BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hassan S, Prakash G, Ozturk A, Saghazadeh S, Sohail MF, Seo J, Dockmeci M, Zhang YS, Khademhosseini A. Evolution and Clinical Translation of Drug Delivery Nanomaterials. Nano Today 2017;15:91-106. [PMID: 29225665 DOI: 10.1016/j.nantod.2017.06.008] [Cited by in Crossref: 116] [Cited by in F6Publishing: 94] [Article Influence: 23.2] [Reference Citation Analysis]
Number Citing Articles
1 Chen T, Ren L, Liu X, Zhou M, Li L, Xu J, Zhu X. DNA Nanotechnology for Cancer Diagnosis and Therapy. Int J Mol Sci 2018;19:E1671. [PMID: 29874867 DOI: 10.3390/ijms19061671] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 6.8] [Reference Citation Analysis]
2 Su Z, Dong S, Zhao SC, Liu K, Tan Y, Jiang X, Assaraf YG, Qin B, Chen ZS, Zou C. Novel nanomedicines to overcome cancer multidrug resistance. Drug Resist Updat 2021;58:100777. [PMID: 34481195 DOI: 10.1016/j.drup.2021.100777] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Yong HW, Kakkar A. Nanoengineering Branched Star Polymer-Based Formulations: Scope, Strategies, and Advances. Macromol Biosci 2021;21:e2100105. [PMID: 34117840 DOI: 10.1002/mabi.202100105] [Reference Citation Analysis]
4 Prakash G, Shokr A, Willemen N, Bashir SM, Shin SR, Hassan S. Microfluidic fabrication of lipid nanoparticles for the delivery of nucleic acids. Adv Drug Deliv Rev 2022;184:114197. [PMID: 35288219 DOI: 10.1016/j.addr.2022.114197] [Reference Citation Analysis]
5 Zhao X, Bian F, Sun L, Cai L, Li L, Zhao Y. Microfluidic Generation of Nanomaterials for Biomedical Applications. Small 2019;16:1901943. [DOI: 10.1002/smll.201901943] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 8.7] [Reference Citation Analysis]
6 Xu J, Miao H, Wang J, Pan G. Molecularly Imprinted Synthetic Antibodies: From Chemical Design to Biomedical Applications. Small 2020;16:1906644. [DOI: 10.1002/smll.201906644] [Cited by in Crossref: 32] [Cited by in F6Publishing: 19] [Article Influence: 16.0] [Reference Citation Analysis]
7 Fan L, Zhang X, Liu X, Sun B, Li L, Zhao Y. Responsive Hydrogel Microcarrier-Integrated Microneedles for Versatile and Controllable Drug Delivery. Adv Healthc Mater 2021;10:e2002249. [PMID: 33690992 DOI: 10.1002/adhm.202002249] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
8 Roth A, Murschel F, Latreille P, Martinez VA, Liberelle B, Banquy X, De Crescenzo G. Coiled Coil Affinity-Based Systems for the Controlled Release of Biofunctionalized Gold Nanoparticles from Alginate Hydrogels. Biomacromolecules 2019;20:1926-36. [DOI: 10.1021/acs.biomac.9b00137] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
9 Kashyap VK, Peasah-darkwah G, Dhasmana A, Jaggi M, Yallapu MM, Chauhan SC. Withania somnifera: Progress towards a Pharmaceutical Agent for Immunomodulation and Cancer Therapeutics. Pharmaceutics 2022;14:611. [DOI: 10.3390/pharmaceutics14030611] [Reference Citation Analysis]
10 Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater 2022;8:267-95. [PMID: 34541401 DOI: 10.1016/j.bioactmat.2021.06.027] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 17.0] [Reference Citation Analysis]
11 Baloch J, Sohail MF, Sarwar HS, Kiani MH, Khan GM, Jahan S, Rafay M, Chaudhry MT, Yasinzai M, Shahnaz G. Self-Nanoemulsifying Drug Delivery System (SNEDDS) for Improved Oral Bioavailability of Chlorpromazine: In Vitro and In Vivo Evaluation. Medicina (Kaunas) 2019;55:E210. [PMID: 31137751 DOI: 10.3390/medicina55050210] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 5.3] [Reference Citation Analysis]
12 Zheng Z, Dai R, Jia Z, Yang X, Qin Y, Rong S, Peng X, Xie X, Wang Y, Zhang R. Biodegradable Multifunctional Nanotheranostic Based on Ag2S-Doped Hollow BSA-SiO2 for Enhancing ROS-Feedback Synergistic Antitumor Therapy. ACS Appl Mater Interfaces 2020;12:54356-66. [PMID: 33237737 DOI: 10.1021/acsami.0c14855] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Pagano L, Maestri E, Caldara M, White JC, Marmiroli N, Marmiroli M. Engineered Nanomaterial Activity at the Organelle Level: Impacts on the Chloroplasts and Mitochondria. ACS Sustainable Chem Eng 2018;6:12562-79. [DOI: 10.1021/acssuschemeng.8b02046] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
14 Ding X, Li D, Jiang J. Gold-based Inorganic Nanohybrids for Nanomedicine Applications. Theranostics 2020;10:8061-79. [PMID: 32724458 DOI: 10.7150/thno.42284] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
15 Rawtani D, Pandey G, Tharmavaram M, Pathak P, Akkireddy S, Agrawal Y. Development of a novel ‘nanocarrier’ system based on Halloysite Nanotubes to overcome the complexation of ciprofloxacin with iron: An in vitro approach. Applied Clay Science 2017;150:293-302. [DOI: 10.1016/j.clay.2017.10.002] [Cited by in Crossref: 47] [Cited by in F6Publishing: 19] [Article Influence: 9.4] [Reference Citation Analysis]
16 Doroudian M, MacLoughlin R, Poynton F, Prina-Mello A, Donnelly SC. Nanotechnology based therapeutics for lung disease. Thorax 2019;74:965-76. [PMID: 31285360 DOI: 10.1136/thoraxjnl-2019-213037] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
17 Agrahari V, Agrahari V. Facilitating the translation of nanomedicines to a clinical product: challenges and opportunities. Drug Discovery Today 2018;23:974-91. [DOI: 10.1016/j.drudis.2018.01.047] [Cited by in Crossref: 47] [Cited by in F6Publishing: 39] [Article Influence: 11.8] [Reference Citation Analysis]
18 Gao P, Pan W, Li N, Tang B. Boosting Cancer Therapy with Organelle-Targeted Nanomaterials. ACS Appl Mater Interfaces 2019;11:26529-58. [DOI: 10.1021/acsami.9b01370] [Cited by in Crossref: 72] [Cited by in F6Publishing: 61] [Article Influence: 24.0] [Reference Citation Analysis]
19 Falsini S, Bardi U, Abou-hassan A, Ristori S. Sustainable strategies for large-scale nanotechnology manufacturing in the biomedical field. Green Chem 2018;20:3897-907. [DOI: 10.1039/c8gc01248b] [Cited by in Crossref: 19] [Cited by in F6Publishing: 1] [Article Influence: 4.8] [Reference Citation Analysis]
20 Kim J, Shamul JG, Shah SR, Shin A, Lee BJ, Quinones-Hinojosa A, Green JJ. Verteporfin-Loaded Poly(ethylene glycol)-Poly(beta-amino ester)-Poly(ethylene glycol) Triblock Micelles for Cancer Therapy. Biomacromolecules 2018;19:3361-70. [PMID: 29940101 DOI: 10.1021/acs.biomac.8b00640] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
21 Yang K, Yang Z, Yu G, Nie Z, Wang R, Chen X. Polyprodrug Nanomedicines: An Emerging Paradigm for Cancer Therapy. Adv Mater 2022;34:e2107434. [PMID: 34693571 DOI: 10.1002/adma.202107434] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
22 Mehta PP, Ghoshal D, Pawar AP, Kadam SS, Dhapte-pawar VS. Recent advances in inhalable liposomes for treatment of pulmonary diseases: Concept to clinical stance. Journal of Drug Delivery Science and Technology 2020;56:101509. [DOI: 10.1016/j.jddst.2020.101509] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 6.5] [Reference Citation Analysis]
23 Shi Y, Tan R, Yu C, Wan Y. Dextran-polylactide micelles loaded with doxorubicin and DiR for image-guided chemo-photothermal tumor therapy. Int J Biol Macromol 2021;187:296-308. [PMID: 34310998 DOI: 10.1016/j.ijbiomac.2021.07.141] [Reference Citation Analysis]
24 Riaz MI, Sarwar HS, Rehman M, Gohar UF, Raza SA, Siddique MI, Shahnaz G, Sohail MF. Study of erythrocytes as a novel drug carrier for the delivery of artemether. Braz J Pharm Sci 2019;55:e17680. [DOI: 10.1590/s2175-97902019000117680] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
25 Rezaei R, Safaei M, Mozaffari HR, Moradpoor H, Karami S, Golshah A, Salimi B, Karami H. The Role of Nanomaterials in the Treatment of Diseases and Their Effects on the Immune System. Open Access Maced J Med Sci 2019;7:1884-90. [PMID: 31316678 DOI: 10.3889/oamjms.2019.486] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
26 Lee SJ, Lee H, Kim S, Seok JM, Lee JH, Kim WD, Kwon IK, Park S, Park SA. In situ gold nanoparticle growth on polydopamine-coated 3D-printed scaffolds improves osteogenic differentiation for bone tissue engineering applications: in vitro and in vivo studies. Nanoscale 2018;10:15447-53. [DOI: 10.1039/c8nr04037k] [Cited by in Crossref: 38] [Cited by in F6Publishing: 6] [Article Influence: 9.5] [Reference Citation Analysis]
27 Torkzadeh-mahani R, Foroughi MM, Jahani S, Kazemipour M, Hassani Nadiki H. The effect of ultrasonic irradiation on the morphology of NiO/Co3O4 nanocomposite and its application to the simultaneous electrochemical determination of droxidopa and carbidopa. Ultrasonics Sonochemistry 2019;56:183-92. [DOI: 10.1016/j.ultsonch.2019.04.002] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
28 Huang H, Feng W, Chen Y, Shi J. Inorganic nanoparticles in clinical trials and translations. Nano Today 2020;35:100972. [DOI: 10.1016/j.nantod.2020.100972] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 7.5] [Reference Citation Analysis]
29 Clegg JR, Wagner AM, Shin SR, Hassan S, Khademhosseini A, Peppas NA. Modular Fabrication of Intelligent Material-Tissue Interfaces for Bioinspired and Biomimetic Devices. Prog Mater Sci 2019;106:100589. [PMID: 32189815 DOI: 10.1016/j.pmatsci.2019.100589] [Cited by in Crossref: 35] [Cited by in F6Publishing: 25] [Article Influence: 11.7] [Reference Citation Analysis]
30 Saison-francioso O, Lévêque G, Akjouj A. Numerical Modeling of Acousto–Plasmonic Coupling in Metallic Nanoparticles. J Phys Chem C 2020;124:12120-33. [DOI: 10.1021/acs.jpcc.0c00874] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
31 Yang Y, Sun B, Zuo S, Li X, Zhou S, Li L, Luo C, Liu H, Cheng M, Wang Y, Wang S, He Z, Sun J. Trisulfide bond-mediated doxorubicin dimeric prodrug nanoassemblies with high drug loading, high self-assembly stability, and high tumor selectivity. Sci Adv 2020;6:eabc1725. [PMID: 33148644 DOI: 10.1126/sciadv.abc1725] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
32 Gao P, Wang H, Cheng Y. Strategies for efficient photothermal therapy at mild temperatures: Progresses and challenges. Chinese Chemical Letters 2022;33:575-86. [DOI: 10.1016/j.cclet.2021.08.023] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
33 Gonçalves M, Mignani S, Rodrigues J, Tomás H. A glance over doxorubicin based-nanotherapeutics: From proof-of-concept studies to solutions in the market. Journal of Controlled Release 2020;317:347-74. [DOI: 10.1016/j.jconrel.2019.11.016] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 10.0] [Reference Citation Analysis]
34 Gonçalves M, Mignani S, Rodrigues J, Tomás H. A glance over doxorubicin based-nanotherapeutics: From proof-of-concept studies to solutions in the market. Journal of Controlled Release 2020;317:347-74. [DOI: 10.1016/j.jconrel.2019.11.016] [Reference Citation Analysis]
35 Lu L, Sun Y, Wan C, Hu Y, Lo PC, Lovell JF, Yang K, Jin H. Role of intravital imaging in nanomedicine-assisted anti-cancer therapy. Curr Opin Biotechnol 2021;69:153-61. [PMID: 33476937 DOI: 10.1016/j.copbio.2020.12.024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Sohail MF, Hussain SZ, Saeed H, Javed I, Sarwar HS, Nadhman A, Huma ZE, Rehman M, Jahan S, Hussain I, Shahnaz G. Polymeric nanocapsules embedded with ultra-small silver nanoclusters for synergistic pharmacology and improved oral delivery of Docetaxel. Sci Rep 2018;8:13304. [PMID: 30190588 DOI: 10.1038/s41598-018-30749-3] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 7.3] [Reference Citation Analysis]
37 Wang S, Ou X, Yi M, Li J. Spontaneous desorption of protein from self-assembled monolayer (SAM)-coated gold nanoparticles induced by high temperature. Phys Chem Chem Phys 2022. [PMID: 35018922 DOI: 10.1039/d1cp04000f] [Reference Citation Analysis]
38 Voronin DV, Abalymov AA, Svenskaya YI, Lomova MV. Key Points in Remote-Controlled Drug Delivery: From the Carrier Design to Clinical Trials. Int J Mol Sci 2021;22:9149. [PMID: 34502059 DOI: 10.3390/ijms22179149] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Mallesh S, Srinivas V. A comprehensive study on thermal stability and magnetic properties of MnZn-ferrite nanoparticles. Journal of Magnetism and Magnetic Materials 2019;475:290-303. [DOI: 10.1016/j.jmmm.2018.11.052] [Cited by in Crossref: 24] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
40 Hernández Becerra E, Quinchia J, Castro C, Orozco J. Light-Triggered Polymersome-Based Anticancer Therapeutics Delivery. Nanomaterials 2022;12:836. [DOI: 10.3390/nano12050836] [Reference Citation Analysis]
41 Zhao X, Liu Y, Yu Y, Huang Q, Ji W, Li J, Zhao Y. Hierarchically porous composite microparticles from microfluidics for controllable drug delivery. Nanoscale 2018;10:12595-604. [PMID: 29938277 DOI: 10.1039/c8nr03728k] [Cited by in Crossref: 19] [Cited by in F6Publishing: 6] [Article Influence: 6.3] [Reference Citation Analysis]
42 Yang X, Chen S, Liu X, Yu M, Liu X. Drug Delivery Based on Nanotechnology for Target Bone Disease. Curr Drug Deliv 2019;16:782-92. [PMID: 31530265 DOI: 10.2174/1567201816666190917123948] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
43 Wang JL, Du XJ, Yang JX, Shen S, Li HJ, Luo YL, Iqbal S, Xu CF, Ye XD, Cao J, Wang J. The effect of surface poly(ethylene glycol) length on in vivo drug delivery behaviors of polymeric nanoparticles. Biomaterials 2018;182:104-13. [PMID: 30114562 DOI: 10.1016/j.biomaterials.2018.08.022] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
44 Gao P, Chen Y, Pan W, Li N, Liu Z, Tang B. Antitumor Agents Based on Metal–Organic Frameworks. Angew Chem Int Ed 2021;60:16763-76. [DOI: 10.1002/anie.202102574] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 17.0] [Reference Citation Analysis]
45 Han J, Li H, Yoon J. Activated supramolecular nano-agents: From diagnosis to imaging-guided tumor treatment. Nano Today 2022;43:101392. [DOI: 10.1016/j.nantod.2022.101392] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
46 Ni N, Zhang X, Ma Y, Yuan J, Wang D, Ma G, Dong J, Sun X. Biodegradable two-dimensional nanomaterials for cancer theranostics. Coordination Chemistry Reviews 2022;458:214415. [DOI: 10.1016/j.ccr.2022.214415] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
47 Yang Y, Santamaria P. Evolution of nanomedicines for the treatment of autoimmune disease: From vehicles for drug delivery to inducers of bystander immunoregulation. Adv Drug Deliv Rev 2021;176:113898. [PMID: 34314782 DOI: 10.1016/j.addr.2021.113898] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
48 Zhang D, Li Z, Liang C. Diverse nanomaterials synthesized by laser ablation of pure metals in liquids. Sci China Phys Mech Astron 2022;65. [DOI: 10.1007/s11433-021-1860-x] [Reference Citation Analysis]
49 Hunt NJ, Lockwood GP, Kang SWS, Westwood LJ, Limantoro C, Chrzanowski W, McCourt PAG, Kuncic Z, Le Couteur DG, Cogger VC. Quantum Dot Nanomedicine Formulations Dramatically Improve Pharmacological Properties and Alter Uptake Pathways of Metformin and Nicotinamide Mononucleotide in Aging Mice. ACS Nano 2021;15:4710-27. [PMID: 33626869 DOI: 10.1021/acsnano.0c09278] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
50 Abdel-hakeem MA, Abdel-haseb OM, Abdel-ghany SE, Cevik E, Sabit H. Doxorubicin loaded on chitosan-protamine nanoparticles triggers apoptosis via downregulating Bcl-2 in breast cancer cells. Journal of Drug Delivery Science and Technology 2020;55:101423. [DOI: 10.1016/j.jddst.2019.101423] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
51 Dong C, Feng W, Xu W, Yu L, Xiang H, Chen Y, Zhou J. The Coppery Age: Copper (Cu)-Involved Nanotheranostics. Adv Sci (Weinh) 2020;7:2001549. [PMID: 33173728 DOI: 10.1002/advs.202001549] [Cited by in Crossref: 43] [Cited by in F6Publishing: 31] [Article Influence: 21.5] [Reference Citation Analysis]
52 Sajjad M, Khan MI, Naveed S, Ijaz S, Qureshi OS, Raza SA, Shahnaz G, Sohail MF. Folate-Functionalized Thiomeric Nanoparticles for Enhanced Docetaxel Cytotoxicity and Improved Oral Bioavailability. AAPS PharmSciTech 2019;20:81. [PMID: 30645705 DOI: 10.1208/s12249-019-1297-z] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 5.7] [Reference Citation Analysis]
53 Li J, Li M, Tian L, Qiu Y, Yu Q, Wang X, Guo R, He Q. Facile strategy by hyaluronic acid functional carbon dot-doxorubicin nanoparticles for CD44 targeted drug delivery and enhanced breast cancer therapy. International Journal of Pharmaceutics 2020;578:119122. [DOI: 10.1016/j.ijpharm.2020.119122] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]
54 McGoron AJ. Perspectives on the Future of Nanomedicine to Impact Patients: An Analysis of US Federal Funding and Interventional Clinical Trials. Bioconjug Chem 2020;31:436-47. [PMID: 31922742 DOI: 10.1021/acs.bioconjchem.9b00818] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
55 Bal ÖztÜrk A, OĞuz N, Tekarslan Şahİn H, Emİk S, AlarÇİn E. Design of an amphiphilic hyperbranched core/shell-type polymeric nanocarrier platform for drug delivery. Turk J Chem 2020;44:518-34. [PMID: 33488174 DOI: 10.3906/kim-1910-35] [Reference Citation Analysis]
56 Zheng X, Xie J, Zhang X, Sun W, Zhao H, Li Y, Wang C. An overview of polymeric nanomicelles in clinical trials and on the market. Chinese Chemical Letters 2021;32:243-57. [DOI: 10.1016/j.cclet.2020.11.029] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 12.0] [Reference Citation Analysis]
57 Zhang X, Sun L, Yu Y, Zhao Y. Flexible Ferrofluids: Design and Applications. Adv Mater 2019;31:e1903497. [PMID: 31583782 DOI: 10.1002/adma.201903497] [Cited by in Crossref: 53] [Cited by in F6Publishing: 38] [Article Influence: 17.7] [Reference Citation Analysis]
58 Zhang K, Ji M, Lin S, Peng S, Zhang Z, Zhang M, Zhang J, Zhang Y, Wu D, Tian H, Chen X, Xu H. Design, Synthesis, and Biological Evaluation of a Novel Photocaged PI3K Inhibitor toward Precise Cancer Treatment. J Med Chem 2021;64:7331-40. [PMID: 33876637 DOI: 10.1021/acs.jmedchem.0c02186] [Reference Citation Analysis]
59 Parhizkar M, Reardon PJT, Harker AH, Browning RJ, Stride E, Pedley RB, Knowles JC, Edirisinghe M. Enhanced efficacy in drug-resistant cancer cells through synergistic nanoparticle mediated delivery of cisplatin and decitabine. Nanoscale Adv 2020;2:1177-86. [DOI: 10.1039/c9na00684b] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
60 Alejo T, Uson L, Arruebo M. Reversible stimuli-responsive nanomaterials with on-off switching ability for biomedical applications. Journal of Controlled Release 2019;314:162-76. [DOI: 10.1016/j.jconrel.2019.10.036] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
61 El-Sawy HS, Al-Abd AM, Ahmed TA, El-Say KM, Torchilin VP. Stimuli-Responsive Nano-Architecture Drug-Delivery Systems to Solid Tumor Micromilieu: Past, Present, and Future Perspectives. ACS Nano 2018;12:10636-64. [PMID: 30335963 DOI: 10.1021/acsnano.8b06104] [Cited by in Crossref: 212] [Cited by in F6Publishing: 187] [Article Influence: 53.0] [Reference Citation Analysis]
62 Pan C, Zhang T, Li S, Xu Z, Pan B, Xu S, Jin S, Lu G, Yang S, Xue Z, Chen P, Shen X, Wang F, Xu C. Hybrid Nanoparticles Modified by Hyaluronic Acid Loading an HSP90 Inhibitor as a Novel Delivery System for Subcutaneous and Orthotopic Colon Cancer Therapy. Int J Nanomedicine 2021;16:1743-55. [PMID: 33688189 DOI: 10.2147/IJN.S275805] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Lin J, Yin Q, Chen B, Zhang H, Mei D, Fu J, He B, Zhang H, Dai W, Wang X, Wang Y, Zhang Q. A magnetism/laser-auxiliary cascaded drug delivery to pulmonary carcinoma. Acta Pharm Sin B 2020;10:1549-62. [PMID: 32963949 DOI: 10.1016/j.apsb.2019.12.017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
64 Ghalkhani M, Kaya SI, Bakirhan NK, Ozkan Y, Ozkan SA. Application of Nanomaterials in Development of Electrochemical Sensors and Drug Delivery Systems for Anticancer Drugs and Cancer Biomarkers. Critical Reviews in Analytical Chemistry. [DOI: 10.1080/10408347.2020.1808442] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
65 Mousavi SM, Zarei M, Hashemi SA, Ramakrishna S, Chiang WH, Lai CW, Gholami A. Gold nanostars-diagnosis, bioimaging and biomedical applications. Drug Metab Rev 2020;52:299-318. [PMID: 32150480 DOI: 10.1080/03602532.2020.1734021] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
66 Hao C, Wang X, Jia X, Liu T, Sun J, Yan Z. The applications of two-dimensional materials and the derivative quantum dots in photodynamic therapy. APL Materials 2022;10:021104. [DOI: 10.1063/5.0068996] [Reference Citation Analysis]
67 Li D, Qin J, Sun M, Yan G, Tang R. pH-sensitive, dynamic graft polymer micelles via simple synthesis for enhanced chemotherapeutic efficacy. J Biomater Appl 2020;34:1059-70. [DOI: 10.1177/0885328219894695] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
68 Kirbas Cilingir E, Sankaran M, Garber JM, Vallejo FA, Bartoli M, Tagliaferro A, Vanni S, Graham RM, Leblanc RM. Surface modification of carbon nitride dots by nanoarchitectonics for better drug loading and higher cancer selectivity. Nanoscale 2022. [PMID: 35766148 DOI: 10.1039/d2nr02063g] [Reference Citation Analysis]
69 Bian F, Sun L, Cai L, Wang Y, Zhao Y. Quantum dots from microfluidics for nanomedical application. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2019;11:e1567. [PMID: 31257723 DOI: 10.1002/wnan.1567] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
70 Mercel AI, Marulanda K, Gillis DC, Sun K, Clemons TD, Willcox S, Griffith J, Peters EB, Karver MR, Tsihlis ND, Maile R, Stupp SI, Kibbe MR. Development of novel nanofibers targeted to smoke-injured lungs. Biomaterials 2021;274:120862. [PMID: 33975274 DOI: 10.1016/j.biomaterials.2021.120862] [Reference Citation Analysis]
71 Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid Nanoparticles-From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021. [PMID: 34181394 DOI: 10.1021/acsnano.1c04996] [Cited by in Crossref: 86] [Cited by in F6Publishing: 61] [Article Influence: 86.0] [Reference Citation Analysis]
72 Majumder J, Minko T. Targeted Nanotherapeutics for Respiratory Diseases: Cancer, Fibrosis, and Coronavirus. Adv Ther (Weinh) 2020;:2000203. [PMID: 33173809 DOI: 10.1002/adtp.202000203] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
73 Maria S, Sarwar HS, Sohail MF, Imran M, Salman Qureshi O, Raza A, Ahmad NM, Iqbal A, Shahnaz G. Synthesis and characterization of pre-activated thiolated chitosan nanoparticles for oral delivery of octreotide. Journal of Drug Delivery Science and Technology 2020;58:101807. [DOI: 10.1016/j.jddst.2020.101807] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
74 Zhang H, Liu Y, Chen C, Cui W, Zhang C, Ye F, Zhao Y. Responsive drug-delivery microcarriers based on the silk fibroin inverse opal scaffolds for controllable drug release. Applied Materials Today 2020;19:100540. [DOI: 10.1016/j.apmt.2019.100540] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 7.5] [Reference Citation Analysis]
75 Yang D, Deng F, Liu D, He B, He B, Tang X, Zhang Q. The appliances and prospects of aurum nanomaterials in biodiagnostics, imaging, drug delivery and combination therapy. Asian J Pharm Sci 2019;14:349-64. [PMID: 32104465 DOI: 10.1016/j.ajps.2018.06.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
76 Cai L, Chen G, Wang Y, Zhao C, Shang L, Zhao Y. Boston Ivy-Inspired Disc-Like Adhesive Microparticles for Drug Delivery. Research (Wash D C) 2021;2021:9895674. [PMID: 34104893 DOI: 10.34133/2021/9895674] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
77 Mamai M, Giasafaki D, Salvanou EA, Charalambopoulou G, Steriotis T, Bouziotis P. Biodistribution of Mesoporous Carbon Nanoparticles via Technetium-99m Radiolabelling after Oral Administration to Mice. Nanomaterials (Basel) 2021;11:3260. [PMID: 34947611 DOI: 10.3390/nano11123260] [Reference Citation Analysis]
78 Argenziano M, Bressan B, Luganini A, Finesso N, Genova T, Troia A, Giribaldi G, Banche G, Mandras N, Cuffini AM, Cavalli R, Prato M. Comparative Evaluation of Different Chitosan Species and Derivatives as Candidate Biomaterials for Oxygen-Loaded Nanodroplet Formulations to Treat Chronic Wounds. Mar Drugs 2021;19:112. [PMID: 33672056 DOI: 10.3390/md19020112] [Reference Citation Analysis]
79 Khatoon M, Sohail MF, Shahnaz G, Ur Rehman F, Fakhar-Ud-Din, Ur Rehman A, Ullah N, Amin U, Khan GM, Shah KU. Development and Evaluation of Optimized Thiolated Chitosan Proniosomal Gel Containing Duloxetine for Intranasal Delivery. AAPS PharmSciTech 2019;20:288. [PMID: 31410741 DOI: 10.1208/s12249-019-1484-y] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
80 Zou Y, Wei J, Xia Y, Meng F, Yuan J, Zhong Z. Targeted chemotherapy for subcutaneous and orthotopic non-small cell lung tumors with cyclic RGD-functionalized and disulfide-crosslinked polymersomal doxorubicin. Signal Transduct Target Ther 2018;3:32. [PMID: 30564464 DOI: 10.1038/s41392-018-0032-7] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
81 Dogra P, Butner JD, Chuang YL, Caserta S, Goel S, Brinker CJ, Cristini V, Wang Z. Mathematical modeling in cancer nanomedicine: a review. Biomed Microdevices 2019;21:40. [PMID: 30949850 DOI: 10.1007/s10544-019-0380-2] [Cited by in Crossref: 55] [Cited by in F6Publishing: 43] [Article Influence: 18.3] [Reference Citation Analysis]
82 Lu M, Zhao X, Xing H, Xun Z, Yang T, Cai C, Wang D, Ding P. Liposome-chaperoned cell-free synthesis for the design of proteoliposomes: Implications for therapeutic delivery. Acta Biomater 2018;76:1-20. [PMID: 29625253 DOI: 10.1016/j.actbio.2018.03.043] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
83 Rodrigues EM, Calvert ND, Crawford JC, Liu N, Shuhendler AJ, Hemmer E. Phytoglycogen Encapsulation of Lanthanide-Based Nanoparticles as an Optical Imaging Platform with Therapeutic Potential. Small 2022;:e2107130. [PMID: 35560500 DOI: 10.1002/smll.202107130] [Reference Citation Analysis]
84 Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018;16:71. [PMID: 30231877 DOI: 10.1186/s12951-018-0392-8] [Cited by in Crossref: 1010] [Cited by in F6Publishing: 735] [Article Influence: 252.5] [Reference Citation Analysis]
85 Mehryab F, Rabbani S, Shahhosseini S, Shekari F, Fatahi Y, Baharvand H, Haeri A. Exosomes as a next-generation drug delivery system: An update on drug loading approaches, characterization, and clinical application challenges. Acta Biomater 2020;113:42-62. [PMID: 32622055 DOI: 10.1016/j.actbio.2020.06.036] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 16.0] [Reference Citation Analysis]
86 Kunrath MF, Campos MM. Metallic-nanoparticle release systems for biomedical implant surfaces: effectiveness and safety. Nanotoxicology 2021;15:721-39. [PMID: 33896331 DOI: 10.1080/17435390.2021.1915401] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
87 Limeres MJ, Moretton MA, Bernabeu E, Chiappetta DA, Cuestas ML. Thinking small, doing big: Current success and future trends in drug delivery systems for improving cancer therapy with special focus on liver cancer. Materials Science and Engineering: C 2019;95:328-41. [DOI: 10.1016/j.msec.2018.11.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
88 Liu X, Sui B, Camargo PH, Wang J, Sun J. Tuning band gap of MnO2 nanoflowers by Alkali metal doping for enhanced Ferroptosis/phototherapy synergism in Cancer. Applied Materials Today 2021;23:101027. [DOI: 10.1016/j.apmt.2021.101027] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
89 Ding S, Yu Q, Wang J, Zhu L, Li T, Guo X, Zhang X. Activation of ATF3/AP-1 signaling pathway is required for P2X3-induced endometriosis pain. Hum Reprod 2020;35:1130-44. [PMID: 32303740 DOI: 10.1093/humrep/deaa061] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
90 Hong S, Zheng DW, Zhang C, Huang QX, Cheng SX, Zhang XZ. Vascular disrupting agent induced aggregation of gold nanoparticles for photothermally enhanced tumor vascular disruption. Sci Adv 2020;6:eabb0020. [PMID: 32548273 DOI: 10.1126/sciadv.abb0020] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
91 Zhang X, Wang Y, Chi J, Zhao Y. Smart Microneedles for Therapy and Diagnosis. Research (Wash D C) 2020;2020:7462915. [PMID: 33623910 DOI: 10.34133/2020/7462915] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
92 Zhang M, Merlin D. Nanoparticle-Based Oral Drug Delivery Systems Targeting the Colon for Treatment of Ulcerative Colitis. Inflamm Bowel Dis 2018;24:1401-15. [PMID: 29788186 DOI: 10.1093/ibd/izy123] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 13.3] [Reference Citation Analysis]
93 Nguyen HT, Byeon JH, Phung CD, Pham LM, Ku SK, Yong CS, Kim JO. Method for the Instant In-Flight Manufacture of Black Phosphorus to Assemble Core@Shell Nanocomposites for Targeted Photoimmunotherapy. ACS Appl Mater Interfaces 2019;11:24959-70. [DOI: 10.1021/acsami.9b04632] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
94 Jomhori M, Mosaddeghi H, Farzin H. Tracking the interaction between single-wall carbon nanotube and SARS-Cov-2 spike glycoprotein: A molecular dynamics simulations study. Comput Biol Med 2021;136:104692. [PMID: 34333227 DOI: 10.1016/j.compbiomed.2021.104692] [Reference Citation Analysis]
95 de Lima JM, Bonan PR, da Cruz Perez DE, Hier M, Alaoui-Jamali MA, da Silva SD. Nanoparticle-Based Chemotherapy Formulations for Head and Neck Cancer: A Systematic Review and Perspectives. Nanomaterials (Basel) 2020;10:E1938. [PMID: 33003387 DOI: 10.3390/nano10101938] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
96 Sohail M, Sun Z, Li Y, Gu X, Xu H. Research progress in strategies to improve the efficacy and safety of doxorubicin for cancer chemotherapy. Expert Rev Anticancer Ther 2021;21:1385-98. [PMID: 34636282 DOI: 10.1080/14737140.2021.1991316] [Reference Citation Analysis]
97 Spotts I, Ismail D, Jaffar N, Collier CM. Fibre-optic sensing in digital microfluidic devices. Sensors and Actuators A: Physical 2018;280:164-9. [DOI: 10.1016/j.sna.2018.07.039] [Cited by in Crossref: 9] [Article Influence: 2.3] [Reference Citation Analysis]
98 Kiyani MM, Sohail MF, Shahnaz G, Rehman H, Akhtar MF, Nawaz I, Mahmood T, Manzoor M, Bokhari SAI. Evaluation of Turmeric Nanoparticles as Anti-Gout Agent: Modernization of a Traditional Drug. Medicina (Kaunas) 2019;55:E10. [PMID: 30642012 DOI: 10.3390/medicina55010010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
99 Xiong Q, Lim Y, Li D, Pu K, Liang L, Duan H. Photoactive Nanocarriers for Controlled Delivery. Adv Funct Mater 2019;30:1903896. [DOI: 10.1002/adfm.201903896] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 8.3] [Reference Citation Analysis]
100 Reinišová L, Hermanová S, Pumera M. Micro/nanomachines: what is needed for them to become a real force in cancer therapy? Nanoscale 2019;11:6519-32. [DOI: 10.1039/c8nr08022d] [Cited by in Crossref: 27] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
101 Latreille PL, Le Goas M, Salimi S, Robert J, De Crescenzo G, Boffito DC, Martinez VA, Hildgen P, Banquy X. Scratching the Surface of the Protein Corona: Challenging Measurements and Controversies. ACS Nano 2022;16:1689-707. [PMID: 35138808 DOI: 10.1021/acsnano.1c05901] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
102 Shou X, Yu Y, Wu D, Wang F, Sun W, Duan P, Shang L. Spiny pollen-based antigen-presenting clusters for promoting T cells expansion. Chemical Engineering Journal 2022;437:135374. [DOI: 10.1016/j.cej.2022.135374] [Reference Citation Analysis]
103 Tan P, Cai H, Wei Q, Tang X, Zhang Q, Kopytynski M, Yang J, Yi Y, Zhang H, Gong Q, Gu Z, Chen R, Luo K. Enhanced chemo-photodynamic therapy of an enzyme-responsive prodrug in bladder cancer patient-derived xenograft models. Biomaterials 2021;277:121061. [PMID: 34508957 DOI: 10.1016/j.biomaterials.2021.121061] [Reference Citation Analysis]
104 Yang B, Chen Y, Shi J. Reactive Oxygen Species (ROS)-Based Nanomedicine. Chem Rev 2019;119:4881-985. [DOI: 10.1021/acs.chemrev.8b00626] [Cited by in Crossref: 465] [Cited by in F6Publishing: 401] [Article Influence: 155.0] [Reference Citation Analysis]
105 Xie J, Zhao M, Wang C, Yong Y, Gu Z, Zhao Y. Rational Design of Nanomaterials for Various Radiation-Induced Diseases Prevention and Treatment. Adv Healthc Mater 2021;10:e2001615. [PMID: 33506624 DOI: 10.1002/adhm.202001615] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 10.0] [Reference Citation Analysis]
106 Zhu H, Zheng K, Boccaccini AR. Multi-functional silica-based mesoporous materials for simultaneous delivery of biologically active ions and therapeutic biomolecules. Acta Biomater 2021;129:1-17. [PMID: 34010692 DOI: 10.1016/j.actbio.2021.05.007] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 26.0] [Reference Citation Analysis]
107 Rodríguez-Nogales C, González-Fernández Y, Aldaz A, Couvreur P, Blanco-Prieto MJ. Nanomedicines for Pediatric Cancers. ACS Nano 2018;12:7482-96. [PMID: 30071163 DOI: 10.1021/acsnano.8b03684] [Cited by in Crossref: 42] [Cited by in F6Publishing: 31] [Article Influence: 10.5] [Reference Citation Analysis]
108 Zhang Y, Hu Y, Tian H, Chen X. Opportunities and Challenges for mRNA Delivery Nanoplatforms. J Phys Chem Lett 2022;:1314-22. [PMID: 35107010 DOI: 10.1021/acs.jpclett.1c03898] [Reference Citation Analysis]
109 Jain A, Behera M, Ravi V, Mishra S, Sundaresan NR, Chatterjee K. Recapitulating pathophysiology of skeletal muscle diseases in vitro using primary mouse myoblasts on a nanofibrous platform. Nanomedicine 2021;32:102341. [PMID: 33227539 DOI: 10.1016/j.nano.2020.102341] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
110 Zhang C, Yan L, Wang X, Zhu S, Chen C, Gu Z, Zhao Y. Progress, challenges, and future of nanomedicine. Nano Today 2020;35:101008. [DOI: 10.1016/j.nantod.2020.101008] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
111 Zhang N, Yeo J, Lim Y, Guan P, Zeng K, Hu X, Cheng Y. Tuning the structure of monomeric amyloid beta peptide by the curvature of carbon nanotubes. Carbon 2019;153:717-24. [DOI: 10.1016/j.carbon.2019.07.068] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
112 Rodríguez-Nogales C, Sebastián V, Irusta S, Desmaële D, Couvreur P, Blanco-Prieto MJ. A unique multidrug nanomedicine made of squalenoyl-gemcitabine and alkyl-lysophospholipid edelfosine. Eur J Pharm Biopharm 2019;144:165-73. [PMID: 31546021 DOI: 10.1016/j.ejpb.2019.09.017] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
113 Banerjee IA, Fath KR, Frayne SH, Hugo MM, Cohen B. Development of self-assembled phytosterol based nanoassemblies as vehicles for enhanced uptake of doxorubicin to HeLa cells. Materials Science and Engineering: C 2019;97:451-60. [DOI: 10.1016/j.msec.2018.12.037] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
114 Luk BT, Jiang Y, Copp JA, Hu CJ, Krishnan N, Gao W, Li S, Fang RH, Zhang L. Biomimetic Targeting of Nanoparticles to Immune Cell Subsets via Cognate Antigen Interactions. Mol Pharm 2018;15:3723-8. [PMID: 29533668 DOI: 10.1021/acs.molpharmaceut.8b00074] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
115 Cao Z, Li D, Zhao L, Liu M, Ma P, Luo Y, Yang X. Bioorthogonal in situ assembly of nanomedicines as drug depots for extracellular drug delivery. Nat Commun 2022;13:2038. [PMID: 35440570 DOI: 10.1038/s41467-022-29693-8] [Reference Citation Analysis]
116 Chen S, Cornel EJ, Du J. Controlling Membrane Phase Separation of Polymersomes for Programmed Drug Release. Chin J Polym Sci. [DOI: 10.1007/s10118-022-2683-7] [Reference Citation Analysis]
117 Arshad R, Sohail MF, Sarwar HS, Saeed H, Ali I, Akhtar S, Hussain SZ, Afzal I, Jahan S, Anees-Ur-Rehman, Shahnaz G. ZnO-NPs embedded biodegradable thiolated bandage for postoperative surgical site infection: In vitro and in vivo evaluation. PLoS One 2019;14:e0217079. [PMID: 31170179 DOI: 10.1371/journal.pone.0217079] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 7.3] [Reference Citation Analysis]
118 Mallesh S, Srinivas V, Vasundhara M, Kim KH. Low-temperature magnetization behaviors of superparamagnetic MnZn ferrites nanoparticles. Physica B: Condensed Matter 2020;582:411963. [DOI: 10.1016/j.physb.2019.411963] [Cited by in Crossref: 17] [Article Influence: 8.5] [Reference Citation Analysis]
119 Ovais M, Nadhman A, Khalil AT, Raza A, Khuda F, Sohail MF, Islam NU, Sarwar HS, Shahnaz G, Ahmad I, Saravanan M, Shinwari ZK. Biosynthesized colloidal silver and gold nanoparticles as emerging leishmanicidal agents: an insight. Nanomedicine 2017;12:2807-19. [DOI: 10.2217/nnm-2017-0233] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 6.6] [Reference Citation Analysis]
120 Arriagada F, Günther G, Nos J, Nonell S, Olea-Azar C, Morales J. Antioxidant Nanomaterial Based on Core⁻Shell Silica Nanospheres with Surface-Bound Caffeic Acid: A Promising Vehicle for Oxidation-Sensitive Drugs. Nanomaterials (Basel) 2019;9:E214. [PMID: 30736331 DOI: 10.3390/nano9020214] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
121 Tiburcius S, Krishnan K, Yang JH, Hashemi F, Singh G, Radhakrishnan D, Trinh HT, Verrills NM, Karakoti A, Vinu A. Silica-Based Nanoparticles as Drug Delivery Vehicles for Prostate Cancer Treatment. Chem Rec 2021;21:1535-68. [PMID: 33320438 DOI: 10.1002/tcr.202000104] [Reference Citation Analysis]
122 Xu Z, Fan J, Zhao S, Zhang H, Yin F, Han Y, Liu T. Microstructure and magnetic properties of MnZn ferrite powders prepared by nano-in-situ composite method. Journal of Alloys and Compounds 2020;835:155285. [DOI: 10.1016/j.jallcom.2020.155285] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]