BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zaidi S, Misba L, Khan AU. Nano-therapeutics: A revolution in infection control in post antibiotic era. Nanomedicine 2017;13:2281-301. [PMID: 28673854 DOI: 10.1016/j.nano.2017.06.015] [Cited by in Crossref: 103] [Cited by in F6Publishing: 105] [Article Influence: 20.6] [Reference Citation Analysis]
Number Citing Articles
1 Marcelo GA, Galhano J, Robalo TT, Cruz MM, Marcos MD, Martínez-Máñez R, Duarte MP, Capelo-Martínez JL, Lodeiro C, Oliveira E. Magneto-Fluorescent Mesoporous Nanocarriers for the Dual-Delivery of Ofloxacin and Doxorubicin to Tackle Opportunistic Bacterial Infections in Colorectal Cancer. Int J Mol Sci 2022;23:12287. [PMID: 36293142 DOI: 10.3390/ijms232012287] [Reference Citation Analysis]
2 Soni K, Jyoti K, Chandra H, Chandra R. Bacterial antibiotic resistance in municipal wastewater treatment plant; mechanism and its impacts on human health and economy. Bioresource Technology Reports 2022;19:101080. [DOI: 10.1016/j.biteb.2022.101080] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Vukoja D, Vlainić J, Ljolić Bilić V, Martinaga L, Rezić I, Brlek Gorski D, Kosalec I. Innovative Insights into In Vitro Activity of Colloidal Platinum Nanoparticles against ESBL-Producing Strains of Escherichia coli and Klebsiella pneumoniae. Pharmaceutics 2022;14:1714. [DOI: 10.3390/pharmaceutics14081714] [Reference Citation Analysis]
4 Elfadil D, Elkhatib WF, El-Sayyad GS. Promising advances in nanobiotic-based formulations for drug specific targeting against multidrug-resistant microbes and biofilm-associated infections. Microb Pathog 2022;170:105721. [PMID: 35970290 DOI: 10.1016/j.micpath.2022.105721] [Reference Citation Analysis]
5 Chandraker SK, Kumar R. Biogenic biocompatible silver nanoparticles: a promising antibacterial agent. Biotechnol Genet Eng Rev 2022;:1-35. [PMID: 35915981 DOI: 10.1080/02648725.2022.2106084] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Morajkar RV, Kumar AS, Kunkalekar RK, Vernekar AA. Advances in nanotechnology application in biosafety materials: a crucial response to COVID-19 pandemic. Biosaf Health 2022. [PMID: 35765656 DOI: 10.1016/j.bsheal.2022.06.001] [Reference Citation Analysis]
7 Hassani M, Tahghighi A, Rohani M, Hekmati M, Ahmadian M, Ahmadvand H. Robust antibacterial activity of functionalized carbon nanotube- levofloxacine conjugate based on in vitro and in vivo studies. Sci Rep 2022;12:10064. [PMID: 35710710 DOI: 10.1038/s41598-022-14206-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Vallet-Regí M, Schüth F, Lozano D, Colilla M, Manzano M. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem Soc Rev 2022. [PMID: 35642539 DOI: 10.1039/d1cs00659b] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
9 Gomaa SE, Shaker GH, Mosallam FM, Abbas HA. Knocking down Pseudomonas aeruginosa virulence by oral hypoglycemic metformin nano emulsion. World J Microbiol Biotechnol 2022;38. [DOI: 10.1007/s11274-022-03302-8] [Reference Citation Analysis]
10 Imran M, Jha SK, Hasan N, Insaf A, Shrestha J, Shrestha J, Devkota HP, Khan S, Panth N, Warkiani ME, Dua K, Hansbro PM, Paudel KR, Mohammed Y. Overcoming Multidrug Resistance of Antibiotics via Nanodelivery Systems. Pharmaceutics 2022;14:586. [DOI: 10.3390/pharmaceutics14030586] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Tse Sum Bui B, Auroy T, Haupt K. Fighting Antibiotic‐Resistant Bacteria: Promising Strategies Orchestrated by Molecularly Imprinted Polymers. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202106493] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
12 Singh MP, Yadav SK, Khan MM, Ahmad S, Khan R, Khan AQ, Haque R, Raza SS. Brain Infectious Diseases and Nanotherapy. Nanotechnology for Infectious Diseases 2022. [DOI: 10.1007/978-981-16-9190-4_26] [Reference Citation Analysis]
13 Rajput S, Vadia N, Mahajan M. Role of Mesoporous Silica Nanoparticles as Drug Carriers: Evaluation of Diverse Mesoporous Material Nanoparticles as Potential Host for Various Applications. Advanced Functional Porous Materials 2022. [DOI: 10.1007/978-3-030-85397-6_7] [Reference Citation Analysis]
14 Nahvi I, Nahvi I, Rehman S. Nanotechnology and Multidrug Resistance. Nanotechnology for Infectious Diseases 2022. [DOI: 10.1007/978-981-16-9190-4_14] [Reference Citation Analysis]
15 Das BS, Das A, Mishra A, Arakha M. Classification, Synthesis and Application of Nanoparticles Against Infectious Diseases. Bio-Nano Interface 2022. [DOI: 10.1007/978-981-16-2516-9_3] [Reference Citation Analysis]
16 Lai Y, Wei W, Du Y, Gao J, Li Z. Biomaterials for Helicobacter pylori therapy: therapeutic potential and future perspectives. Gut Microbes 2022;14:2120747. [PMID: 36070564 DOI: 10.1080/19490976.2022.2120747] [Reference Citation Analysis]
17 Ansari MM, Kuche K, Ghadi R, Date T, Chaudhari D, Ansari FA, Khan R, Vyawahare A, Jain S. Nanoparticles as a Future Alternative Against Multiple Drug Resistance. Emerging Modalities in Mitigation of Antimicrobial Resistance 2022. [DOI: 10.1007/978-3-030-84126-3_18] [Reference Citation Analysis]
18 Bharadwaj KK, Rabha B, Choudhury BK, Das A, Islary L, Bhattacharjya D, Chakraborty M, Baishya D, Ghosh A. Role of Gold Nanoparticles Against Multidrug Resistance (MDR) Bacteria: An Emerging Therapeutic Revolution. Emerging Modalities in Mitigation of Antimicrobial Resistance 2022. [DOI: 10.1007/978-3-030-84126-3_22] [Reference Citation Analysis]
19 Mubeen B, Ansar AN, Rasool R, Ullah I, Imam SS, Alshehri S, Ghoneim MM, Alzarea SI, Nadeem MS, Kazmi I. Nanotechnology as a Novel Approach in Combating Microbes Providing an Alternative to Antibiotics. Antibiotics (Basel) 2021;10:1473. [PMID: 34943685 DOI: 10.3390/antibiotics10121473] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 15.0] [Reference Citation Analysis]
20 Devkota A, Pandey A, Yadegari Z, Dumenyo K, Taheri A. Amine-Coated Carbon Dots (NH2-FCDs) as Novel Antimicrobial Agent for Gram-Negative Bacteria. Front Nanotechnol 2021;3:768487. [DOI: 10.3389/fnano.2021.768487] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Huang R, Hu J, Qian W, Chen L, Zhang D. Recent advances in nanotherapeutics for the treatment of burn wounds. Burns Trauma 2021;9:tkab026. [PMID: 34778468 DOI: 10.1093/burnst/tkab026] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
22 Sinha A, Sahu SK, Biswas S, Mandal M, Mandal V, Ghorai TK. Catalytic Use toward the Redox Reaction of Toxic Industrial Wastes in Innocuous Aqueous Medium and Antibacterial Activity of Novel Cu x Ag x Zn1-2x O Nanocomposites. ACS Omega 2021;6:29629-40. [PMID: 34778634 DOI: 10.1021/acsomega.1c03925] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Liu H, Zhong W, Zhang X, Lin D, Wu J. Nanomedicine as a promising strategy for the theranostics of infectious diseases. J Mater Chem B 2021;9:7878-908. [PMID: 34611689 DOI: 10.1039/d1tb01316e] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
24 Karade VC, Patil RB, Parit SB, Kim JH, Chougale AD, Dawkar VV. Insights into Shape-Based Silver Nanoparticles: A Weapon to Cope with Pathogenic Attacks. ACS Sustainable Chem Eng 2021;9:12476-507. [DOI: 10.1021/acssuschemeng.1c03797] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
25 Christodoulides M, Humbert MV, Heckels JE. The potential utility of liposomes for Neisseria vaccines. Expert Rev Vaccines 2021;20:1235-56. [PMID: 34524062 DOI: 10.1080/14760584.2021.1981865] [Reference Citation Analysis]
26 Kotrange H, Najda A, Bains A, Gruszecki R, Chawla P, Tosif MM. Metal and Metal Oxide Nanoparticle as a Novel Antibiotic Carrier for the Direct Delivery of Antibiotics. Int J Mol Sci 2021;22:9596. [PMID: 34502504 DOI: 10.3390/ijms22179596] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
27 Dey N, Kamatchi C, Vickram AS, Anbarasu K, Thanigaivel S, Palanivelu J, Pugazhendhi A, Ponnusamy VK. Role of nanomaterials in deactivating multiple drug resistance efflux pumps - A review. Environ Res 2021;204:111968. [PMID: 34453898 DOI: 10.1016/j.envres.2021.111968] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
28 Espeche Turbay MB, Rey V, Dorado RD, Sosa MC, Borsarelli CD. Silver nanoparticle-protein interactions and the role of lysozyme as an antagonistic antibacterial agent. Colloids Surf B Biointerfaces 2021;208:112030. [PMID: 34419807 DOI: 10.1016/j.colsurfb.2021.112030] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
29 Huang X, Xu W, Li M, Zhang P, Zhang YS, Ding J, Chen X. Antiviral biomaterials. Matter 2021;4:1892-918. [DOI: 10.1016/j.matt.2021.03.016] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
30 Mba IE, Nweze EI. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World J Microbiol Biotechnol 2021;37:108. [PMID: 34046779 DOI: 10.1007/s11274-021-03070-x] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 25.0] [Reference Citation Analysis]
31 Mamun MM, Sorinolu AJ, Munir M, Vejerano EP. Nanoantibiotics: Functions and Properties at the Nanoscale to Combat Antibiotic Resistance. Front Chem 2021;9:687660. [PMID: 34055750 DOI: 10.3389/fchem.2021.687660] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 21.0] [Reference Citation Analysis]
32 Khan J, Tarar SM, Gul I, Nawaz U, Arshad M. Challenges of antibiotic resistance biofilms and potential combating strategies: a review. 3 Biotech 2021;11:169. [PMID: 33816046 DOI: 10.1007/s13205-021-02707-w] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 18.0] [Reference Citation Analysis]
33 Szulc-Musioł B, Sarecka-Hujar B. The Use of Micro- and Nanocarriers for Resveratrol Delivery into and across the Skin in Different Skin Diseases-A Literature Review. Pharmaceutics 2021;13:451. [PMID: 33810552 DOI: 10.3390/pharmaceutics13040451] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
34 Lee YJ, Cha SH, Kim H, Choi SE, Cho S, Park Y. Diallyl disulphide-loaded spherical gold nanoparticles and acorn-like silver nanoparticles synthesised using onion extract: catalytic activity and cytotoxicity. Artif Cells Nanomed Biotechnol 2020;48:948-60. [PMID: 32496831 DOI: 10.1080/21691401.2020.1773485] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
35 Chmielewska SJ, Skłodowski K, Depciuch J, Deptuła P, Piktel E, Fiedoruk K, Kot P, Paprocka P, Fortunka K, Wollny T, Wolak P, Parlinska-Wojtan M, Savage PB, Bucki R. Bactericidal Properties of Rod-, Peanut-, and Star-Shaped Gold Nanoparticles Coated with Ceragenin CSA-131 against Multidrug-Resistant Bacterial Strains. Pharmaceutics 2021;13:425. [PMID: 33809901 DOI: 10.3390/pharmaceutics13030425] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
36 Zlotnicki J, Gabrielli A, Urish KL, Brothers KM. Clinical Evidence of Current Irrigation Practices and the Use of Oral Antibiotics to Prevent and Treat Periprosthetic Joint Infection. Orthop Clin North Am 2021;52:93-101. [PMID: 33752842 DOI: 10.1016/j.ocl.2020.12.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Aguilera-Correa JJ, Esteban J, Vallet-Regí M. Inorganic and Polymeric Nanoparticles for Human Viral and Bacterial Infections Prevention and Treatment. Nanomaterials (Basel) 2021;11:E137. [PMID: 33435597 DOI: 10.3390/nano11010137] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
38 Vergara-Llanos D, Koning T, Pavicic MF, Bello-Toledo H, Díaz-Gómez A, Jaramillo A, Melendrez-Castro M, Ehrenfeld P, Sánchez-Sanhueza G. Antibacterial and cytotoxic evaluation of copper and zinc oxide nanoparticles as a potential disinfectant material of connections in implant provisional abutments: An in-vitro study. Arch Oral Biol 2021;122:105031. [PMID: 33412420 DOI: 10.1016/j.archoralbio.2020.105031] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 15.0] [Reference Citation Analysis]
39 Mosselhy DA, Assad M, Sironen T, Elbahri M. Nanotheranostics: A Possible Solution for Drug-Resistant Staphylococcus aureus and their Biofilms? Nanomaterials (Basel) 2021;11:E82. [PMID: 33401760 DOI: 10.3390/nano11010082] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]
40 Zhovnyr A, Andryiashchuk V, Mintsiuk E, Shcherbak D. Role of the iron nanoparticles (FeNP) in the culture medium for anaerobic microorganisms on growth and reproduction of Escherichia cоlі. Veterinary biotechnology 2021;38:73-83. [DOI: 10.31073/vet_biotech38-06] [Reference Citation Analysis]
41 Mondal R, Yilmaz MD, Mandal AK. Green synthesis of carbon nanoparticles: characterization and their biocidal properties. Handbook of Greener Synthesis of Nanomaterials and Compounds 2021. [DOI: 10.1016/b978-0-12-822446-5.00013-7] [Reference Citation Analysis]
42 Pabbati R, Aerupula M, Shaik F, Kondakindi VR. Nanoparticles for Biofilm Control. Nanotechnology for Advances in Medical Microbiology 2021. [DOI: 10.1007/978-981-15-9916-3_9] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Ruddaraju LK, Veerla SC, Kolapalli VRM, Pallela PNVK, Padavala VS, Pammi SVN. Green-synthesized copper oxide nanostructures for potential multifaceted biomedical applications. New J Chem 2021;45:15363-70. [DOI: 10.1039/d1nj01509e] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
44 Usha C, Sakthieaswari P, Kiruthika Lakshmi P. Medicine at Nanoscale. Handbook of Research on Nano-Strategies for Combatting Antimicrobial Resistance and Cancer 2021. [DOI: 10.4018/978-1-7998-5049-6.ch006] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Shaikh MS, Kale MA. Formulation and molecular docking simulation study of luliconazole nanosuspension–based nanogel for transdermal drug delivery using modified polymer. Materials Today Chemistry 2020;18:100364. [DOI: 10.1016/j.mtchem.2020.100364] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Aminu N, Bello I, Umar NM, Tanko N, Aminu A, Audu MM. The influence of nanoparticulate drug delivery systems in drug therapy. Journal of Drug Delivery Science and Technology 2020;60:101961. [DOI: 10.1016/j.jddst.2020.101961] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
47 Jägersberg M, Feihl S, Ringel F. Future directions of postoperative spinal implant infections. J Spine Surg 2020;6:814-9. [PMID: 33447687 DOI: 10.21037/jss-20-585] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
48 Orellano MS, Bohl LP, Breser ML, Isaac P, Falcone RD, Porporatto C. A comparative study of antimicrobial activity of differently-synthesized chitosan nanoparticles against bovine mastitis pathogens. Soft Matter 2021;17:694-703. [PMID: 33216104 DOI: 10.1039/d0sm01179g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
49 Maali Y, Journo C, Mahieux R, Dutartre H. Microbial Biofilms: Human T-cell Leukemia Virus Type 1 First in Line for Viral Biofilm but Far Behind Bacterial Biofilms. Front Microbiol 2020;11:2041. [PMID: 33042035 DOI: 10.3389/fmicb.2020.02041] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
50 Vassallo A, Silletti MF, Faraone I, Milella L. Nanoparticulate Antibiotic Systems as Antibacterial Agents and Antibiotic Delivery Platforms to Fight Infections. Journal of Nanomaterials 2020;2020:1-31. [DOI: 10.1155/2020/6905631] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
51 Subhaswaraj P, Syed A, Siddhardha B. Novel Nanotherapeutics as Next-generation Anti-infective Agents: Current Trends and Future Prospectives. Curr Drug Discov Technol 2020;17:457-68. [PMID: 31309893 DOI: 10.2174/1570163816666190715120708] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
52 Carvalho GC, Sábio RM, de Cássia Ribeiro T, Monteiro AS, Pereira DV, Ribeiro SJL, Chorilli M. Highlights in Mesoporous Silica Nanoparticles as a Multifunctional Controlled Drug Delivery Nanoplatform for Infectious Diseases Treatment. Pharm Res 2020;37:191. [PMID: 32895867 DOI: 10.1007/s11095-020-02917-6] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 16.0] [Reference Citation Analysis]
53 Lima LL, Bierhalz ACK, Moraes ÂM. Influence of the chemical composition and structure design of electrospun matrices on the release kinetics of Aloe vera extract rich in aloin. Polymer Degradation and Stability 2020;179:109233. [DOI: 10.1016/j.polymdegradstab.2020.109233] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
54 Salih M, Omolo CA, Devnarain N, Elrashedy AA, Mocktar C, Soliman MES, Govender T. Supramolecular self-assembled drug delivery system (SADDs) of vancomycin and tocopherol succinate as an antibacterial agent: in vitro, in silico and in vivo evaluations. Pharm Dev Technol 2020;25:1090-108. [PMID: 32684052 DOI: 10.1080/10837450.2020.1797786] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
55 Marcelo GA, Duarte MP, Oliveira E. Gold@mesoporous silica nanocarriers for the effective delivery of antibiotics and by-passing of β-lactam resistance. SN Appl Sci 2020;2. [DOI: 10.1007/s42452-020-3023-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
56 Pircalabioru GG, Chifiriuc MC. Nanoparticulate drug-delivery systems for fighting microbial biofilms: from bench to bedside. Future Microbiol 2020;15:679-98. [PMID: 32495694 DOI: 10.2217/fmb-2019-0251] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
57 Moshafi MH, Ranjbar M, Zeinalizadeh Rafsanjnai Z, Mehrabi F, Professor of Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran, Assistant professor of Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran, Graduate of General Pharmacy, Student research committee, Kerman university of medical sciences, Kerman, Iran, Student of General Pharmacy, Student research committee, Kerman university of medical sciences, Kerman, Iran. Preparation and Evaluation of the Physicochemical and Antimicrobial Properties of Biological Nanostructures Polyolactic Acid / Calcium Oxide by Hydrothermal Assisted Microwave Method. Iran J Med Microbiol 2020;14:227-240. [DOI: 10.30699/ijmm.14.3.227] [Reference Citation Analysis]
58 Lacoma A, Usón L, Mendoza G, Sebastián V, Garcia-garcia E, Muriel-moreno B, Domínguez J, Arruebo M, Prat C. Novel intracellular antibiotic delivery system against Staphylococcus aureus : cloxacillin-loaded poly( d , l -lactide-co-glycolide) acid nanoparticles. Nanomedicine 2020;15:1189-203. [DOI: 10.2217/nnm-2019-0371] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
59 Di YP, Lin Q, Chen C, Montelaro RC, Doi Y, Deslouches B. Enhanced therapeutic index of an antimicrobial peptide in mice by increasing safety and activity against multidrug-resistant bacteria. Sci Adv 2020;6:eaay6817. [PMID: 32426473 DOI: 10.1126/sciadv.aay6817] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 23.5] [Reference Citation Analysis]
60 Zhang Q, Wu W, Zhang J, Xia X. Eradication of Helicobacter pylori: the power of nanosized formulations. Nanomedicine (Lond) 2020;15:527-42. [PMID: 32028847 DOI: 10.2217/nnm-2019-0329] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
61 Yu Y, Mei L, Shi Y, Zhang X, Cheng K, Cao F, Zhang L, Xu J, Li X, Xu Z. Ag-Conjugated graphene quantum dots with blue light-enhanced singlet oxygen generation for ternary-mode highly-efficient antimicrobial therapy. J Mater Chem B 2020;8:1371-82. [PMID: 31970379 DOI: 10.1039/c9tb02300c] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 16.5] [Reference Citation Analysis]
62 Subhaswaraj P, Siddhardha B. Nanoemulsions for Antimicrobial and Anti-biofilm Applications. Nanotechnology in the Life Sciences 2020. [DOI: 10.1007/978-3-030-40337-9_15] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
63 Pattnaik S, Siddhardha B. Understanding the Biological Activities of Nanoparticles Using Murine Models. Model Organisms to Study Biological Activities and Toxicity of Nanoparticles 2020. [DOI: 10.1007/978-981-15-1702-0_11] [Reference Citation Analysis]
64 Pala R, Pattnaik S, Zeng Y, Busi S, Nauli SM, Liu G. Functional MOFs as molecular imaging probes and theranostics. Metal-Organic Frameworks for Biomedical Applications 2020. [DOI: 10.1016/b978-0-12-816984-1.00021-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
65 Talan A, Tyagi R. Fate of pathogens and viruses in hospital wastewater and their treatment methods. Current Developments in Biotechnology and Bioengineering 2020. [DOI: 10.1016/b978-0-12-819722-6.00005-5] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
66 Krzemiński P, Popowska M. Treatment Technologies for Removal of Antibiotics, Antibiotic Resistance Bacteria and Antibiotic-Resistant Genes. Emerging Contaminants and Associated Treatment Technologies 2020. [DOI: 10.1007/978-3-030-40422-2_19] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
67 Parasuraman P, Syed A, Siddhardha B. Pathogenesis and Drug Resistance of Pseudomonas aeruginosa. Model Organisms for Microbial Pathogenesis, Biofilm Formation and Antimicrobial Drug Discovery 2020. [DOI: 10.1007/978-981-15-1695-5_13] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
68 Zhang L, Wang Y, Wang C, He M, Wan J, Wei Y, Zhang J, Yang X, Zhao Y, Zhang Y. Light-Activable On-Demand Release of Nano-Antibiotic Platforms for Precise Synergy of Thermochemotherapy on Periodontitis. ACS Appl Mater Interfaces 2020;12:3354-62. [DOI: 10.1021/acsami.9b17335] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
69 Lee NY, Ko WC, Hsueh PR. Nanoparticles in the Treatment of Infections Caused by Multidrug-Resistant Organisms. Front Pharmacol 2019;10:1153. [PMID: 31636564 DOI: 10.3389/fphar.2019.01153] [Cited by in Crossref: 165] [Cited by in F6Publishing: 173] [Article Influence: 55.0] [Reference Citation Analysis]
70 Jolivet‐gougeon A, Bonnaure‐mallet M. Bacterial Persistence in Biofilms and Antibiotics. Antibiotic Drug Resistance 2019. [DOI: 10.1002/9781119282549.ch9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
71 Ardekani SM, Dehghani A, Ye P, Nguyen K, Gomes VG. Conjugated carbon quantum dots: Potent nano-antibiotic for intracellular pathogens. Journal of Colloid and Interface Science 2019;552:378-87. [DOI: 10.1016/j.jcis.2019.05.067] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
72 Yang G, Chen S, Zhang J. Bioinspired and Biomimetic Nanotherapies for the Treatment of Infectious Diseases. Front Pharmacol 2019;10:751. [PMID: 31333467 DOI: 10.3389/fphar.2019.00751] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 16.0] [Reference Citation Analysis]
73 Vivas R, Barbosa AAT, Dolabela SS, Jain S. Multidrug-Resistant Bacteria and Alternative Methods to Control Them: An Overview. Microbial Drug Resistance 2019;25:890-908. [DOI: 10.1089/mdr.2018.0319] [Cited by in Crossref: 87] [Cited by in F6Publishing: 96] [Article Influence: 29.0] [Reference Citation Analysis]
74 Lima R, Del Fiol FS, Balcão VM. Prospects for the Use of New Technologies to Combat Multidrug-Resistant Bacteria. Front Pharmacol 2019;10:692. [PMID: 31293420 DOI: 10.3389/fphar.2019.00692] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 12.7] [Reference Citation Analysis]
75 Ruddaraju LK, Pammi SVN, Guntuku GS, Padavala VS, Kolapalli VRM. A review on anti-bacterials to combat resistance: From ancient era of plants and metals to present and future perspectives of green nano technological combinations. Asian J Pharm Sci 2020;15:42-59. [PMID: 32175017 DOI: 10.1016/j.ajps.2019.03.002] [Cited by in Crossref: 90] [Cited by in F6Publishing: 92] [Article Influence: 30.0] [Reference Citation Analysis]
76 Sharma D, Misba L, Khan AU. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control 2019;8:76. [PMID: 31131107 DOI: 10.1186/s13756-019-0533-3] [Cited by in Crossref: 466] [Cited by in F6Publishing: 491] [Article Influence: 155.3] [Reference Citation Analysis]
77 Pham TN, Loupias P, Dassonville-Klimpt A, Sonnet P. Drug delivery systems designed to overcome antimicrobial resistance. Med Res Rev 2019;39:2343-96. [PMID: 31004359 DOI: 10.1002/med.21588] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 13.7] [Reference Citation Analysis]
78 Mansi A, Boccuni F, Iavicoli S. Nanomaterials as a new opportunity for protecting workers from biological risk. Ind Health 2019;57:668-75. [PMID: 30814393 DOI: 10.2486/indhealth.2018-0197] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
79 Orellano MS, Isaac P, Breser ML, Bohl LP, Conesa A, Falcone RD, Porporatto C. Chitosan nanoparticles enhance the antibacterial activity of the native polymer against bovine mastitis pathogens. Carbohydr Polym 2019;213:1-9. [PMID: 30879647 DOI: 10.1016/j.carbpol.2019.02.016] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 10.0] [Reference Citation Analysis]
80 Hassanien AS, Khatoon UT. Synthesis and characterization of stable silver nanoparticles, Ag-NPs: Discussion on the applications of Ag-NPs as antimicrobial agents. Physica B: Condensed Matter 2019;554:21-30. [DOI: 10.1016/j.physb.2018.11.004] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 11.3] [Reference Citation Analysis]
81 Vasile C. Polymeric Nanomaterials. Polymeric Nanomaterials in Nanotherapeutics 2019. [DOI: 10.1016/b978-0-12-813932-5.00001-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
82 Ahmad I, Qais FA, Samreen, Abulreesh HH, Ahmad S, Rumbaugh KP. Antibacterial Drug Discovery: Perspective Insights. Antibacterial Drug Discovery to Combat MDR 2019. [DOI: 10.1007/978-981-13-9871-1_1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
83 Paramanantham P, Anju VT, Dyavaiah M, Siddhardha B. Applications of Carbon-Based Nanomaterials for Antimicrobial Photodynamic Therapy. Nanotechnology in the Life Sciences 2019. [DOI: 10.1007/978-3-030-16534-5_12] [Reference Citation Analysis]
84 Kang X, Qiao Y, Lu X, Jiang S, Li W, Wang X, Xu X, Qi J, Xiao Y, Du Y. Tocopherol polyethylene glycol succinate-modified hollow silver nanoparticles for combating bacteria-resistance. Biomater Sci 2019;7:2520-32. [DOI: 10.1039/c9bm00343f] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
85 Anjum S, Ilmi R. Functional Nanomaterials for Smart Healthcare Applications. Nanomaterials for Healthcare, Energy and Environment 2019. [DOI: 10.1007/978-981-13-9833-9_2] [Reference Citation Analysis]
86 Dumont E, Vergalli J, Pajovic J, Bhamidimarri SP, Morante K, Wang J, Lubriks D, Suna E, Stavenger RA, Winterhalter M, Réfrégiers M, Pagès JM. Mechanistic aspects of maltotriose-conjugate translocation to the Gram-negative bacteria cytoplasm. Life Sci Alliance 2019;2:e201800242. [PMID: 30620010 DOI: 10.26508/lsa.201800242] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
87 Singh P, Garg A, Pandit S, Mokkapati VRSS, Mijakovic I. Antimicrobial Effects of Biogenic Nanoparticles. Nanomaterials (Basel) 2018;8:E1009. [PMID: 30563095 DOI: 10.3390/nano8121009] [Cited by in Crossref: 91] [Cited by in F6Publishing: 92] [Article Influence: 22.8] [Reference Citation Analysis]
88 Allen MJ. What's New in Musculoskeletal Basic Science. J Bone Joint Surg Am 2018;100:2082-6. [PMID: 30516632 DOI: 10.2106/JBJS.18.01055] [Reference Citation Analysis]
89 Gaspar LMDAC, Dórea ACS, Droppa-almeida D, de Mélo Silva IS, Montoro FE, Alves LL, Macedo MLH, Padilha FF. Development and characterization of PLGA nanoparticles containing antibiotics. J Nanopart Res 2018;20. [DOI: 10.1007/s11051-018-4387-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
90 Karahan HE, Wang Y, Li W, Liu F, Wang L, Sui X, Riaz MA, Chen Y. Antimicrobial graphene materials: the interplay of complex materials characteristics and competing mechanisms. Biomater Sci 2018;6:766-73. [PMID: 29387845 DOI: 10.1039/c7bm00987a] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 8.3] [Reference Citation Analysis]
91 Heck JG, Rox K, Lünsdorf H, Lückerath T, Klaassen N, Medina E, Goldmann O, Feldmann C. Zirconyl Clindamycinphosphate Antibiotic Nanocarriers for Targeting Intracellular Persisting Staphylococcus aureus. ACS Omega 2018;3:8589-94. [PMID: 31458988 DOI: 10.1021/acsomega.8b00637] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
92 Omolo CA, Kalhapure RS, Agrawal N, Rambharose S, Mocktar C, Govender T. Formulation and Molecular Dynamics Simulations of a Fusidic Acid Nanosuspension for Simultaneously Enhancing Solubility and Antibacterial Activity. Mol Pharm 2018;15:3512-26. [PMID: 29953816 DOI: 10.1021/acs.molpharmaceut.8b00505] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 9.3] [Reference Citation Analysis]
93 Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, Fernandes AR. Nano-Strategies to Fight Multidrug Resistant Bacteria-"A Battle of the Titans". Front Microbiol 2018;9:1441. [PMID: 30013539 DOI: 10.3389/fmicb.2018.01441] [Cited by in Crossref: 381] [Cited by in F6Publishing: 394] [Article Influence: 95.3] [Reference Citation Analysis]
94 Tang S, Zheng J. Antibacterial Activity of Silver Nanoparticles: Structural Effects. Adv Healthc Mater 2018;7:e1701503. [PMID: 29808627 DOI: 10.1002/adhm.201701503] [Cited by in Crossref: 362] [Cited by in F6Publishing: 376] [Article Influence: 90.5] [Reference Citation Analysis]
95 Taha M, Abdelbary H, Ross FP, Carli AV. New Innovations in the Treatment of PJI and Biofilms-Clinical and Preclinical Topics. Curr Rev Musculoskelet Med 2018;11:380-8. [PMID: 29926287 DOI: 10.1007/s12178-018-9500-5] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 5.8] [Reference Citation Analysis]
96 Obeid MA, Al Qaraghuli MM, Alsaadi M, Alzahrani AR, Niwasabutra K, Ferro VA. Delivering natural products and biotherapeutics to improve drug efficacy. Ther Deliv 2017;8:947-56. [PMID: 29061102 DOI: 10.4155/tde-2017-0060] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 9.0] [Reference Citation Analysis]
97 Qais FA, Khan MS, Ahmad I. Nanoparticles as Quorum Sensing Inhibitor: Prospects and Limitations. In: Kalia VC, editor. Biotechnological Applications of Quorum Sensing Inhibitors. Singapore: Springer; 2018. pp. 227-44. [DOI: 10.1007/978-981-10-9026-4_11] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
98 Burns KE, Delehanty JB. Cellular delivery of doxorubicin mediated by disulfide reduction of a peptide-dendrimer bioconjugate. Int J Pharm 2018;545:64-73. [PMID: 29709616 DOI: 10.1016/j.ijpharm.2018.04.027] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
99 Deaconu M, Nicu I, Tincu R, Brezoiu A, Mitran R, Vasile E, Matei C, Berger D. Tailored doxycycline delivery from MCM-41-type silica carriers. Chem Pap 2018;72:1869-80. [DOI: 10.1007/s11696-018-0457-z] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
100 Liu R, Wang X, Ye J, Xue X, Zhang F, Zhang H, Hou X, Liu X, Zhang Y. Enhanced antibacterial activity of silver-decorated sandwich-like mesoporous silica/reduced graphene oxide nanosheets through photothermal effect. Nanotechnology 2018;29:105704. [PMID: 29313522 DOI: 10.1088/1361-6528/aaa624] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
101 Vitiello G, Zanfardino A, Tammaro O, Di Napoli M, Caso MF, Pezzella A, Varcamonti M, Silvestri B, D'errico G, Costantini A, Luciani G. Bioinspired hybrid eumelanin–TiO 2 antimicrobial nanostructures: the key role of organo–inorganic frameworks in tuning eumelanin's biocide action mechanism through membrane interaction. RSC Adv 2018;8:28275-83. [DOI: 10.1039/c8ra04315a] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]