1 |
Cao VA, Kim M, Lee S, Van PC, Jeong J, Park P, Nah J. Chemically modified MXene nanoflakes for enhancing the output performance of triboelectric nanogenerators. Nano Energy 2023;107:108128. [DOI: 10.1016/j.nanoen.2022.108128] [Reference Citation Analysis]
|
2 |
Lin C, Zhao H, Huang H, Ma X, Cao S. PEO/cellulose composite paper based triboelectric nanogenerator and its application in human-health detection. Int J Biol Macromol 2023;228:251-60. [PMID: 36581021 DOI: 10.1016/j.ijbiomac.2022.12.237] [Reference Citation Analysis]
|
3 |
Yang W, Liu Y, Zhang Z, Li Q, Yu T, Li Y. Scalable, flexible, and hierarchical porous conductive nanocomposites for self-powered and pressure sensing dual-mode integration. Composites Science and Technology 2023;232:109884. [DOI: 10.1016/j.compscitech.2022.109884] [Reference Citation Analysis]
|
4 |
Yang J. Paper-Based Triboelectric Nanogenerators. Handbook of Triboelectric Nanogenerators 2023. [DOI: 10.1007/978-3-031-05722-9_26-1] [Reference Citation Analysis]
|
5 |
Nan Y, Gomez-maldonado D, Whitehead D, Yang M, Peresin MS. Comparison between nanocellulose-polyethyleneimine composites synthesis methods towards multiple water pollutants removal: A review. International Journal of Biological Macromolecules 2023. [DOI: 10.1016/j.ijbiomac.2023.123342] [Reference Citation Analysis]
|
6 |
Li J, Yao Z, Meng X, Zhang C, Sun T, Song W, Li H, Zhang J, Niu S, Liu L, Han Z, Ren L. Paper-Based Sensor with Bioinspired Macrogrooves for Dual Pressure and Mechanical Strain Signal Detection. ACS Appl Nano Mater 2022. [DOI: 10.1021/acsanm.2c04548] [Reference Citation Analysis]
|
7 |
Lyu Y, Wang Y. Output optimization of biodegradable triboelectric nanogenerators. Nano Energy 2022;103:107811. [DOI: 10.1016/j.nanoen.2022.107811] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
8 |
Wang N, Zhang W, Li Z, Wang S, Suwardi A, Ye E, Li B, Liu Y, Wu Z, Dong Y, Loh XJ, Wang D. Dual-electric-polarity augmented cyanoethyl cellulose-based triboelectric nanogenerator with ultra-high triboelectric charge density and enhanced electrical output property at high humidity. Nano Energy 2022;103:107748. [DOI: 10.1016/j.nanoen.2022.107748] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
9 |
Li L, Zhu G, Wang J, Chen J, Zhao G, Zhu Y. A Flexible and Ultrasensitive Interfacial Iontronic Multisensory Sensor with an Array of Unique “Cup-Shaped” Microcolumns for Detecting Pressure and Temperature. Nano Energy 2022. [DOI: 10.1016/j.nanoen.2022.108012] [Reference Citation Analysis]
|
10 |
Wei Z, Wang J, Liu Y, Yuan J, Liu T, Du G, Zhu S, Nie S. Sustainable Triboelectric Materials for Smart Active Sensing Systems. Adv Funct Materials 2022. [DOI: 10.1002/adfm.202208277] [Reference Citation Analysis]
|
11 |
Lin C, Huang H, Zhao H, Cao S, Ma X. Acid- and Alkali-Resistant and High-Performance Cellulose Paper-Based Triboelectric Nanogenerator by Controlling the Surface Hydrophobicity. ACS Sustainable Chem Eng . [DOI: 10.1021/acssuschemeng.2c03557] [Reference Citation Analysis]
|
12 |
Qu M, Sun W, Xue Y, Pang Y, Shi F, Luo Z, Wang R, Peng L, He J. Sodium carboxymethylcellulose-based aerogel as friction positive layer material for high-performance triboelectric nanogenerator. J Mater Sci: Mater Electron 2022;33:10611-25. [DOI: 10.1007/s10854-022-08046-7] [Reference Citation Analysis]
|