BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Prasad S, Cody V, Saucier-Sawyer JK, Saltzman WM, Sasaki CT, Edelson RL, Birchall MA, Hanlon DJ. Polymer nanoparticles containing tumor lysates as antigen delivery vehicles for dendritic cell-based antitumor immunotherapy. Nanomedicine 2011;7:1-10. [PMID: 20692374 DOI: 10.1016/j.nano.2010.07.002] [Cited by in Crossref: 69] [Cited by in F6Publishing: 62] [Article Influence: 5.8] [Reference Citation Analysis]
Number Citing Articles
1 Craparo EF, Bondì ML. Application of polymeric nanoparticles in immunotherapy. Current Opinion in Allergy & Clinical Immunology 2012;12:658-64. [DOI: 10.1097/aci.0b013e3283588c57] [Cited by in Crossref: 20] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
2 Bhargava A, Mishra D, Banerjee S, Mishra PK. Engineered dendritic cells for gastrointestinal tumor immunotherapy: opportunities in translational research. Journal of Drug Targeting 2012;21:126-36. [DOI: 10.3109/1061186x.2012.731069] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
3 Chen X, Zhang Y. Combination of tumor fragments and nanotechnology as a therapeutic approach: Treating a tumor with tumor. Nano Today 2020;35:100993. [DOI: 10.1016/j.nantod.2020.100993] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
4 Zupančič E, Curato C, Paisana M, Rodrigues C, Porat Z, Viana AS, Afonso CAM, Pinto J, Gaspar R, Moreira JN, Satchi-Fainaro R, Jung S, Florindo HF. Rational design of nanoparticles towards targeting antigen-presenting cells and improved T cell priming. J Control Release 2017;258:182-95. [PMID: 28511928 DOI: 10.1016/j.jconrel.2017.05.014] [Cited by in Crossref: 50] [Cited by in F6Publishing: 49] [Article Influence: 10.0] [Reference Citation Analysis]
5 Kohnepoushi C, Nejati V, Delirezh N, Biparva P. Poly Lactic-co-Glycolic Acid Nanoparticles Containing Human Gastric Tumor Lysates as Antigen Delivery Vehicles for Dendritic Cell-Based Antitumor Immunotherapy. Immunological Investigations 2019;48:794-808. [DOI: 10.1080/08820139.2019.1610889] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
6 Agrawal A, Rellegadla S, Jain S. Biomedical applications of PLGA particles. Materials for Biomedical Engineering. Elsevier; 2019. pp. 87-129. [DOI: 10.1016/b978-0-12-816913-1.00004-0] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
7 Joshi VB, Geary SM, Gross BP, Wongrakpanich A, Norian LA, Salem AK. Tumor lysate-loaded biodegradable microparticles as cancer vaccines. Expert Rev Vaccines 2014;13:9-15. [PMID: 24219096 DOI: 10.1586/14760584.2014.851606] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 3.5] [Reference Citation Analysis]
8 Chattopadhyay S, Dash SK, Ghosh T, Das S, Tripathy S, Mandal D, Das D, Pramanik P, Roy S. Anticancer and immunostimulatory role of encapsulated tumor antigen containing cobalt oxide nanoparticles. J Biol Inorg Chem 2013;18:957-73. [DOI: 10.1007/s00775-013-1044-y] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.7] [Reference Citation Analysis]
9 Zang X, Zhao X, Hu H, Qiao M, Deng Y, Chen D. Nanoparticles for tumor immunotherapy. European Journal of Pharmaceutics and Biopharmaceutics 2017;115:243-56. [DOI: 10.1016/j.ejpb.2017.03.013] [Cited by in Crossref: 49] [Cited by in F6Publishing: 47] [Article Influence: 9.8] [Reference Citation Analysis]
10 Gross BP, Chitphet K, Wongrakpanich A, Wafa EI, Norian LA, Salem AK. Biotinylated Streptavidin Surface Coating Improves the Efficacy of a PLGA Microparticle-Based Cancer Vaccine. Bioconjugate Chem 2020;31:2147-57. [DOI: 10.1021/acs.bioconjchem.0c00347] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 2012;161:505-22. [PMID: 22353619 DOI: 10.1016/j.jconrel.2012.01.043] [Cited by in Crossref: 1832] [Cited by in F6Publishing: 1700] [Article Influence: 183.2] [Reference Citation Analysis]
12 Saluja SS, Hanlon DJ, Sharp FA, Hong E, Khalil D, Robinson E, Tigelaar R, Fahmy TM, Edelson RL. Targeting human dendritic cells via DEC-205 using PLGA nanoparticles leads to enhanced cross-presentation of a melanoma-associated antigen. Int J Nanomedicine. 2014;9:5231-5246. [PMID: 25419128 DOI: 10.2147/ijn.s66639] [Cited by in Crossref: 13] [Cited by in F6Publishing: 27] [Article Influence: 1.6] [Reference Citation Analysis]
13 Wang S, Sun Z, Hou Y. Engineering Nanoparticles toward the Modulation of Emerging Cancer Immunotherapy. Adv Healthc Mater 2021;10:e2000845. [PMID: 32790039 DOI: 10.1002/adhm.202000845] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
14 Philpott CM, Gane S, Mckiernan D. Nanomedicine in otorhinolaryngology: what does the future hold? Eur Arch Otorhinolaryngol 2011;268:489-96. [DOI: 10.1007/s00405-010-1418-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
15 Silva JM, Videira M, Gaspar R, Préat V, Florindo HF. Immune system targeting by biodegradable nanoparticles for cancer vaccines. J Control Release 2013;168:179-99. [PMID: 23524187 DOI: 10.1016/j.jconrel.2013.03.010] [Cited by in Crossref: 170] [Cited by in F6Publishing: 150] [Article Influence: 18.9] [Reference Citation Analysis]
16 Gross BP, Wongrakpanich A, Francis MB, Salem AK, Norian LA. A therapeutic microparticle-based tumor lysate vaccine reduces spontaneous metastases in murine breast cancer. AAPS J 2014;16:1194-203. [PMID: 25224145 DOI: 10.1208/s12248-014-9662-z] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 3.8] [Reference Citation Analysis]
17 Wang YF, Sun LD, Xiao JW, Feng W, Zhou JC, Shen J, Yan CH. Rare-Earth nanoparticles with enhanced upconversion emission and suppressed rare-Earth-ion leakage. Chemistry 2012;18:5558-64. [PMID: 22488939 DOI: 10.1002/chem.201103485] [Cited by in Crossref: 167] [Cited by in F6Publishing: 141] [Article Influence: 16.7] [Reference Citation Analysis]
18 Shakya AK, Nandakumar KS. Applications of polymeric adjuvants in studying autoimmune responses and vaccination against infectious diseases. J R Soc Interface 2013;10:20120536. [PMID: 23173193 DOI: 10.1098/rsif.2012.0536] [Cited by in Crossref: 45] [Cited by in F6Publishing: 38] [Article Influence: 5.0] [Reference Citation Analysis]
19 Duwa R, Jeong J, Yook S. Immunotherapeutic strategies for the treatment of ovarian cancer: current status and future direction. Journal of Industrial and Engineering Chemistry 2021;94:62-77. [DOI: 10.1016/j.jiec.2020.11.015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
20 Wang H, Jia Y, Hu W, Jiang H, Zhang J, Zhang L. Effect of preparation conditions on the size and encapsulation properties of mPEG-PLGA nanoparticles simultaneously loaded with vincristine sulfate and curcumin. Pharm Dev Technol 2013;18:694-700. [PMID: 22676257 DOI: 10.3109/10837450.2012.696267] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
21 Wang X, Wang N, Yang Y, Wang X, Liang J, Tian X, Zhang H, Leng X. Polydopamine nanoparticles carrying tumor cell lysate as a potential vaccine for colorectal cancer immunotherapy. Biomater Sci 2019;7:3062-75. [PMID: 31140475 DOI: 10.1039/c9bm00010k] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 5.7] [Reference Citation Analysis]
22 Gammon JM, Dold NM, Jewell CM. Improving the clinical impact of biomaterials in cancer immunotherapy. Oncotarget 2016;7:15421-43. [PMID: 26871948 DOI: 10.18632/oncotarget.7304] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 8.6] [Reference Citation Analysis]
23 Berti C, Graciotti M, Boarino A, Yakkala C, Kandalaft LE, Klok HA. Polymer Nanoparticle-Mediated Delivery of Oxidized Tumor Lysate-Based Cancer Vaccines. Macromol Biosci 2021;:e2100356. [PMID: 34822219 DOI: 10.1002/mabi.202100356] [Reference Citation Analysis]
24 Fang RH, Kroll AV, Zhang L. Nanoparticle-Based Manipulation of Antigen-Presenting Cells for Cancer Immunotherapy. Small 2015;11:5483-96. [PMID: 26331993 DOI: 10.1002/smll.201501284] [Cited by in Crossref: 74] [Cited by in F6Publishing: 69] [Article Influence: 10.6] [Reference Citation Analysis]
25 Park YM, Lee SJ, Kim YS, Lee MH, Cha GS, Jung ID, Kang TH, Han HD. Nanoparticle-based vaccine delivery for cancer immunotherapy. Immune Netw 2013;13:177-83. [PMID: 24198742 DOI: 10.4110/in.2013.13.5.177] [Cited by in Crossref: 73] [Cited by in F6Publishing: 67] [Article Influence: 8.1] [Reference Citation Analysis]
26 Chowdhury MMH, Kubra K, Kanwar RK, Kanwar JR. Nanoparticles Advancing Cancer Immunotherapy. Biomedical Applications of Graphene and 2D Nanomaterials. Elsevier; 2019. pp. 283-304. [DOI: 10.1016/b978-0-12-815889-0.00013-1] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
27 Operti MC, Dölen Y, Keulen J, van Dinther EAW, Figdor CG, Tagit O. Microfluidics-Assisted Size Tuning and Biological Evaluation of PLGA Particles. Pharmaceutics 2019;11:E590. [PMID: 31717354 DOI: 10.3390/pharmaceutics11110590] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
28 Chesson CB, Zloza A. Nanoparticles: augmenting tumor antigen presentation for vaccine and immunotherapy treatments of cancer. Nanomedicine (Lond) 2017;12:2693-706. [PMID: 29098928 DOI: 10.2217/nnm-2017-0254] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
29 Cruz LJ, Tacken PJ, Eich C, Rueda F, Torensma R, Figdor CG. Controlled release of antigen and Toll-like receptor ligands from PLGA nanoparticles enhances immunogenicity. Nanomedicine (Lond) 2017;12:491-510. [PMID: 28181470 DOI: 10.2217/nnm-2016-0295] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 5.6] [Reference Citation Analysis]
30 Operti MC, Fecher D, van Dinther EAW, Grimm S, Jaber R, Figdor CG, Tagit O. A comparative assessment of continuous production techniques to generate sub-micron size PLGA particles. Int J Pharm 2018;550:140-8. [PMID: 30144511 DOI: 10.1016/j.ijpharm.2018.08.044] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
31 Zhou J, Kroll AV, Holay M, Fang RH, Zhang L. Biomimetic Nanotechnology toward Personalized Vaccines. Adv Mater 2020;32:e1901255. [PMID: 31206841 DOI: 10.1002/adma.201901255] [Cited by in Crossref: 62] [Cited by in F6Publishing: 65] [Article Influence: 20.7] [Reference Citation Analysis]
32 Amoozgar Z, Goldberg MS. Targeting myeloid cells using nanoparticles to improve cancer immunotherapy. Advanced Drug Delivery Reviews 2015;91:38-51. [DOI: 10.1016/j.addr.2014.09.007] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 6.0] [Reference Citation Analysis]
33 Iranpour S, Nejati V, Delirezh N, Biparva P, Shirian S. Enhanced stimulation of anti-breast cancer T cells responses by dendritic cells loaded with poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated tumor antigens. J Exp Clin Cancer Res 2016;35:168. [PMID: 27782834 DOI: 10.1186/s13046-016-0444-6] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 4.3] [Reference Citation Analysis]
34 Ahmad MZ, Ahmad J, Haque A, Alasmary MY, Abdel-wahab BA, Akhter S. Emerging advances in synthetic cancer nano-vaccines: opportunities and challenges. Expert Review of Vaccines 2020;19:1053-71. [DOI: 10.1080/14760584.2020.1858058] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Li C, Takeo M, Matsuda M, Nagai H, Xizheng S, Hatanaka W, Kishimura A, Inoue H, Tani K, Mori T, Katayama Y. Facilitating the presentation of antigen peptides on dendritic cells for cancer immunotherapy using a polymer-based synthetic receptor. Medchemcomm 2017;8:1207-12. [PMID: 30108830 DOI: 10.1039/c7md00188f] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
36 Torres Andón F, Alonso MJ. Nanomedicine and cancer immunotherapy – targeting immunosuppressive cells. Journal of Drug Targeting 2015;23:656-71. [DOI: 10.3109/1061186x.2015.1073295] [Cited by in Crossref: 23] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
37 Zhou Q, Zhang Y, Du J, Li Y, Zhou Y, Fu Q, Zhang J, Wang X, Zhan L. Different-Sized Gold Nanoparticle Activator/Antigen Increases Dendritic Cells Accumulation in Liver-Draining Lymph Nodes and CD8+ T Cell Responses. ACS Nano 2016;10:2678-92. [PMID: 26771692 DOI: 10.1021/acsnano.5b07716] [Cited by in Crossref: 76] [Cited by in F6Publishing: 75] [Article Influence: 12.7] [Reference Citation Analysis]
38 Feng Z, Yi X, Hajavi J. New and old adjuvants in allergen-specific immunotherapy: With a focus on nanoparticles. J Cell Physiol 2021;236:863-76. [PMID: 32657468 DOI: 10.1002/jcp.29941] [Reference Citation Analysis]
39 Pradhan P, Leleux J, Liu J, Roy K. A simple, clinically relevant therapeutic vaccine shows long-term protection in an aggressive, delayed-treatment B lymphoma model. JCI Insight 2017;2:92522. [PMID: 29202455 DOI: 10.1172/jci.insight.92522] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
40 Nasirmoghadas P, Mousakhani A, Behzad F, Beheshtkhoo N, Hassanzadeh A, Nikoo M, Mehrabi M, Kouhbanani MAJ. Nanoparticles in cancer immunotherapies: An innovative strategy. Biotechnol Prog 2021;37:e3070. [PMID: 32829506 DOI: 10.1002/btpr.3070] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
41 Guo J, De May H, Franco S, Noureddine A, Tang L, Brinker CJ, Kusewitt DF, Adams SF, Serda RE. Cancer vaccines from cryogenically silicified tumour cells functionalized with pathogen-associated molecular patterns. Nat Biomed Eng 2021. [PMID: 34725505 DOI: 10.1038/s41551-021-00795-w] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Reneeta NP, Thiyonila B, Aathmanathan VS, Ramya T, Chandrasekar P, Subramanian N, Prajapati VK, Krishnan M. Encapsulation and Systemic Delivery of 5-Fluorouracil Conjugated with Silkworm Pupa Derived Protein Nanoparticles for Experimental Lymphoma Cancer. Bioconjugate Chem 2018;29:2994-3009. [DOI: 10.1021/acs.bioconjchem.8b00404] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
43 Karlsson J, Vaughan HJ, Green JJ. Biodegradable Polymeric Nanoparticles for Therapeutic Cancer Treatments. Annu Rev Chem Biomol Eng 2018;9:105-27. [PMID: 29579402 DOI: 10.1146/annurev-chembioeng-060817-084055] [Cited by in Crossref: 62] [Cited by in F6Publishing: 40] [Article Influence: 15.5] [Reference Citation Analysis]
44 Won JE, Byeon Y, Wi TI, Lee JM, Kang TH, Lee JW, Shin BC, Han HD, Park Y. Enhanced Antitumor Immunity Using a Tumor Cell Lysate-Encapsulated CO 2 -Generating Liposomal Carrier System and Photothermal Irradiation. ACS Appl Bio Mater 2019;2:2481-9. [DOI: 10.1021/acsabm.9b00183] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Ophir E, Bobisse S, Coukos G, Harari A, Kandalaft LE. Personalized approaches to active immunotherapy in cancer. Biochim Biophys Acta 2016;1865:72-82. [PMID: 26241169 DOI: 10.1016/j.bbcan.2015.07.004] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
46 Wang Q, Sun X, Huang X, Huang J, Hasan MW, Yan R, Xu L, Song X, Li X. Nanoparticles of Chitosan/Poly(D,L-Lactide-Co-Glycolide) Enhanced the Immune Responses of Haemonchus contortus HCA59 Antigen in Model Mice. Int J Nanomedicine 2021;16:3125-39. [PMID: 33981142 DOI: 10.2147/IJN.S301851] [Reference Citation Analysis]
47 Lê MQ, Carpentier R, Lantier I, Ducournau C, Fasquelle F, Dimier-Poisson I, Betbeder D. Protein delivery by porous cationic maltodextrin-based nanoparticles into nasal mucosal cells: Comparison with cationic or anionic nanoparticles. Int J Pharm X 2019;1:100001. [PMID: 31545856 DOI: 10.1016/j.ijpx.2018.100001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
48 Hong E, Dobrovolskaia MA. Addressing barriers to effective cancer immunotherapy with nanotechnology: achievements, challenges, and roadmap to the next generation of nanoimmunotherapeutics. Advanced Drug Delivery Reviews 2019;141:3-22. [DOI: 10.1016/j.addr.2018.01.005] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
49 Singh MS, Bhaskar S. Nanocarrier-based immunotherapy in cancer management and research. Immunotargets Ther 2014;3:121-34. [PMID: 27471704 DOI: 10.2147/ITT.S62471] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
50 Hardin MO, Vreeland TJ, Clifton GT, Hale DF, Herbert GS, Greene JM, Jackson DO, Berry JE, Nichols P, Yin S, Yu X, Wagner TE, Peoples GE. Tumor lysate particle loaded dendritic cell vaccine: preclinical testing of a novel personalized cancer vaccine. Immunotherapy 2018;10:373-82. [DOI: 10.2217/imt-2017-0114] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
51 Yang F, Shi K, Jia YP, Hao Y, Peng JR, Qian ZY. Advanced biomaterials for cancer immunotherapy. Acta Pharmacol Sin 2020;41:911-27. [PMID: 32123302 DOI: 10.1038/s41401-020-0372-z] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
52 Bhargava A, Mishra D, Khan S, Varshney SK, Banerjee S, Mishra PK. Assessment of tumor antigen-loaded solid lipid nanoparticles as an efficient delivery system for dendritic cell engineering. Nanomedicine 2013;8:1067-84. [DOI: 10.2217/nnm.12.164] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
53 Koerner J, Horvath D, Groettrup M. Harnessing Dendritic Cells for Poly (D,L-lactide-co-glycolide) Microspheres (PLGA MS)-Mediated Anti-tumor Therapy. Front Immunol 2019;10:707. [PMID: 31024545 DOI: 10.3389/fimmu.2019.00707] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
54 Shukla SK, Shukla SK, Govender PP, Giri NG. Biodegradable polymeric nanostructures in therapeutic applications: opportunities and challenges. RSC Adv 2016;6:94325-51. [DOI: 10.1039/c6ra15764e] [Cited by in Crossref: 39] [Article Influence: 6.5] [Reference Citation Analysis]
55 Kokate RA, Thamake SI, Chaudhary P, Mott B, Raut S, Vishwanatha JK, Jones HP. Enhancement of anti-tumor effect of particulate vaccine delivery system by 'bacteriomimetic' CpG functionalization of poly-lactic-co-glycolic acid nanoparticles. Nanomedicine (Lond) 2015;10:915-29. [PMID: 25867857 DOI: 10.2217/nnm.14.144] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
56 Bhargava A, Bunkar N, Khare NK, Mishra D, Mishra PK. Nanoengineered strategies to optimize dendritic cells for gastrointestinal tumor immunotherapy: from biology to translational medicine. Nanomedicine (Lond). 2014;9:2187-2202. [PMID: 25405796 DOI: 10.2217/nnm.14.115] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
57 Graciotti M, Berti C, Klok HA, Kandalaft L. The era of bioengineering: how will this affect the next generation of cancer immunotherapy? J Transl Med 2017;15:142. [PMID: 28629381 DOI: 10.1186/s12967-017-1244-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
58 Kim J, Mooney DJ. In Vivo Modulation of Dendritic Cells by Engineered Materials: Towards New Cancer Vaccines. Nano Today 2011;6:466-77. [PMID: 22125572 DOI: 10.1016/j.nantod.2011.08.005] [Cited by in Crossref: 51] [Cited by in F6Publishing: 49] [Article Influence: 4.6] [Reference Citation Analysis]
59 Bhargava A, Mishra DK, Jain SK, Srivastava RK, Lohiya NK, Mishra PK. Comparative assessment of lipid based nano-carrier systems for dendritic cell based targeting of tumor re-initiating cells in gynecological cancers. Mol Immunol 2016;79:98-112. [PMID: 27764711 DOI: 10.1016/j.molimm.2016.10.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
60 Shahabi S, Treccani L, Rezwan K. A comparative study of three different synthesis routes for hydrophilic fluorophore-doped silica nanoparticles. J Nanopart Res 2016;18. [DOI: 10.1007/s11051-016-3334-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
61 Hou Y, Liu R, Hong X, Zhang Y, Bai S, Luo X, Zhang Y, Gong T, Zhang Z, Sun X. Engineering a sustained release vaccine with a pathogen-mimicking manner for robust and durable immune responses. J Control Release 2021;333:162-75. [PMID: 33794269 DOI: 10.1016/j.jconrel.2021.03.037] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Agallou M, Margaroni M, Athanasiou E, Toubanaki DK, Kontonikola K, Karidi K, Kammona O, Kiparissides C, Karagouni E. Identification of BALB/c Immune Markers Correlated with a Partial Protection to Leishmania infantum after Vaccination with a Rationally Designed Multi-epitope Cysteine Protease A Peptide-Based Nanovaccine. PLoS Negl Trop Dis 2017;11:e0005311. [PMID: 28114333 DOI: 10.1371/journal.pntd.0005311] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 5.6] [Reference Citation Analysis]
63 Beck I, Hotowy A, Sawosz E, Grodzik M, Wierzbicki M, Kutwin M, Jaworski S, Chwalibog A. Effect of silver nanoparticles and hydroxyproline, administered in ovo , on the development of blood vessels and cartilage collagen structure in chicken embryos. Archives of Animal Nutrition 2015;69:57-68. [DOI: 10.1080/1745039x.2014.992179] [Cited by in Crossref: 20] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
64 Wang J, Hu X, Xiang D. Nanoparticle drug delivery systems: an excellent carrier for tumor peptide vaccines. Drug Deliv 2018;25:1319-27. [PMID: 29869539 DOI: 10.1080/10717544.2018.1477857] [Cited by in Crossref: 48] [Cited by in F6Publishing: 40] [Article Influence: 12.0] [Reference Citation Analysis]