BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Josefsen K, Nielsen SM, Campos A, Seifert T, Hasholt L, Nielsen JE, Nørremølle A, Skotte NH, Secher NH, Quistorff B. Reduced gluconeogenesis and lactate clearance in Huntington's disease. Neurobiology of Disease 2010;40:656-62. [DOI: 10.1016/j.nbd.2010.08.009] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 1.9] [Reference Citation Analysis]
Number Citing Articles
1 Testa CM, Jankovic J. Huntington disease: A quarter century of progress since the gene discovery. Journal of the Neurological Sciences 2019;396:52-68. [DOI: 10.1016/j.jns.2018.09.022] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
2 Rodrigues FB, Byrne LM, Wild EJ. Biofluid Biomarkers in Huntington’s Disease. In: Precious SV, Rosser AE, Dunnett SB, editors. Huntington’s Disease. New York: Springer; 2018. pp. 329-96. [DOI: 10.1007/978-1-4939-7825-0_17] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
3 Valadão PAC, Oliveira BDS, Joviano-santos JV, Vieira ÉLM, Rocha NP, Teixeira AL, Guatimosim C, de Miranda AS. Inflammatory changes in peripheral organs in the BACHD murine model of Huntington's disease. Life Sciences 2019;232:116653. [DOI: 10.1016/j.lfs.2019.116653] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Mango D, Nisticò R. Neurodegenerative Disease: What Potential Therapeutic Role of Acid-Sensing Ion Channels? Front Cell Neurosci 2021;15:730641. [PMID: 34690702 DOI: 10.3389/fncel.2021.730641] [Reference Citation Analysis]
5 Dawes H, Collett J, Debono K, Quinn L, Jones K, Kelson MJ, Simpson SA, Playle R, Backx K, Wasley D, Nemeth AH, Rosser A, Izardi H, Busse M. Exercise testing and training in people with Huntington's disease. Clin Rehabil 2015;29:196-206. [PMID: 25142278 DOI: 10.1177/0269215514540921] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
6 Sivils A, Yang F, Wang JQ, Chu X. Acid-Sensing Ion Channel 2: Function and Modulation. Membranes 2022;12:113. [DOI: 10.3390/membranes12020113] [Reference Citation Analysis]
7 Figiel M, Szlachcic WJ, Switonski PM, Gabka A, Krzyzosiak WJ. Mouse models of polyglutamine diseases: review and data table. Part I. Mol Neurobiol 2012;46:393-429. [PMID: 22956270 DOI: 10.1007/s12035-012-8315-4] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 4.0] [Reference Citation Analysis]
8 Lakra P, Aditi K, Agrawal N. Peripheral Expression of Mutant Huntingtin is a Critical Determinant of Weight Loss and Metabolic Disturbances in Huntington's Disease. Sci Rep 2019;9:10127. [PMID: 31300691 DOI: 10.1038/s41598-019-46470-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
9 Sinha M, Mukhopadhyay S, Bhattacharyya NP. Mechanism(s) of alteration of micro RNA expressions in Huntington's disease and their possible contributions to the observed cellular and molecular dysfunctions in the disease. Neuromolecular Med 2012;14:221-43. [PMID: 22581158 DOI: 10.1007/s12017-012-8183-0] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 2.4] [Reference Citation Analysis]
10 Araujo BG, Souza E Silva LF, de Barros Torresi JL, Siena A, Valerio BCO, Brito MD, Rosenstock TR. Decreased Mitochondrial Function, Biogenesis, and Degradation in Peripheral Blood Mononuclear Cells from Amyotrophic Lateral Sclerosis Patients as a Potential Tool for Biomarker Research. Mol Neurobiol 2020;57:5084-102. [PMID: 32840822 DOI: 10.1007/s12035-020-02059-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Reed TT. Lipid peroxidation and neurodegenerative disease. Free Radical Biology and Medicine 2011;51:1302-19. [DOI: 10.1016/j.freeradbiomed.2011.06.027] [Cited by in Crossref: 223] [Cited by in F6Publishing: 209] [Article Influence: 20.3] [Reference Citation Analysis]
12 Carroll JB, Bates GP, Steffan J, Saft C, Tabrizi SJ. Treating the whole body in Huntington's disease. Lancet Neurol 2015;14:1135-42. [PMID: 26466780 DOI: 10.1016/S1474-4422(15)00177-5] [Cited by in Crossref: 91] [Cited by in F6Publishing: 52] [Article Influence: 15.2] [Reference Citation Analysis]
13 Lieberman AP, Shakkottai VG, Albin RL. Polyglutamine Repeats in Neurodegenerative Diseases. Annu Rev Pathol 2019;14:1-27. [PMID: 30089230 DOI: 10.1146/annurev-pathmechdis-012418-012857] [Cited by in Crossref: 71] [Cited by in F6Publishing: 64] [Article Influence: 17.8] [Reference Citation Analysis]
14 Naia L, Ferreira IL, Cunha-oliveira T, Duarte AI, Ribeiro M, Rosenstock TR, Laço MN, Ribeiro MJ, Oliveira CR, Saudou F, Humbert S, Rego AC. Activation of IGF-1 and Insulin Signaling Pathways Ameliorate Mitochondrial Function and Energy Metabolism in Huntington’s Disease Human Lymphoblasts. Mol Neurobiol 2015;51:331-48. [DOI: 10.1007/s12035-014-8735-4] [Cited by in Crossref: 47] [Cited by in F6Publishing: 45] [Article Influence: 5.9] [Reference Citation Analysis]
15 Maung MT, Carlson A, Olea-Flores M, Elkhadragy L, Schachtschneider KM, Navarro-Tito N, Padilla-Benavides T. The molecular and cellular basis of copper dysregulation and its relationship with human pathologies. FASEB J 2021;35:e21810. [PMID: 34390520 DOI: 10.1096/fj.202100273RR] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Reynolds RH, Petersen MH, Willert CW, Heinrich M, Nymann N, Dall M, Treebak JT, Björkqvist M, Silahtaroglu A, Hasholt L, Nørremølle A. Perturbations in the p53/miR-34a/SIRT1 pathway in the R6/2 Huntington's disease model. Mol Cell Neurosci 2018;88:118-29. [PMID: 29289683 DOI: 10.1016/j.mcn.2017.12.009] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
17 Kocerha J, Liu Y, Willoughby D, Chidamparam K, Benito J, Nelson K, Xu Y, Chi T, Engelhardt H, Moran S, Yang SH, Li SH, Li XJ, Larkin K, Neumann A, Banta H, Yang JJ, Chan AW. Longitudinal transcriptomic dysregulation in the peripheral blood of transgenic Huntington's disease monkeys. BMC Neurosci 2013;14:88. [PMID: 23957861 DOI: 10.1186/1471-2202-14-88] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
18 Nielsen SMB, Vinther-jensen T, Nielsen JE, Nørremølle A, Hasholt L, Hjermind LE, Josefsen K. Liver function in Huntington's disease assessed by blood biochemical analyses in a clinical setting. Journal of the Neurological Sciences 2016;362:326-32. [DOI: 10.1016/j.jns.2016.02.018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
19 Nielsen SM, Hasholt L, Nørremølle A, Josefsen K. Progressive Impairment of Lactate-based Gluconeogenesis in the Huntington's Disease Mouse Model R6/2. PLoS Curr 2015;7:ecurrents. [PMID: 26064782 DOI: 10.1371/currents.hd.019b33aae1c519e6e8b68e7cf3e7818e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
20 Chuang CL, Demontis F. Systemic manifestation and contribution of peripheral tissues to Huntington's disease pathogenesis. Ageing Res Rev 2021;69:101358. [PMID: 33979693 DOI: 10.1016/j.arr.2021.101358] [Reference Citation Analysis]
21 Tsialtas I, Gorgogietas VA, Michalopoulou M, Komninou A, Liakou E, Georgantopoulos A, Kalousi FD, Karra AG, Protopapa E, Psarra AG. Neurotoxic effects of aluminum are associated with its interference with estrogen receptors signaling. Neurotoxicology 2020;77:114-26. [PMID: 31945389 DOI: 10.1016/j.neuro.2020.01.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
22 Foster VS, Rash LD, King GF, Rank MM. Acid-Sensing Ion Channels: Expression and Function in Resident and Infiltrating Immune Cells in the Central Nervous System. Front Cell Neurosci 2021;15:738043. [PMID: 34602982 DOI: 10.3389/fncel.2021.738043] [Reference Citation Analysis]
23 Butterfield DA, Gu L, Di Domenico F, Robinson RA. Mass spectrometry and redox proteomics: applications in disease. Mass Spectrom Rev. 2014;33:277-301. [PMID: 24930952 DOI: 10.1002/mas.21374] [Cited by in Crossref: 78] [Cited by in F6Publishing: 73] [Article Influence: 8.7] [Reference Citation Analysis]
24 Hölter SM, Stromberg M, Kovalenko M, Garrett L, Glasl L, Lopez E, Guide J, Götz A, Hans W, Becker L, Rathkolb B, Rozman J, Schrewed A, Klingenspor M, Klopstock T, Schulz H, Wolf E, Wursta W, Gillis T, Wakimoto H, Seidman J, MacDonald ME, Cotman S, Gailus-Durner V, Fuchs H, de Angelis MH, Lee JM, Wheeler VC. A broad phenotypic screen identifies novel phenotypes driven by a single mutant allele in Huntington's disease CAG knock-in mice. PLoS One 2013;8:e80923. [PMID: 24278347 DOI: 10.1371/journal.pone.0080923] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.3] [Reference Citation Analysis]
25 Singh A, Agrawal N. Metabolism in Huntington's disease: a major contributor to pathology. Metab Brain Dis 2021. [PMID: 34704220 DOI: 10.1007/s11011-021-00844-y] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Zhou RP, Wu XS, Wang ZS, Xie YY, Ge JF, Chen FH. Novel Insights into Acid-Sensing Ion Channels: Implications for Degenerative Diseases. Aging Dis 2016;7:491-501. [PMID: 27493834 DOI: 10.14336/AD.2015.1213] [Cited by in Crossref: 26] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
27 Ehrnhoefer DE, Skotte NH, Ladha S, Nguyen YT, Qiu X, Deng Y, Huynh KT, Engemann S, Nielsen SM, Becanovic K, Leavitt BR, Hasholt L, Hayden MR. p53 increases caspase-6 expression and activation in muscle tissue expressing mutant huntingtin. Hum Mol Genet 2014;23:717-29. [PMID: 24070868 DOI: 10.1093/hmg/ddt458] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 4.0] [Reference Citation Analysis]