BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Niu Z, Cheng W, Cao M, Wang D, Wang Q, Han J, Long Y, Han G. Recent advances in cellulose-based flexible triboelectric nanogenerators. Nano Energy 2021;87:106175. [DOI: 10.1016/j.nanoen.2021.106175] [Cited by in Crossref: 50] [Cited by in F6Publishing: 60] [Article Influence: 25.0] [Reference Citation Analysis]
Number Citing Articles
1 Guo D, Yuan T, Sun Q, Yan Z, Kong Z, Zhong L, Zhou Y, Sha L. Cellulose nanofibrils as rheology modifier and fluid loss additive in water-based drilling fluids: Rheological properties, rheological modeling, and filtration mechanisms. Industrial Crops and Products 2023;193:116253. [DOI: 10.1016/j.indcrop.2023.116253] [Reference Citation Analysis]
2 Zhu S, Kumar Biswas S, Qiu Z, Yue Y, Fu Q, Jiang F, Han J. Transparent wood-based functional materials via a top-down approach. Progress in Materials Science 2023;132:101025. [DOI: 10.1016/j.pmatsci.2022.101025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Akram W, Chen Q, Xia G, Fang J. A review of single electrode triboelectric nanogenerators. Nano Energy 2023;106:108043. [DOI: 10.1016/j.nanoen.2022.108043] [Reference Citation Analysis]
4 Salim MH, Kassab Z, Ablouh E, Semlali Aouragh Hassani F, El Achaby M. Cellulosic biocomposite foam papers impregnated by crosslinked starch/poly (vinyl alcohol) biopolymers. Industrial Crops and Products 2023;192:116074. [DOI: 10.1016/j.indcrop.2022.116074] [Reference Citation Analysis]
5 Wang N, Liu Y, Ye E, Li Z, Wang D. Innovative Technology for Self‐Powered Sensors: Triboelectric Nanogenerators. Advanced Sensor Research 2023. [DOI: 10.1002/adsr.202200058] [Reference Citation Analysis]
6 Jiang B, Li M, Cao S, Wang Z, Huang L, Song X, Zhang Y, Yuan Q. Anisotropic Wooden Electromechanical Transduction Devices Enhanced by TEMPO Oxidization and PDMS. ACS Omega 2023. [DOI: 10.1021/acsomega.2c06607] [Reference Citation Analysis]
7 Wang N, Liu Y, Ye E, Li Z, Wang D. Contact Electrification Behaviors of Solid–Liquid Interface: Regulation, Mechanisms, and Applications. Adv Energy and Sustain Res 2023. [DOI: 10.1002/aesr.202200186] [Reference Citation Analysis]
8 Zhu M, Zhang J, Xu W, Xiong R, Huang C. Cellulose-based fibrous materials for self-powered wearable pressure sensor: a mini review. Cellulose 2023. [DOI: 10.1007/s10570-022-05023-5] [Reference Citation Analysis]
9 Sun W, Ji G, Chen J, Sui D, Zhou J, Huber J. Enhancing the acoustic-to-electrical conversion efficiency of nanofibrous membrane-based triboelectric nanogenerators by nanocomposite composition. Nano Energy 2023. [DOI: 10.1016/j.nanoen.2023.108248] [Reference Citation Analysis]
10 Liu H, Shu Q, Xiang H, Wu H, Li Z, Zhou H. Fully degradable triboelectric nanogenerator using graphene composite paper to replace copper electrodes for higher output performance. Nano Energy 2023. [DOI: 10.1016/j.nanoen.2023.108223] [Reference Citation Analysis]
11 Patel DK, Ganguly K, Dutta SD, Patil TV, Randhawa A, Lim KT. Highly stretchable, adhesive, and biocompatible hydrogel platforms of tannic acid functionalized spherical nanocellulose for strain sensors. Int J Biol Macromol 2022;229:105-22. [PMID: 36587632 DOI: 10.1016/j.ijbiomac.2022.12.286] [Reference Citation Analysis]
12 Dai S, Li X, Jiang C, Ping J, Ying Y. Triboelectric nanogenerators for smart agriculture. InfoMat 2022. [DOI: 10.1002/inf2.12391] [Reference Citation Analysis]
13 Lyu Y, Wang Y. Output optimization of biodegradable triboelectric nanogenerators. Nano Energy 2022;103:107811. [DOI: 10.1016/j.nanoen.2022.107811] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Wang N, Zhang W, Li Z, Wang S, Suwardi A, Ye E, Li B, Liu Y, Wu Z, Dong Y, Loh XJ, Wang D. Dual-electric-polarity augmented cyanoethyl cellulose-based triboelectric nanogenerator with ultra-high triboelectric charge density and enhanced electrical output property at high humidity. Nano Energy 2022;103:107748. [DOI: 10.1016/j.nanoen.2022.107748] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Wang R, Sui J, Wang X. Natural Piezoelectric Biomaterials: A Biocompatible and Sustainable Building Block for Biomedical Devices. ACS Nano 2022;16:17708-28. [PMID: 36354375 DOI: 10.1021/acsnano.2c08164] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Xia X, Yang J, Liu Y, Zhang J, Shang J, Liu B, Li S, Li W. Material Choice and Structure Design of Flexible Battery Electrode. Adv Sci (Weinh) 2023;10:e2204875. [PMID: 36403240 DOI: 10.1002/advs.202204875] [Reference Citation Analysis]
17 Huang Y, Qing Y, Chen Y, Liao Y, Jiang A, Li Y, Wu Y, Tian C, Yan N. NiFe Nanoparticle Encapsulated into Wood Carbon for Efficient Oxygen Evolution: Effect of Wood Delignification. ACS Sustainable Chem Eng 2022. [DOI: 10.1021/acssuschemeng.2c04902] [Reference Citation Analysis]
18 Lee A, Baek S, Lee S, Shin Y, Sung Y, Park T, Jeong H. Preparation and characterization of carbon material with cellulose types as an additive in aqueous media. Diamond and Related Materials 2022;129:109347. [DOI: 10.1016/j.diamond.2022.109347] [Reference Citation Analysis]
19 Xu C, Guan S, Dong X, Qi M. Super Strong Gelatin/Cellulose Nanofiber Hybrid Hydrogels without Covalent Cross-Linking for Strain Sensor and Supercapacitor. Composites Part A: Applied Science and Manufacturing 2022. [DOI: 10.1016/j.compositesa.2022.107287] [Reference Citation Analysis]
20 Zhong Y, Wang J, Han L, Dai S, Zhu H, Hua J, Cheng G, Ding J. High-performance flexible self-powered triboelectric pressure sensor based on chemically modified micropatterned PDMS film. Sensors and Actuators A: Physical 2022. [DOI: 10.1016/j.sna.2022.114013] [Reference Citation Analysis]
21 Sun H, Lu Y, Chen Y, Yue Y, Jiang S, Xu X, Mei C, Xiao H, Han J. Flexible environment-tolerant electroluminescent devices based on nanocellulose-mediated transparent electrodes. Carbohydrate Polymers 2022;296:119891. [DOI: 10.1016/j.carbpol.2022.119891] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 E Y, Ju Y, Wang Z, Chang Z, Jiang J, Li P, Lei F, Yao X, Wang K. Tunable and Self-Healing Properties of Polysaccharide-Based Hydrogels through Polymer Architecture Modulation. ACS Sustainable Chem Eng . [DOI: 10.1021/acssuschemeng.2c05125] [Reference Citation Analysis]
23 Mohd Jamil NA, Jaffar SS, Saallah S, Misson M, Siddiquee S, Roslan J, Lenggoro W. Isolation of Cellulose Nanocrystals from Banana Peel Using One-Pot Microwave and Mild Oxidative Hydrolysis System. Nanomaterials (Basel) 2022;12:3537. [PMID: 36234664 DOI: 10.3390/nano12193537] [Reference Citation Analysis]
24 Li Y, Hu Q, Zhang R, Ma W, Pan S, Zhao Y, Wang Q, Fang P. Piezoelectric Nanogenerator Based on Electrospinning PVDF/Cellulose Acetate Composite Membranes for Energy Harvesting. Materials 2022;15:7026. [DOI: 10.3390/ma15197026] [Reference Citation Analysis]
25 Song Y, Kim B, Park JD, Lee D. Probing metal-carboxylate interactions in cellulose nanofibrils-based hydrogels using nonlinear oscillatory rheology. Carbohydrate Polymers 2022. [DOI: 10.1016/j.carbpol.2022.120262] [Reference Citation Analysis]
26 Jia L, Jiang J, Xiang T, Zhou S. Multifunctional Biomimetic Microstructured Surfaces for Healthcare Applications. Adv Materials Inter. [DOI: 10.1002/admi.202201270] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
27 Lin Q, Zhang X, Zhu N, Kusumah SS, Umemura K, Zhao Z. Preparation and investigation of an eco-friendly plywood adhesive composed of sucrose and ammonium polyphosphate. Wood Material Science & Engineering 2022. [DOI: 10.1080/17480272.2022.2121176] [Reference Citation Analysis]
28 Lu C, Wang X, Shen Y, Wang C, Wang J, Yong Q, Chu F. Liquid‐Free, Anti‐Freezing, Solvent‐Resistant, Cellulose‐Derived Ionic Conductive Elastomer for Stretchable Wearable Electronics and Triboelectric Nanogenerators. Adv Funct Materials. [DOI: 10.1002/adfm.202207714] [Reference Citation Analysis]
29 Zhang H, Zhang M, Li J, Bai Y, Tan X. Preparation of novel composite aerogel with conductive and antibacterial via constructing three-dimensional crosslinked structure. Reactive and Functional Polymers 2022;178:105361. [DOI: 10.1016/j.reactfunctpolym.2022.105361] [Reference Citation Analysis]
30 Jahanbakhshi A, Farahi M. Immobilized sulfonic acid functionalized ionic liquid on magnetic cellulose as a novel catalyst for the synthesis of triazolo[4,3-a]pyrimidines. Arabian Journal of Chemistry 2022. [DOI: 10.1016/j.arabjc.2022.104311] [Reference Citation Analysis]
31 Zhu Q, Wang T, Wei Y, Sun X, Zhang S, Wang X, Luo L. Low-cost, environmentally friendly and high-performance cellulose-based triboelectric nanogenerator for self-powered human motion monitoring. Cellulose. [DOI: 10.1007/s10570-022-04800-6] [Reference Citation Analysis]
32 Luo Y, Li B, Mo L, Ye Z, Shen H, Lu Y, Li S. Nanofiber-Enhanced “Lucky-Bag” Triboelectric Nanogenerator for Efficient Wave Energy Harvesting by Soft-Contact Structure. Nanomaterials 2022;12:2792. [DOI: 10.3390/nano12162792] [Reference Citation Analysis]
33 Chaudary A, Patoary MK, Zhang M, Chudhary T, Farooq A, Liu L. Structurally integrated thermal management of isotropic and directionally ice-templated nanocellulose/chitosan aerogels. Cellulose. [DOI: 10.1007/s10570-022-04781-6] [Reference Citation Analysis]
34 Edberg J, Mulla MY, Hosseinaei O, Alvi NUH, Beni V. A Forest‐Based Triboelectric Energy Harvester. Global Challenges. [DOI: 10.1002/gch2.202200058] [Reference Citation Analysis]
35 Fan C, Huang J, Mensah A, Long Z, Sun J, Wei Q. A high-performance and biodegradable tribopositive poly-ε-caprolactone/ethyl cellulose material. Cell Reports Physical Science 2022;3:101012. [DOI: 10.1016/j.xcrp.2022.101012] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Jin X, Wang S, Sang C, Yue Y, Xu X, Mei C, Xiao H, Lou Z, Han J. Patternable Nanocellulose/Ti3C2Tx Flexible Films with Tunable Photoresponsive and Electromagnetic Interference Shielding Performances. ACS Appl Mater Interfaces 2022. [PMID: 35861436 DOI: 10.1021/acsami.2c11567] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
37 Yang G, Zhang Z, Liu K, Ji X, Fatehi P, Chen J. A cellulose nanofibril-reinforced hydrogel with robust mechanical, self-healing, pH-responsive and antibacterial characteristics for wound dressing applications. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01523-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Chen T, Zhang D, Tian X, Qiang S, Sun C, Dai L, Zhang M, Ni Y, Jiang X. Highly ordered asymmetric cellulose-based honeycomb membrane for moisture-electricity generation and humidity sensing. Carbohydrate Polymers 2022. [DOI: 10.1016/j.carbpol.2022.119809] [Reference Citation Analysis]
39 Tie J, Mao Z, Zhang L, Zhong Y, Sui X, Xu H. Polypyrrole nanorods coated on cellulose nanofibers by pickering emulsion as conductive medium for multimodal gel-based sensor. Cellulose. [DOI: 10.1007/s10570-022-04667-7] [Reference Citation Analysis]
40 Jia L, Wu S, Yuan R, Xiang T, Zhou S. Biomimetic Microstructured Antifatigue Fracture Hydrogel Sensor for Human Motion Detection with Enhanced Sensing Sensitivity. ACS Appl Mater Interfaces 2022. [PMID: 35642788 DOI: 10.1021/acsami.2c04614] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
41 Yu M, Liu W, Zhang H, Liu G, Luo F, Cao D. Construction of high-performance polymer hydrogel composite materials for artificial bionic organs. Journal of Experimental Nanoscience 2022;17:339-50. [DOI: 10.1080/17458080.2022.2073999] [Reference Citation Analysis]
42 Martínez-salcedo SL, Torres-rendón JG, García-enriquez S, Anzaldo-hernández J, Silva-guzmán JA, de Muniz GIB, Lomelí-ramírez MG. Physicomechanical Characterization of Poly(acrylic acid-co-acrylamide) Hydrogels Reinforced with TEMPO-oxidized Blue Agave Cellulose Nanofibers. Fibers Polym. [DOI: 10.1007/s12221-022-4643-9] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Deng Y, Li K, Guan Q, Hu T, He L. Novel CNFs-based organic UV-adsorber intercalated ZnAl-LDHs composited films with superior photothermal stability and mechanical properties. Industrial Crops and Products 2022;178:114555. [DOI: 10.1016/j.indcrop.2022.114555] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
44 Wang Q, Wang D, Cheng W, Huang J, Cao M, Niu Z, Zhao Y, Yue Y, Han G. Spider-web-inspired membrane reinforced with sulfhydryl-functionalized cellulose nanocrystals for oil/water separation. Carbohydrate Polymers 2022;282:119049. [DOI: 10.1016/j.carbpol.2021.119049] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
45 Zainul Armir NA, Mohd Salleh K, Zulkifli A, Zakaria S. pH-responsive ampholytic regenerated cellulose hydrogel integrated with carrageenan and chitosan. Industrial Crops and Products 2022;178:114588. [DOI: 10.1016/j.indcrop.2022.114588] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
46 Wang DC, Yu HY, Ouyang Z, Qi D, Zhou Y, Ju A, Li Z, Cao Y. Chain-ring covalently interconnected cellulose nanofiber/MWCNT aerogel for supercapacitors and sensors. Nanoscale 2022;14:5163-73. [PMID: 35312742 DOI: 10.1039/d2nr00030j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Wei Y, Qian Y, Zhu P, Xiang L, Lei C, Qiu G, Wang C, Liu Y, Liu Y, Chen G. Nanocellulose-templated carbon nanotube enhanced conductive organohydrogel for highly-sensitive strain and temperature sensors. Cellulose. [DOI: 10.1007/s10570-022-04516-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Wu S, Li G, Liu W, Yu D, Li G, Liu X, Song Z, Wang H, Liu H. Fabrication of polyethyleneimine-paper composites with improved tribopositivity for triboelectric nanogenerators. Nano Energy 2022;93:106859. [DOI: 10.1016/j.nanoen.2021.106859] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
49 Li M, Yang Y, Yue C, Song Y, Manzo M, Huang Z, Cai L. Stretchable, sensitive, and environment-tolerant ionic conductive organohydrogel reinforced with cellulose nanofibers for human motion monitoring. Cellulose. [DOI: 10.1007/s10570-022-04418-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
50 Dai S, Li X, Jiang C, Zhang Q, Peng B, Ping J, Ying Y. Omnidirectional wind energy harvester for self-powered agro-environmental information sensing. Nano Energy 2022;91:106686. [DOI: 10.1016/j.nanoen.2021.106686] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
51 Dai X, Guo Z. The gorgeous transformation of paper: from cellulose paper to inorganic paper to 2D paper materials with multifunctional properties. J Mater Chem A 2021;10:122-56. [DOI: 10.1039/d1ta08410k] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
52 Meng Q, Zhang M, Tang R, Jin W, Zhang J, Lan Z, Shi S, Shen X, Sun Q. Stretchable triboelectric nanogenerator with exteroception-visualized multifunctionality. J Mater Chem A 2022;10:4300-5. [DOI: 10.1039/d1ta09825j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
53 Haghayegh M, Cao R, Zabihi F, Bagherzadeh R, Yang S, Zhu M. Recent advances in stretchable, wearable and bio-compatible triboelectric nanogenerators. J Mater Chem C 2022;10:11439-71. [DOI: 10.1039/d2tc01931k] [Reference Citation Analysis]
54 Zhu S, Sun H, Lu Y, Wang S, Yue Y, Xu X, Mei C, Xiao H, Fu Q, Han J. Inherently Conductive Poly(dimethylsiloxane) Elastomers Synergistically Mediated by Nanocellulose/Carbon Nanotube Nanohybrids toward Highly Sensitive, Stretchable, and Durable Strain Sensors. ACS Appl Mater Interfaces 2021;13:59142-53. [PMID: 34851617 DOI: 10.1021/acsami.1c19482] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 9.5] [Reference Citation Analysis]
55 Dang C, Shao C, Liu H, Chen Y, Qi H. Cellulose melt processing assisted by small biomass molecule to fabricate recyclable ionogels for versatile stretchable triboelectric nanogenerators. Nano Energy 2021;90:106619. [DOI: 10.1016/j.nanoen.2021.106619] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
56 Tie J, Chai H, Mao Z, Zhang L, Zhong Y, Sui X, Xu H. Nanocellulose-mediated transparent high strength conductive hydrogel based on in-situ formed polypyrrole nanofibrils as a multimodal sensor. Carbohydr Polym 2021;273:118600. [PMID: 34561000 DOI: 10.1016/j.carbpol.2021.118600] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
57 Haroni S, Zaki Dizaji H, Bahrami H, González Alriols M. Sustainable production of cellulose nanofiber from sugarcane trash: A quality and life cycle assessment. Industrial Crops and Products 2021;173:114084. [DOI: 10.1016/j.indcrop.2021.114084] [Reference Citation Analysis]
58 Zhou J, Wang H, Du C, Zhang D, Lin H, Chen Y, Xiong J. Cellulose for Sustainable Triboelectric Nanogenerators. Adv Energy and Sustain Res 2022;3:2100161. [DOI: 10.1002/aesr.202100161] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
59 Pennells J, Cruickshank A, Chaléat C, Godwin ID, Martin DJ. Sorghum as a novel biomass for the sustainable production of cellulose nanofibers. Industrial Crops and Products 2021;171:113917. [DOI: 10.1016/j.indcrop.2021.113917] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
60 Lu Y, Yue Y, Ding Q, Mei C, Xu X, Wu Q, Xiao H, Han J. Self-Recovery, Fatigue-Resistant, and Multifunctional Sensor Assembled by a Nanocellulose/Carbon Nanotube Nanocomplex-Mediated Hydrogel. ACS Appl Mater Interfaces 2021;13:50281-97. [PMID: 34637615 DOI: 10.1021/acsami.1c16828] [Cited by in Crossref: 33] [Cited by in F6Publishing: 41] [Article Influence: 16.5] [Reference Citation Analysis]
61 Sharma AK, Priya, Kaith BS, Bhagya Shree, Simran, Saiyam. Borax mediated synthesis of a biocompatible self-healing hydrogel using dialdehyde carboxymethyl cellulose-dextrin and gelatin. Reactive and Functional Polymers 2021;166:104977. [DOI: 10.1016/j.reactfunctpolym.2021.104977] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
62 Zheng H, Lin N, He Y, Zuo B. Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor. ACS Appl Mater Interfaces 2021;13:40013-31. [PMID: 34375080 DOI: 10.1021/acsami.1c08395] [Cited by in Crossref: 36] [Cited by in F6Publishing: 44] [Article Influence: 18.0] [Reference Citation Analysis]