BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Castañeda-Cabral JL, Colunga-Durán A, Ureña-Guerrero ME, Beas-Zárate C, Nuñez-Lumbreras MLA, Orozco-Suárez S, Alonso-Vanegas M, Guevara-Guzmán R, Deli MA, Valle-Dorado MG, Sánchez-Valle V, Rocha L. Expression of VEGF- and tight junction-related proteins in the neocortical microvasculature of patients with drug-resistant temporal lobe epilepsy. Microvasc Res 2020;132:104059. [PMID: 32798551 DOI: 10.1016/j.mvr.2020.104059] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Alonso-Alonso ML, Sampedro-Viana A, Fernández-Rodicio S, Bazarra-Barreiros M, Ouro A, Sobrino T, Campos F, Castillo J, Hervella P, Iglesias-Rey R. Need for a Paradigm Shift in the Treatment of Ischemic Stroke: The Blood-Brain Barrier. Int J Mol Sci 2022;23:9486. [PMID: 36012745 DOI: 10.3390/ijms23169486] [Reference Citation Analysis]
2 Li L, Zhang C, Wang Z, Guo Y, Wang Y, Fan X, Jiang T. Expression changes in ion channel and immunity genes are associated with glioma-related epilepsy in patients with diffuse gliomas. J Cancer Res Clin Oncol 2022. [PMID: 35581384 DOI: 10.1007/s00432-022-04049-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Yu H, He B, Han X, Yan T. Rufinamide (RUF) suppresses inflammation and maintains the integrity of the blood-brain barrier during kainic acid-induced brain damage. Open Life Sci 2021;16:845-55. [PMID: 34514163 DOI: 10.1515/biol-2021-0090] [Reference Citation Analysis]
4 Herrera EA, González-Candia A. Gestational Hypoxia and Blood-Brain Barrier Permeability: Early Origins of Cerebrovascular Dysfunction Induced by Epigenetic Mechanisms. Front Physiol 2021;12:717550. [PMID: 34489733 DOI: 10.3389/fphys.2021.717550] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
5 Uprety A, Kang Y, Kim SY. Blood-brain barrier dysfunction as a potential therapeutic target for neurodegenerative disorders. Arch Pharm Res 2021;44:487-98. [PMID: 34028650 DOI: 10.1007/s12272-021-01332-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
6 van Lanen RH, Melchers S, Hoogland G, Schijns OE, Zandvoort MAV, Haeren RH, Rijkers K. Microvascular changes associated with epilepsy: A narrative review. J Cereb Blood Flow Metab 2021;:271678X211010388. [PMID: 33866850 DOI: 10.1177/0271678X211010388] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
7 Nuñez-Lumbreras MLÁ, Castañeda-Cabral JL, Valle-Dorado MG, Sánchez-Valle V, Orozco-Suárez S, Guevara-Guzmán R, Martínez-Juárez I, Alonso-Vanegas M, Walter F, Deli MA, Carmona-Cruz F, Rocha L. Drug-Resistant Temporal Lobe Epilepsy Alters the Expression and Functional Coupling to Gαi/o Proteins of CB1 and CB2 Receptors in the Microvasculature of the Human Brain. Front Behav Neurosci 2020;14:611780. [PMID: 33551765 DOI: 10.3389/fnbeh.2020.611780] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
8 Li C, Ma W, Zhao Y, Wang H. Changes in the expression of endothelial monocyte‑activating polypeptide II in the rat hippocampus following status epilepticus. Int J Mol Med 2021;47:699-707. [PMID: 33416103 DOI: 10.3892/ijmm.2020.4808] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]