33989761 DOI: 10.1016/j.jchemneu.2021.101965] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
48 Ghosh R, Biswas U, Roy D, Pandit A, Lahiri D, Ray BK, Benito-León J. De Novo Movement Disorders and COVID-19: Exploring the Interface. Mov Disord Clin Pract 2021. [PMID: 34230886 DOI: 10.1002/mdc3.13224] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
49 Melis M, Haehner A, Mastinu M, Hummel T, Tomassini Barbarossa I. Molecular and Genetic Factors Involved in Olfactory and Gustatory Deficits and Associations with Microbiota in Parkinson's Disease. Int J Mol Sci 2021;22:4286. [PMID: 33924222 DOI: 10.3390/ijms22084286] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
50 Stefani A, Iranzo A, Holzknecht E, Perra D, Bongianni M, Gaig C, Heim B, Serradell M, Sacchetto L, Garrido A, Capaldi S, Sánchez-Gómez A, Cecchini MP, Mariotto S, Ferrari S, Fiorini M, Schmutzhard J, Cocchiara P, Vilaseca I, Brozzetti L, Monaco S, Jose Marti M, Seppi K, Tolosa E, Santamaria J, Högl B, Poewe W, Zanusso G; SINBAR (Sleep Innsbruck Barcelona) group. Alpha-synuclein seeds in olfactory mucosa of patients with isolated REM sleep behaviour disorder. Brain 2021;144:1118-26. [PMID: 33855335 DOI: 10.1093/brain/awab005] [Cited by in Crossref: 39] [Cited by in F6Publishing: 46] [Article Influence: 19.5] [Reference Citation Analysis]
51 Bedarf JR, Beraza N, Khazneh H, Özkurt E, Baker D, Borger V, Wüllner U, Hildebrand F. Much ado about nothing? Off-target amplification can lead to false-positive bacterial brain microbiome detection in healthy and Parkinson's disease individuals. Microbiome 2021;9:75. [PMID: 33771222 DOI: 10.1186/s40168-021-01012-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
52 Heinbockel T, Bhatia-Dey N, Shields VDC. Endocannabinoid-mediated neuromodulation in the main olfactory bulb at the interface of environmental stimuli and central neural processing. Eur J Neurosci 2021. [PMID: 33724578 DOI: 10.1111/ejn.15186] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
53 Alonso CCG, Silva FG, Costa LOP, Freitas SMSF. Smell tests to distinguish Parkinson's disease from other neurological disorders: a systematic review and meta-analysis. Expert Rev Neurother 2021;21:365-79. [PMID: 33546569 DOI: 10.1080/14737175.2021.1886925] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
54 Xing F, Mo Y, Chen X, Liu T, Wang K, Hu P. Using the Chinese Smell Identification Test to explore olfactory function in Parkinson's disease. J Clin Exp Neuropsychol 2021;43:156-62. [PMID: 33657978 DOI: 10.1080/13803395.2021.1891207] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
55 Fares MB, Jagannath S, Lashuel HA. Reverse engineering Lewy bodies: how far have we come and how far can we go? Nat Rev Neurosci 2021;22:111-31. [PMID: 33432241 DOI: 10.1038/s41583-020-00416-6] [Cited by in Crossref: 61] [Cited by in F6Publishing: 65] [Article Influence: 30.5] [Reference Citation Analysis]
56 Gruschus JM. A New Kind of Pathogen – Prion diseases and amyloid fibrils. Synuclein and the Coelacanth 2021. [DOI: 10.1016/b978-0-323-85707-9.00002-2] [Reference Citation Analysis]
57 Gruschus JM. Appendix – Alpha-synuclein in the gut, Crohn’s disease, and the possible protective role of the synucleins in innate immune response. Synuclein and the Coelacanth 2021. [DOI: 10.1016/b978-0-323-85707-9.00004-6] [Reference Citation Analysis]
58 Ribeiro DE, Oliveira-Giacomelli Á, Glaser T, Arnaud-Sampaio VF, Andrejew R, Dieckmann L, Baranova J, Lameu C, Ratajczak MZ, Ulrich H. Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Mol Psychiatry 2021;26:1044-59. [PMID: 33328588 DOI: 10.1038/s41380-020-00965-3] [Cited by in Crossref: 64] [Cited by in F6Publishing: 68] [Article Influence: 21.3] [Reference Citation Analysis]
59 Nagu P, Parashar A, Behl T, Mehta V. CNS implications of COVID-19: a comprehensive review. Rev Neurosci 2021;32:219-34. [PMID: 33550782 DOI: 10.1515/revneuro-2020-0070] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 13.7] [Reference Citation Analysis]
60 Tan JSY, Chao YX, Rötzschke O, Tan EK. New Insights into Immune-Mediated Mechanisms in Parkinson's Disease. Int J Mol Sci 2020;21:E9302. [PMID: 33291304 DOI: 10.3390/ijms21239302] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
61 Tu L, Lv X, Fan Z, Zhang M, Wang H, Yu X. Association of Odor Identification Ability With Amyloid-β and Tau Burden: A Systematic Review and Meta-Analysis. Front Neurosci 2020;14:586330. [PMID: 33324151 DOI: 10.3389/fnins.2020.586330] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
62 Lachén-Montes M, Mendizuri N, Ausin K, Andrés-Benito P, Ferrer I, Fernández-Irigoyen J, Santamaría E. Amyotrophic Lateral Sclerosis Is Accompanied by Protein Derangements in the Olfactory Bulb-Tract Axis. Int J Mol Sci 2020;21:E8311. [PMID: 33167591 DOI: 10.3390/ijms21218311] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
63 Kulkarni AS, Del Mar Cortijo M, Roberts ER, Suggs TL, Stover HB, Pena-Bravo JI, Steiner JA, Luk KC, Brundin P, Wesson DW. Perturbation of in vivo Neural Activity Following α-Synuclein Seeding in the Olfactory Bulb. J Parkinsons Dis 2020;10:1411-27. [PMID: 32925105 DOI: 10.3233/JPD-202241] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
64 Rebholz H, Braun RJ, Ladage D, Knoll W, Kleber C, Hassel AW. Loss of Olfactory Function-Early Indicator for Covid-19, Other Viral Infections and Neurodegenerative Disorders. Front Neurol 2020;11:569333. [PMID: 33193009 DOI: 10.3389/fneur.2020.569333] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 9.3] [Reference Citation Analysis]
65 Shrestha S, Umbach DM, Beane Freeman LE, Koutros S, Alavanja MCR, Blair A, Chen H, Sandler DP. Occupational pesticide use and self-reported olfactory impairment in US farmers. Occup Environ Med 2020:oemed-2020-106818. [PMID: 33097675 DOI: 10.1136/oemed-2020-106818] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
66 Gómez-Anca S, Barros-Dios JM. Radon Exposure and Neurodegenerative Disease. Int J Environ Res Public Health 2020;17:E7439. [PMID: 33066046 DOI: 10.3390/ijerph17207439] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
67 Tremblay C, Mei J, Frasnelli J. Olfactory bulb surroundings can help to distinguish Parkinson's disease from non-parkinsonian olfactory dysfunction. Neuroimage Clin 2020;28:102457. [PMID: 33068873 DOI: 10.1016/j.nicl.2020.102457] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
68 Lian TH, Zhu WL, Li SW, Liu YO, Guo P, Zuo LJ, Hu Y, Yu SY, Li LX, Jin Z, Yu QJ, Wang RD, Zhang W. Clinical, Structural, and Neuropathological Features of Olfactory Dysfunction in Patients with Alzheimer's Disease. J Alzheimers Dis 2019;70:413-23. [PMID: 31177212 DOI: 10.3233/JAD-181217] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
69 Seo JH, Kang SW, Kim K, Wi S, Lee JW, Cho SR. Environmental Enrichment Attenuates Oxidative Stress and Alters Detoxifying Enzymes in an A53T α-Synuclein Transgenic Mouse Model of Parkinson's Disease. Antioxidants (Basel) 2020;9:E928. [PMID: 32998299 DOI: 10.3390/antiox9100928] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
70 Bhatia-dey N, Heinbockel T. Neurological and Neuropsychiatric Disorders in Relation to Olfactory Dysfunction. Sino-Nasal and Olfactory System Disorders [Working Title] 2020. [DOI: 10.5772/intechopen.93888] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
71 Chaná-Cuevas P, Salles-Gándara P, Rojas-Fernandez A, Salinas-Rebolledo C, Milán-Solé A. The Potential Role of SARS-COV-2 in the Pathogenesis of Parkinson's Disease. Front Neurol 2020;11:1044. [PMID: 33041985 DOI: 10.3389/fneur.2020.01044] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
72 Meacci E, Garcia-Gil M, Pierucci F. SARS-CoV-2 Infection: A Role for S1P/S1P Receptor Signaling in the Nervous System? Int J Mol Sci 2020;21:E6773. [PMID: 32942748 DOI: 10.3390/ijms21186773] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
73 Chen Z, Xie H, Yao L, Wei Y. Olfactory impairment and the risk of cognitive decline and dementia in older adults: a meta-analysis. Braz J Otorhinolaryngol 2021;87:94-102. [PMID: 32978117 DOI: 10.1016/j.bjorl.2020.07.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
74 Nigro P, Chiappiniello A, Simoni S, Paolini Paoletti F, Cappelletti G, Chiarini P, Filidei M, Eusebi P, Guercini G, Santangelo V, Tarducci R, Calabresi P, Parnetti L, Tambasco N. Changes of olfactory tract in Parkinson's disease: a DTI tractography study. Neuroradiology 2021;63:235-42. [PMID: 32918150 DOI: 10.1007/s00234-020-02551-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
75 An Y, Guan X, Ni Y, Zhao Y, Chen Z, Chen Y, Zhang J. Reversible olfactory dysfunction impaired learning and memory with impaired hippocampal synaptic plasticity and increased corticosterone release in mice. Neurochemistry International 2020;138:104774. [DOI: 10.1016/j.neuint.2020.104774] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
76 Topuzova MP, Alekseeva TM, Chaykovskaya AD, Ternovyh IK, Isabekova PS. The management of patients with neurological diseases during the COVID-19 pandemic. Arter gipertenz 2020;26:447-461. [DOI: 10.18705/1607-419x-2020-26-4-447-461] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
77 Schirinzi T, Landi D, Liguori C. COVID-19: dealing with a potential risk factor for chronic neurological disorders. J Neurol 2021;268:1171-8. [PMID: 32852580 DOI: 10.1007/s00415-020-10131-y] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 8.3] [Reference Citation Analysis]
78 Cubo E, Hassan A, Bloem BR, Mari Z; MDS-Telemedicine Study Group. Implementation of Telemedicine for Urgent and Ongoing Healthcare for Patients with Parkinson's Disease During the COVID-19 Pandemic: New Expectations for the Future. J Parkinsons Dis 2020;10:911-3. [PMID: 32417800 DOI: 10.3233/JPD-202108] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
79 Stefani A, Iranzo A, Holzknecht E, Perra D, Bongianni M, Gaig C, Heim B, Serradell M, Sacchetto L, Garrido A, Capaldi S, Sánchez-gómez A, Fiorini M, Schmutzhard J, Cocchiara P, Vilaseca I, Brozzetti L, Monaco S, Marti MJ, Seppi K, Tolosa E, Santamaria J, Högl B, Poewe W, Zanusso G, for the SINBAR (Sleep Innsbruck Barcelona) group. Alpha-synuclein seeds in olfactory mucosa of patients with isolated rapid-eye-movement sleep behaviour disorder.. [DOI: 10.1101/2020.08.04.20168328] [Reference Citation Analysis]
80 Roberts ER, Dossat AM, Del Mar Cortijo M, Brundin P, Wesson DW. Alterations in odor hedonics in the 5XFAD Alzheimer's disease mouse model and the influence of sex. Behav Neurosci 2020;134:407-16. [PMID: 32757584 DOI: 10.1037/bne0000400] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
81 Niu H, Wang Q, Zhao W, Liu J, Wang D, Muhammad B, Liu X, Quan N, Zhang H, Zhang F, Wang Y, Li H, Yang R. IL-1β/IL-1R1 signaling induced by intranasal lipopolysaccharide infusion regulates alpha-Synuclein pathology in the olfactory bulb, substantia nigra and striatum. Brain Pathol 2020;30:1102-18. [PMID: 32678959 DOI: 10.1111/bpa.12886] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
82 Ahnaou A, Rodriguez-Manrique D, Biermans R, Embrechts S, Manyakov NV, Drinkenburg WH. Functional Alterations in the Olfactory Neuronal Circuit Occur before Hippocampal Plasticity Deficits in the P301S Mouse Model of Tauopathy: Implications for Early Diagnosis and Translational Research in Alzheimer's Disease. Int J Mol Sci 2020;21:E5431. [PMID: 32751531 DOI: 10.3390/ijms21155431] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
83 Borghammer P, Van Den Berge N. Brain-First versus Gut-First Parkinson's Disease: A Hypothesis. J Parkinsons Dis 2019;9:S281-95. [PMID: 31498132 DOI: 10.3233/JPD-191721] [Cited by in Crossref: 116] [Cited by in F6Publishing: 128] [Article Influence: 38.7] [Reference Citation Analysis]
84 Murray HC, Dieriks BV, Swanson MEV, Anekal PV, Turner C, Faull RLM, Belluscio L, Koretsky A, Curtis MA. The unfolded protein response is activated in the olfactory system in Alzheimer's disease. Acta Neuropathol Commun 2020;8:109. [PMID: 32665027 DOI: 10.1186/s40478-020-00986-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
85 Pajares M, I Rojo A, Manda G, Boscá L, Cuadrado A. Inflammation in Parkinson's Disease: Mechanisms and Therapeutic Implications. Cells 2020;9:E1687. [PMID: 32674367 DOI: 10.3390/cells9071687] [Cited by in Crossref: 165] [Cited by in F6Publishing: 163] [Article Influence: 55.0] [Reference Citation Analysis]
86 Iqbal UH, Zeng E, Pasinetti GM. The Use of Antimicrobial and Antiviral Drugs in Alzheimer's Disease. Int J Mol Sci 2020;21:E4920. [PMID: 32664669 DOI: 10.3390/ijms21144920] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
87 Agin A, Blanc F, Bousiges O, Villette C, Philippi N, Demuynck C, Martin-Hunyadi C, Cretin B, Lang S, Zumsteg J, Namer IJ, Heintz D. Environmental exposure to phthalates and dementia with Lewy bodies: contribution of metabolomics. J Neurol Neurosurg Psychiatry 2020;91:968-74. [PMID: 32636213 DOI: 10.1136/jnnp-2020-322815] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
88 Harsanyiova J, Buday T, Kralova Trancikova A. Parkinson's Disease and the Gut: Future Perspectives for Early Diagnosis. Front Neurosci 2020;14:626. [PMID: 32625058 DOI: 10.3389/fnins.2020.00626] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
89 Ubeda-Bañon I, Saiz-Sanchez D, Flores-Cuadrado A, Rioja-Corroto E, Gonzalez-Rodriguez M, Villar-Conde S, Astillero-Lopez V, Cabello-de la Rosa JP, Gallardo-Alcañiz MJ, Vaamonde-Gamo J, Relea-Calatayud F, Gonzalez-Lopez L, Mohedano-Moriano A, Rabano A, Martinez-Marcos A. The human olfactory system in two proteinopathies: Alzheimer's and Parkinson's diseases. Transl Neurodegener 2020;9:22. [PMID: 32493457 DOI: 10.1186/s40035-020-00200-7] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 11.0] [Reference Citation Analysis]
90 Pierozan P, Piras E, Brittebo E, Karlsson O. The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) targets the olfactory bulb region. Arch Toxicol 2020;94:2799-808. [PMID: 32435914 DOI: 10.1007/s00204-020-02775-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
91 Dibattista M, Pifferi S, Menini A, Reisert J. Alzheimer's Disease: What Can We Learn From the Peripheral Olfactory System? Front Neurosci 2020;14:440. [PMID: 32508565 DOI: 10.3389/fnins.2020.00440] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
92 Leger C, Herbert M, DeSouza JFX. Non-motor Clinical and Biomarker Predictors Enable High Cross-Validated Accuracy Detection of Early PD but Lesser Cross-Validated Accuracy Detection of Scans Without Evidence of Dopaminergic Deficit. Front Neurol 2020;11:364. [PMID: 32477243 DOI: 10.3389/fneur.2020.00364] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
93 Roberts ER, Dossat AM, Mar Cortijo MD, Brundin P, Wesson DW. Alterations in odor hedonics in the 5XFAD Alzheimer’s disease mouse model and the influence of sex.. [DOI: 10.1101/2020.05.08.085043] [Reference Citation Analysis]
94 Isaiah S, Loots DT, Solomons R, van der Kuip M, Tutu Van Furth AM, Mason S. Overview of Brain-to-Gut Axis Exposed to Chronic CNS Bacterial Infection(s) and a Predictive Urinary Metabolic Profile of a Brain Infected by Mycobacterium tuberculosis. Front Neurosci 2020;14:296. [PMID: 32372900 DOI: 10.3389/fnins.2020.00296] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
95 Garg D, Dhamija RK. The Challenge of Managing Parkinson's Disease Patients during the COVID-19 Pandemic. Ann Indian Acad Neurol 2020;23:S24-7. [PMID: 32419750 DOI: 10.4103/aian.AIAN_295_20] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
96 Bhatia-Dey N, Heinbockel T. Endocannabinoid-Mediated Neuromodulation in the Olfactory Bulb: Functional and Therapeutic Significance. Int J Mol Sci 2020;21:E2850. [PMID: 32325875 DOI: 10.3390/ijms21082850] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
97 Kulkarni AS, del Mar Cortijo M, Roberts ER, Suggs TL, Stover HB, Pena-bravo JI, Steiner JA, Luk KC, Brundin P, Wesson DW. Perturbation of in vivo neural activity following α-Synuclein seeding in the olfactory bulb.. [DOI: 10.1101/2020.04.17.045013] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
98 Papa SM, Brundin P, Fung VSC, Kang UJ, Burn DJ, Colosimo C, Chiang HL, Alcalay RN, Trenkwalder C; MDS‐Scientific Issues Committee. Impact of the COVID-19 Pandemic on Parkinson's Disease and Movement Disorders. Mov Disord Clin Pract 2020;7:357-60. [PMID: 32373651 DOI: 10.1002/mdc3.12953] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
99 Papa SM, Brundin P, Fung VSC, Kang UJ, Burn DJ, Colosimo C, Chiang HL, Alcalay RN, Trenkwalder C; MDS-Scientific Issues Committee. Impact of the COVID-19 Pandemic on Parkinson's Disease and Movement Disorders. Mov Disord 2020;35:711-5. [PMID: 32250460 DOI: 10.1002/mds.28067] [Cited by in Crossref: 101] [Cited by in F6Publishing: 116] [Article Influence: 33.7] [Reference Citation Analysis]
100 Cenci MA, Björklund A. Animal models for preclinical Parkinson's research: An update and critical appraisal. Prog Brain Res 2020;252:27-59. [PMID: 32247366 DOI: 10.1016/bs.pbr.2020.02.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
101 Deng I, Corrigan F, Zhai G, Zhou XF, Bobrovskaya L. Lipopolysaccharide animal models of Parkinson's disease: Recent progress and relevance to clinical disease. Brain Behav Immun Health 2020;4:100060. [PMID: 34589845 DOI: 10.1016/j.bbih.2020.100060] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
102 Brozzetti L, Sacchetto L, Cecchini MP, Avesani A, Perra D, Bongianni M, Portioli C, Scupoli M, Ghetti B, Monaco S, Buffelli M, Zanusso G. Neurodegeneration-Associated Proteins in Human Olfactory Neurons Collected by Nasal Brushing. Front Neurosci 2020;14:145. [PMID: 32194369 DOI: 10.3389/fnins.2020.00145] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
103 Liu J, Liu C, Zhang J, Zhang Y, Liu K, Song JX, Sreenivasmurthy SG, Wang Z, Shi Y, Chu C, Zhang Y, Wu C, Deng X, Liu X, Song J, Zhuang R, Huang S, Zhang P, Li M, Wen L, Zhang YW, Liu G. A Self-Assembled α-Synuclein Nanoscavenger for Parkinson's Disease. ACS Nano 2020;14:1533-49. [PMID: 32027482 DOI: 10.1021/acsnano.9b06453] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 13.3] [Reference Citation Analysis]
104 Zhang X, Huang W, Shao Q, Yang Y, Xu Z, Chen J, Zhang X, Ge X. Drp1, a potential therapeutic target for Parkinson's disease, is involved in olfactory bulb pathological alteration in the Rotenone-induced rat model. Toxicol Lett 2020;325:1-13. [PMID: 32088201 DOI: 10.1016/j.toxlet.2020.02.009] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 4.7] [Reference Citation Analysis]
105 Pisa D, Alonso R, Carrasco L. Parkinson's Disease: A Comprehensive Analysis of Fungi and Bacteria in Brain Tissue. Int J Biol Sci 2020;16:1135-52. [PMID: 32174790 DOI: 10.7150/ijbs.42257] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
106 Gallegos CE, Bartos M, Gumilar F, Raisman-Vozari R, Minetti A, Baier CJ. Intranasal glyphosate-based herbicide administration alters the redox balance and the cholinergic system in the mouse brain. Neurotoxicology 2020;77:205-15. [PMID: 31991143 DOI: 10.1016/j.neuro.2020.01.007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
107 Santos NVD, Vieira CLZ, Saldiva PHN, Paci Mazzilli B, Saiki M, Saueia CH, De André CDS, Justo LT, Nisti MB, Koutrakis P. Levels of Polonium-210 in brain and pulmonary tissues: Preliminary study in autopsies conducted in the city of Sao Paulo, Brazil. Sci Rep 2020;10:180. [PMID: 31932745 DOI: 10.1038/s41598-019-56973-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
108 Ebanks K, Lewis PA, Bandopadhyay R. Vesicular Dysfunction and the Pathogenesis of Parkinson's Disease: Clues From Genetic Studies. Front Neurosci 2019;13:1381. [PMID: 31969802 DOI: 10.3389/fnins.2019.01381] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
109 Cansler HL, Wright KN, Stetzik LA, Wesson DW. Neurochemical organization of the ventral striatum's olfactory tubercle. J Neurochem 2020;152:425-48. [PMID: 31755104 DOI: 10.1111/jnc.14919] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
110 Gallegos CE, Bartos M, Gumilar F, Raisman-vozari R, Minetti A, Baier CJ. Intranasal Glyphosate-Based Herbicide Administration Alters the Redox Balance and the Cholinergic System in the Mouse Brain.. [DOI: 10.1101/834820] [Reference Citation Analysis]
111 Bathini P, Brai E, Auber LA. Olfactory dysfunction in the pathophysiological continuum of dementia. Ageing Res Rev 2019;55:100956. [PMID: 31479764 DOI: 10.1016/j.arr.2019.100956] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 7.8] [Reference Citation Analysis]
112 Mezias C, Rey N, Brundin P, Raj A. Neural connectivity predicts spreading of alpha-synuclein pathology in fibril-injected mouse models: Involvement of retrograde and anterograde axonal propagation. Neurobiol Dis 2020;134:104623. [PMID: 31628991 DOI: 10.1016/j.nbd.2019.104623] [Cited by in Crossref: 45] [Cited by in F6Publishing: 48] [Article Influence: 11.3] [Reference Citation Analysis]
113 Guix FX. The interplay between aging‐associated loss of protein homeostasis and extracellular vesicles in neurodegeneration. J Neurosci Res 2019;98:262-83. [DOI: 10.1002/jnr.24526] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
114 Nag S, Yu L, VanderHorst VG, Schneider JA, Bennett DA, Buchman AS, Wilson RS. Neocortical Lewy bodies are associated with impaired odor identification in community-dwelling elders without clinical PD. J Neurol 2019;266:3108-18. [PMID: 31535271 DOI: 10.1007/s00415-019-09540-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
115 Chen Y, Zhang QS, Shao QH, Wang S, Yuan YH, Chen NH, Wang HB. NLRP3 inflammasome pathway is involved in olfactory bulb pathological alteration induced by MPTP. Acta Pharmacol Sin 2019;40:991-8. [PMID: 30728466 DOI: 10.1038/s41401-018-0209-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
116 Castillo X, Castro-Obregón S, Gutiérrez-Becker B, Gutiérrez-Ospina G, Karalis N, Khalil AA, Lopez-Noguerola JS, Rodríguez LL, Martínez-Martínez E, Perez-Cruz C, Pérez-Velázquez J, Piña AL, Rubio K, García HPS, Syeda T, Vanoye-Carlo A, Villringer A, Winek K, Zille M. Re-thinking the Etiological Framework of Neurodegeneration. Front Neurosci 2019;13:728. [PMID: 31396030 DOI: 10.3389/fnins.2019.00728] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 10.5] [Reference Citation Analysis]
117 Tulisiak CT, Mercado G, Peelaerts W, Brundin L, Brundin P. Can infections trigger alpha-synucleinopathies? Prog Mol Biol Transl Sci 2019;168:299-322. [PMID: 31699323 DOI: 10.1016/bs.pmbts.2019.06.002] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 9.5] [Reference Citation Analysis]
118 Zheng R, Zhang ZH, Zhao YX, Chen C, Jia SZ, Cao XC, Shen LM, Ni JZ, Song GL. Transcriptomic Insights into the Response of the Olfactory Bulb to Selenium Treatment in a Mouse Model of Alzheimer's Disease. Int J Mol Sci 2019;20:E2998. [PMID: 31248178 DOI: 10.3390/ijms20122998] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
119 Ma J, Gao J, Wang J, Xie A. Prion-Like Mechanisms in Parkinson's Disease. Front Neurosci 2019;13:552. [PMID: 31275093 DOI: 10.3389/fnins.2019.00552] [Cited by in Crossref: 64] [Cited by in F6Publishing: 63] [Article Influence: 16.0] [Reference Citation Analysis]
120 Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019;126:933-95. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
121 Lachen-Montes M, González-Morales A, Palomino M, Ausin K, Gómez-Ochoa M, Zelaya MV, Ferrer I, Pérez-Mediavilla A, Fernández-Irigoyen J, Santamaría E. Early-Onset Molecular Derangements in the Olfactory Bulb of Tg2576 Mice: Novel Insights Into the Stress-Responsive Olfactory Kinase Dynamics in Alzheimer's Disease. Front Aging Neurosci 2019;11:141. [PMID: 31244650 DOI: 10.3389/fnagi.2019.00141] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
122 Sun F, Deng Y, Han X, Liu Q, Zhang P, Manzoor R, Ma H. A secret that underlies Parkinson's disease: The damaging cycle. Neurochem Int 2019;129:104484. [PMID: 31173779 DOI: 10.1016/j.neuint.2019.104484] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
123 Chen NK, Chou YH, Sundman M, Hickey P, Kasoff WS, Bernstein A, Trouard TP, Lin T, Rapcsak SZ, Sherman SJ, Weingarten CP. Alteration of Diffusion-Tensor Magnetic Resonance Imaging Measures in Brain Regions Involved in Early Stages of Parkinson's Disease. Brain Connect 2018;8:343-9. [PMID: 29877094 DOI: 10.1089/brain.2017.0558] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
124 Lachén-Montes M, González-Morales A, Schvartz D, Zelaya MV, Ausin K, Fernández-Irigoyen J, Sánchez JC, Santamaría E. The olfactory bulb proteotype differs across frontotemporal dementia spectrum. J Proteomics 2019;201:37-47. [PMID: 30999060 DOI: 10.1016/j.jprot.2019.04.011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
125 Flores-Cuadrado A, Saiz-Sanchez D, Mohedano-Moriano A, Martinez-Marcos A, Ubeda-Bañon I. Neurodegeneration and contralateral α-synuclein induction after intracerebral α-synuclein injections in the anterior olfactory nucleus of a Parkinson's disease A53T mouse model. Acta Neuropathol Commun 2019;7:56. [PMID: 30987677 DOI: 10.1186/s40478-019-0713-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
126 Li S, Li W, Wu X, Li J, Yang J, Tu C, Ye X, Ling S. Olfactory deficit is associated with mitral cell dysfunction in the olfactory bulb of P301S tau transgenic mice. Brain Res Bull 2019;148:34-45. [PMID: 30902575 DOI: 10.1016/j.brainresbull.2019.03.006] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
127 Ma LY, Liu GL, Wang DX, Zhang MM, Kou WY, Feng T. Alpha-Synuclein in Peripheral Tissues in Parkinson's Disease. ACS Chem Neurosci 2019;10:812-23. [PMID: 30714719 DOI: 10.1021/acschemneuro.8b00383] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 7.3] [Reference Citation Analysis]
128 Bernal-Meléndez E, Lacroix MC, Bouillaud P, Callebert J, Olivier B, Persuy MA, Durieux D, Rousseau-Ralliard D, Aioun J, Cassee F, Couturier-Tarrade A, Valentino S, Chavatte-Palmer P, Schroeder H, Baly C. Repeated gestational exposure to diesel engine exhaust affects the fetal olfactory system and alters olfactory-based behavior in rabbit offspring. Part Fibre Toxicol 2019;16:5. [PMID: 30654819 DOI: 10.1186/s12989-018-0288-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
129 Longhena F, Faustini G, Spillantini MG, Bellucci A. Living in Promiscuity: The Multiple Partners of Alpha-Synuclein at the Synapse in Physiology and Pathology. Int J Mol Sci 2019;20:E141. [PMID: 30609739 DOI: 10.3390/ijms20010141] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 10.5] [Reference Citation Analysis]
130 Fernández-Irigoyen J, Santamaría E. Olfactory proteotyping: towards the enlightenment of the neurodegeneration. Neural Regen Res 2019;14:979-81. [PMID: 30762007 DOI: 10.4103/1673-5374.249220] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
131 Prediger RD, Schamne MG, Sampaio TB, Moreira ELG, Rial D. Animal models of olfactory dysfunction in neurodegenerative diseases. Handb Clin Neurol 2019;164:431-52. [PMID: 31604561 DOI: 10.1016/B978-0-444-63855-7.00024-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
132 Sancandi M, Schul EV, Economides G, Constanti A, Mercer A. Structural Changes Observed in the Piriform Cortex in a Rat Model of Pre-motor Parkinson's Disease. Front Cell Neurosci 2018;12:479. [PMID: 30618629 DOI: 10.3389/fncel.2018.00479] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
133 Bell JS, Spencer JI, Yates RL, Yee SA, Jacobs BM, Deluca GC. Invited Review: From nose to gut – the role of the microbiome in neurological disease. Neuropathol Appl Neurobiol 2019;45:195-215. [DOI: 10.1111/nan.12520] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 9.6] [Reference Citation Analysis]
134 Krbot K, Hermann P, Skorić MK, Zerr I, Sepulveda-Falla D, Goebel S, Matschke J, Krasemann S, Glatzel M. Distinct microglia profile in Creutzfeldt-Jakob disease and Alzheimer's disease is independent of disease kinetics. Neuropathology 2018;38:591-600. [PMID: 30318820 DOI: 10.1111/neup.12517] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
135 Troncoso-Escudero P, Parra A, Nassif M, Vidal RL. Outside in: Unraveling the Role of Neuroinflammation in the Progression of Parkinson's Disease. Front Neurol 2018;9:860. [PMID: 30459700 DOI: 10.3389/fneur.2018.00860] [Cited by in Crossref: 71] [Cited by in F6Publishing: 78] [Article Influence: 14.2] [Reference Citation Analysis]
136 Bagnoli E, FitzGerald U. Mitral cells and the glucagon-like peptide 1 receptor: The sweet smell of success? Eur J Neurosci 2019;49:422-39. [PMID: 30120857 DOI: 10.1111/ejn.14115] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
137 Meyer A, Gläser A, Bräuer AU, Wree A, Strotmann J, Rolfs A, Witt M. Olfactory Performance as an Indicator for Protective Treatment Effects in an Animal Model of Neurodegeneration. Front Integr Neurosci 2018;12:35. [PMID: 30154701 DOI: 10.3389/fnint.2018.00035] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
138 Brai E, Alberi L. Olfaction, among the First Senses to Develop and Decline. Sensory Nervous System 2018. [DOI: 10.5772/intechopen.75061] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
139 Marin C, Vilas D, Langdon C, Alobid I, López-Chacón M, Haehner A, Hummel T, Mullol J. Olfactory Dysfunction in Neurodegenerative Diseases. Curr Allergy Asthma Rep 2018;18:42. [PMID: 29904888 DOI: 10.1007/s11882-018-0796-4] [Cited by in Crossref: 96] [Cited by in F6Publishing: 84] [Article Influence: 19.2] [Reference Citation Analysis]
140 Sardi SP, Cedarbaum JM, Brundin P. Targeted Therapies for Parkinson's Disease: From Genetics to the Clinic. Mov Disord 2018;33:684-96. [PMID: 29704272 DOI: 10.1002/mds.27414] [Cited by in Crossref: 108] [Cited by in F6Publishing: 112] [Article Influence: 21.6] [Reference Citation Analysis]
141 Kotecha AM, Corrêa ADC, Fisher KM, Rushworth JV. Olfactory Dysfunction as a Global Biomarker for Sniffing out Alzheimer's Disease: A Meta-Analysis. Biosensors (Basel) 2018;8:E41. [PMID: 29652815 DOI: 10.3390/bios8020041] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 6.8] [Reference Citation Analysis]
142 Omais S, Jaafar C, Ghanem N. "Till Death Do Us Part": A Potential Irreversible Link Between Aberrant Cell Cycle Control and Neurodegeneration in the Adult Olfactory Bulb. Front Neurosci 2018;12:144. [PMID: 29593485 DOI: 10.3389/fnins.2018.00144] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
143 Steiner JA, Quansah E, Brundin P. The concept of alpha-synuclein as a prion-like protein: ten years after. Cell Tissue Res 2018;373:161-73. [PMID: 29480459 DOI: 10.1007/s00441-018-2814-1] [Cited by in Crossref: 103] [Cited by in F6Publishing: 105] [Article Influence: 20.6] [Reference Citation Analysis]
144 Bräuer S, Zimyanin V, Hermann A. Prion-like properties of disease-relevant proteins in amyotrophic lateral sclerosis. J Neural Transm (Vienna) 2018;125:591-613. [PMID: 29417336 DOI: 10.1007/s00702-018-1851-y] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
145 Segura-Aguilar J. Neurotoxins as Preclinical Models for Parkinson's Disease. Neurotox Res 2018;34:870-7. [PMID: 29313219 DOI: 10.1007/s12640-017-9856-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
146 Rey NL, George S, Steiner JA, Madaj Z, Luk KC, Trojanowski JQ, Lee VM, Brundin P. Spread of aggregates after olfactory bulb injection of α-synuclein fibrils is associated with early neuronal loss and is reduced long term. Acta Neuropathol 2018;135:65-83. [PMID: 29209768 DOI: 10.1007/s00401-017-1792-9] [Cited by in Crossref: 117] [Cited by in F6Publishing: 93] [Article Influence: 23.4] [Reference Citation Analysis]
147 Volpicelli-Daley L, Brundin P. Prion-like propagation of pathology in Parkinson disease. Handb Clin Neurol 2018;153:321-35. [PMID: 29887143 DOI: 10.1016/B978-0-444-63945-5.00017-9] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 9.4] [Reference Citation Analysis]
148 Loria F, Vargas JY, Bousset L, Syan S, Salles A, Melki R, Zurzolo C. α-Synuclein transfer between neurons and astrocytes indicates that astrocytes play a role in degradation rather than in spreading. Acta Neuropathol 2017;134:789-808. [PMID: 28725967 DOI: 10.1007/s00401-017-1746-2] [Cited by in Crossref: 143] [Cited by in F6Publishing: 127] [Article Influence: 23.8] [Reference Citation Analysis]
149 Brundin P, Melki R. Prying into the Prion Hypothesis for Parkinson's Disease. J Neurosci 2017;37:9808-18. [PMID: 29021298 DOI: 10.1523/JNEUROSCI.1788-16.2017] [Cited by in Crossref: 172] [Cited by in F6Publishing: 177] [Article Influence: 28.7] [Reference Citation Analysis]
150 Zapiec B, Dieriks BV, Tan S, Faull RLM, Mombaerts P, Curtis MA. A ventral glomerular deficit in Parkinson's disease revealed by whole olfactory bulb reconstruction. Brain 2017;140:2722-36. [PMID: 28969383 DOI: 10.1093/brain/awx208] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 7.2] [Reference Citation Analysis]
151 Brundin P, Dave KD, Kordower JH. Therapeutic approaches to target alpha-synuclein pathology. Exp Neurol 2017;298:225-35. [PMID: 28987463 DOI: 10.1016/j.expneurol.2017.10.003] [Cited by in Crossref: 140] [Cited by in F6Publishing: 146] [Article Influence: 23.3] [Reference Citation Analysis]
152 Labrie V, Brundin P. Alpha-Synuclein to the Rescue: Immune Cell Recruitment by Alpha-Synuclein during Gastrointestinal Infection. J Innate Immun 2017;9:437-40. [PMID: 28866688 DOI: 10.1159/000479653] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 4.5] [Reference Citation Analysis]
153 Masilamoni GJ, Smith Y. Chronic MPTP administration regimen in monkeys: a model of dopaminergic and non-dopaminergic cell loss in Parkinson's disease. J Neural Transm (Vienna) 2018;125:337-63. [PMID: 28861737 DOI: 10.1007/s00702-017-1774-z] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 5.5] [Reference Citation Analysis]
154 Lachen-Montes M, Zelaya MV, Segura V, Fernández-Irigoyen J, Santamaría E. Progressive modulation of the human olfactory bulb transcriptome during Alzheimer´s disease evolution: novel insights into the olfactory signaling across proteinopathies. Oncotarget 2017;8:69663-79. [PMID: 29050232 DOI: 10.18632/oncotarget.18193] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
155 Tomlinson JJ, Shutinoski B, Dong L, Meng F, Elleithy D, Lengacher NA, Nguyen AP, Cron GO, Jiang Q, Roberson ED, Nussbaum RL, Majbour NK, El-Agnaf OM, Bennett SA, Lagace DC, Woulfe JM, Sad S, Brown EG, Schlossmacher MG. Holocranohistochemistry enables the visualization of α-synuclein expression in the murine olfactory system and discovery of its systemic anti-microbial effects. J Neural Transm (Vienna) 2017;124:721-38. [PMID: 28477284 DOI: 10.1007/s00702-017-1726-7] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]