BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gao D, Guo X, Zhang X, Chen S, Wang Y, Chen T, Huang G, Gao Y, Tian Z, Yang Z. Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Mater Today Bio 2020;5:100035. [PMID: 32211603 DOI: 10.1016/j.mtbio.2019.100035] [Cited by in Crossref: 114] [Cited by in F6Publishing: 120] [Article Influence: 28.5] [Reference Citation Analysis]
Number Citing Articles
1 Rahmania FJ, Huang YS, Workie YA, Imae T, Kondo A, Miki Y, Imai R, Nagai T, Nakagawa H, Kawai N, Tsutsumiuchi K. Preparation of Functional Nanoparticles-Loaded Magnetic Carbon Nanohorn Nanocomposites towards Composite Treatment. Nanomaterials (Basel) 2023;13. [PMID: 36903717 DOI: 10.3390/nano13050839] [Reference Citation Analysis]
2 Hak A, Ali MS, Sankaranarayanan SA, Shinde VR, Rengan AK. Chlorin e6: A Promising Photosensitizer in Photo-Based Cancer Nanomedicine. ACS Appl Bio Mater 2023;6:349-64. [PMID: 36700563 DOI: 10.1021/acsabm.2c00891] [Reference Citation Analysis]
3 Kumari S, Nehra A, Gupta K, Puri A, Kumar V, Singh KP, Kumar M, Sharma A. Chlorambucil-Loaded Graphene-Oxide-Based Nano-Vesicles for Cancer Therapy. Pharmaceutics 2023;15. [PMID: 36839970 DOI: 10.3390/pharmaceutics15020649] [Reference Citation Analysis]
4 Zhang Q, Kuang G, Li W, Wang J, Ren H, Zhao Y. Stimuli-Responsive Gene Delivery Nanocarriers for Cancer Therapy. Nanomicro Lett 2023;15:44. [PMID: 36752939 DOI: 10.1007/s40820-023-01018-4] [Reference Citation Analysis]
5 Yang Z, Gao D, Zhao J, Yang G, Guo M, Wang Y, Ren X, Kim JS, Jin L, Tian Z, Zhang X. Thermal immuno-nanomedicine in cancer. Nat Rev Clin Oncol 2023;20:116-34. [PMID: 36604531 DOI: 10.1038/s41571-022-00717-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Sekar R, Basavegowda N, Thathapudi JJ, Sekhar MR, Joshi P, Somu P, Baek KH. Recent Progress of Gold-Based Nanostructures towards Future Emblem of Photo-Triggered Cancer Theranostics: A Special Focus on Combinatorial Phototherapies. Pharmaceutics 2023;15. [PMID: 36839754 DOI: 10.3390/pharmaceutics15020433] [Reference Citation Analysis]
7 Chen B, Song L, Yuan Y, Liu X, Guo Z, Gu Y, Lou Z, Liu Y, Zhang C, Li C, Guo C. Chirality-Dependent Tumor Phototherapy Using Amino Acid-Engineered Chiral Phosphorene. ACS Appl Mater Interfaces 2023;15:651-61. [PMID: 36591814 DOI: 10.1021/acsami.2c19291] [Reference Citation Analysis]
8 Lara-Pardo A, Mancuso A, Simón-Fuente S, Bonaccorsi PM, Gangemi CMA, Moliné MÁ, Puntoriero F, Ribagorda M, Barattucci A, Sanz-Rodriguez F. Amino-OPE glycosides and blue light: a powerful synergy in photodynamic therapy. Org Biomol Chem 2023;21:386-96. [PMID: 36524706 DOI: 10.1039/d2ob01742c] [Reference Citation Analysis]
9 Demchenko AP. Phototheranostics: Combining Targeting, Imaging, Therapy. Introduction to Fluorescence Sensing 2023. [DOI: 10.1007/978-3-031-19089-6_17] [Reference Citation Analysis]
10 Cheng Y, Chen Q, Qian Z, Shan T, Bai L, Jiang X, Li C, Wang Y. Versatile Red Blood Cells for Triple-Negative Breast Cancer Treatment via Stepwise Photoactivations. Adv Healthc Mater 2023;12:e2201690. [PMID: 36263794 DOI: 10.1002/adhm.202201690] [Reference Citation Analysis]
11 Mosqueira VCF, Machado MGC, de Oliveira MA. Polymeric Nanocarriers in Cancer Theranostics. Cancer Nanotechnology 2023. [DOI: 10.1007/978-3-031-17831-3_2] [Reference Citation Analysis]
12 Wang B, Hu X, Sun F, Yang Z, Huang W. Advanced strategic constructions of diketopyrrolopyrrole derivatives‐based organic semiconducting phototheranostics. Interdisciplinary Medicine 2022. [DOI: 10.1002/inmd.20220010] [Reference Citation Analysis]
13 He Z, Zhang CY, Lei Y, Song G, Yao Y. Plasmonic nanomaterials: A versatile phototheranostic platform of cancers. Materials Today 2022. [DOI: 10.1016/j.mattod.2022.11.011] [Reference Citation Analysis]
14 Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS Nano 2022;16:17497-551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Li Y, Nie J, Dai J, Yin J, Huang B, Liu J, Chen G, Ren L. pH/Redox Dual-Responsive Drug Delivery System with on-Demand RGD Exposure for Photochemotherapy of Tumors. IJN 2022;Volume 17:5621-5639. [DOI: 10.2147/ijn.s388342] [Reference Citation Analysis]
16 Choi K, Kim JH, Ryu K, Kaushik N. Current Nanomedicine for Targeted Vascular Disease Treatment: Trends and Perspectives. IJMS 2022;23:12397. [DOI: 10.3390/ijms232012397] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Huang Y, Liu K, Ni H, Zhang R, Liu X, Fan Q, Wang L, Huang W. Organic Theranostic Nanoplatform with Enhanced Fluorescence and Singlet Oxygen Quantum Yield for Tumor-Targeting Image-Guided Photodynamic/Photothermal Synergistic Therapy. ACS Appl Polym Mater . [DOI: 10.1021/acsapm.2c01297] [Reference Citation Analysis]
18 Bochani S, Kalantari-Hesari A, Haghi F, Alinezhad V, Bagheri H, Makvandi P, Shahbazi MA, Salimi A, Hirata I, Mattoli V, Maleki A, Guo B. Injectable Antibacterial Gelatin-Based Hydrogel Incorporated with Two-Dimensional Nanosheets for Multimodal Healing of Bacteria-Infected Wounds. ACS Appl Bio Mater 2022. [PMID: 36066957 DOI: 10.1021/acsabm.2c00567] [Reference Citation Analysis]
19 Dhilip Kumar SS, Abrahamse H. Recent advances in the development of biocompatible nanocarriers and their cancer cell targeting efficiency in photodynamic therapy. Front Chem 2022;10:969809. [DOI: 10.3389/fchem.2022.969809] [Reference Citation Analysis]
20 Zhao B, Chen S, Hong Y, Jia L, Zhou Y, He X, Wang Y, Tian Z, Yang Z, Gao D. Research Progress of Conjugated Nanomedicine for Cancer Treatment. Pharmaceutics 2022;14:1522. [DOI: 10.3390/pharmaceutics14071522] [Reference Citation Analysis]
21 Zhang R, Pan T, Xiang Y, Zhang M, Xie H, Liang Z, Chen B, Xu C, Wang J, Huang X, Zhu Q, Zhao Z, Gao Q, Wen C, Liu W, Ma W, Feng J, Sun X, Duan T, Lai-han Leung E, Xie T, Wu Q, Sui X. Curcumenol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis. Bioactive Materials 2022;13:23-36. [DOI: 10.1016/j.bioactmat.2021.11.013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
22 Zhu S, Wang S, Liu C, Lyu M, Huang Q. Cu-Hemin Nanosheets and Indocyanine Green Co-Loaded Hydrogel for Photothermal Therapy and Amplified Photodynamic Therapy. Front Oncol 2022;12:918416. [DOI: 10.3389/fonc.2022.918416] [Reference Citation Analysis]
23 Lopes J, Lopes D, Pereira-Silva M, Peixoto D, Veiga F, Hamblin MR, Conde J, Corbo C, Zare EN, Ashrafizadeh M, Tay FR, Chen C, Donnelly RF, Wang X, Makvandi P, Paiva-Santos AC. Macrophage Cell Membrane-Cloaked Nanoplatforms for Biomedical Applications. Small Methods 2022;:e2200289. [PMID: 35768282 DOI: 10.1002/smtd.202200289] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Guo S, Song Z, Ji DK, Reina G, Fauny JD, Nishina Y, Ménard-Moyon C, Bianco A. Combined Photothermal and Photodynamic Therapy for Cancer Treatment Using a Multifunctional Graphene Oxide. Pharmaceutics 2022;14:1365. [PMID: 35890259 DOI: 10.3390/pharmaceutics14071365] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
25 Bonelli J, Ortega-Forte E, Rovira A, Bosch M, Torres O, Cuscó C, Rocas J, Ruiz J, Marchán V. Improving Photodynamic Therapy Anticancer Activity of a Mitochondria-Targeted Coumarin Photosensitizer Using a Polyurethane-Polyurea Hybrid Nanocarrier. Biomacromolecules 2022. [PMID: 35695426 DOI: 10.1021/acs.biomac.2c00361] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Xiang Y, Li N, Liu M, Chen Q, Long X, Yang Y, Xiao Z, Huang J, Wang X, Yang Y, Zhang J, Liu C, Huang Q. Nanodrugs Detonate Lysosome Bombs. Front Pharmacol 2022;13:909504. [PMID: 35656308 DOI: 10.3389/fphar.2022.909504] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Long X, Zhang X, Chen Q, Liu M, Xiang Y, Yang Y, Xiao Z, Huang J, Wang X, Liu C, Nan Y, Huang Q. Nucleus-Targeting Phototherapy Nanodrugs for High-Effective Anti-Cancer Treatment. Front Pharmacol 2022;13:905375. [PMID: 35645841 DOI: 10.3389/fphar.2022.905375] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Du C, Huang W. Progress and prospects of nanocomposite hydrogels in bone tissue engineering. Nanocomposites 2022;8:102-24. [DOI: 10.1080/20550324.2022.2076025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Dai J, Hu JJ, Dong X, Chen B, Dong X, Liu R, Xia F, Lou X. Deep Downregulation of PD-L1 by Caged Peptide-Conjugated AIEgen/miR-140 Nanoparticles for Enhanced Immunotherapy. Angew Chem Int Ed Engl 2022;61:e202117798. [PMID: 35224832 DOI: 10.1002/anie.202117798] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
30 Yao Y, Ran G, Hou CL, Zhang R, Mangel DN, Yang ZS, Zhu M, Zhang W, Zhang J, Sessler JL, Gao S, Zhang JL. Nonaromatic Organonickel(II) Phototheranostics. J Am Chem Soc 2022. [PMID: 35420807 DOI: 10.1021/jacs.2c00710] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
31 Li Q, Liu Y, Huang Z, Guo Y, Li Q. Triggering Immune System With Nanomaterials for Cancer Immunotherapy. Front Bioeng Biotechnol 2022;10:878524. [DOI: 10.3389/fbioe.2022.878524] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Zeng H, Li J, Hou K, Wu Y, Chen H, Ning Z. Melanoma and Nanotechnology-Based Treatment. Front Oncol 2022;12:858185. [PMID: 35356202 DOI: 10.3389/fonc.2022.858185] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
33 Song L, Chen B, Qin Z, Liu X, Guo Z, Lou H, Liu H, Sun W, Guo C, Li C. Temperature-Dependent CAT-Like RGD-BPNS@SMFN Nanoplatform for PTT-PDT Self-Synergetic Tumor Phototherapy. Adv Healthc Mater 2022;11:e2102298. [PMID: 34918483 DOI: 10.1002/adhm.202102298] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 11.0] [Reference Citation Analysis]
34 Yuan X, Zhu Y, Li S, Wu Y, Wang Z, Gao R, Luo S, Shen J, Wu J, Ge L. Titanium nanosheet as robust and biosafe drug carrier for combined photochemo cancer therapy. J Nanobiotechnology 2022;20:154. [PMID: 35331256 DOI: 10.1186/s12951-022-01374-0] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
35 Jethva P, Momin M, Khan T, Omri A. Lanthanide-Doped Upconversion Luminescent Nanoparticles-Evolving Role in Bioimaging, Biosensing, and Drug Delivery. Materials (Basel) 2022;15:2374. [PMID: 35407706 DOI: 10.3390/ma15072374] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Patel M, Prabhu A. Smart nanocomposite assemblies for multimodal cancer theranostics. Int J Pharm 2022;618:121697. [PMID: 35337903 DOI: 10.1016/j.ijpharm.2022.121697] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Sannikova NE, Zhdanova KA, Spitsyna AS, Bragina NA, Fedin MV, Krumkacheva OA. Study of Cationic Porphyrins and Their Metal Complexes by ESR Techniques. Russ J Coord Chem 2022;48:1-8. [DOI: 10.1134/s1070328422010031] [Reference Citation Analysis]
38 Dai J, Hu J, Dong X, Chen B, Dong X, Liu R, Xia F, Lou X. Deep Downregulation of PD‐L1 by Caged Peptide‐Conjugated AIEgen/miR‐140 Nanoparticles for Enhanced Immunotherapy. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202117798] [Reference Citation Analysis]
39 Zhang H, Feng Y, Xie X, Song T, Yang G, Su Q, Li T, Li S, Wu C, You F, Liu Y, Yang H. Engineered Mesenchymal Stem Cells as a Biotherapy Platform for Targeted Photodynamic Immunotherapy of Breast Cancer. Adv Healthc Mater 2022;11:e2101375. [PMID: 34981675 DOI: 10.1002/adhm.202101375] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Chen Q, Li N, Wang X, Yang Y, Xiang Y, Long X, Zhang J, Huang J, Chen L, Huang Q. Mitochondria-Targeting Chemodynamic Therapy Nanodrugs for Cancer Treatment. Front Pharmacol 2022;13:847048. [PMID: 35222052 DOI: 10.3389/fphar.2022.847048] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
41 Zhang X, Zhou C, Wu F, Gao C, Liu Q, Lv P, Li M, Huang L, Wu T, Li W. Bio-engineered nano-vesicles for IR820 delivery: a therapy platform for cancer by surgery and photothermal therapy. Nanoscale 2022;14:2780-92. [PMID: 35119448 DOI: 10.1039/d1nr05601h] [Reference Citation Analysis]
42 Martín-contreras M, Navarro-marchal SA, Peula-garcía JM, Jódar-reyes AB. Progress and Hurdles of Therapeutic Nanosystems against Cancer. Pharmaceutics 2022;14:388. [DOI: 10.3390/pharmaceutics14020388] [Reference Citation Analysis]
43 Liu Y, Shang W, Liu H, Hui H, Wu J, Zhang W, Gao P, Guo K, Guo Y, Tian J. Biomimetic manganese-eumelanin nanocomposites for combined hyperthermia-immunotherapy against prostate cancer. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01248-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
44 Charelli LE, de Mattos GC, de Jesus Sousa-Batista A, Pinto JC, Balbino TA. Polymeric nanoparticles as therapeutic agents against coronavirus disease. J Nanopart Res 2022;24:12. [PMID: 35035277 DOI: 10.1007/s11051-022-05396-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
45 Tao Q, He G, Ye S, Zhang D, Zhang Z, Qi L, Liu R. Mn doped Prussian blue nanoparticles for T1/T2 MR imaging, PA imaging and Fenton reaction enhanced mild temperature photothermal therapy of tumor. J Nanobiotechnology 2022;20:18. [PMID: 34983564 DOI: 10.1186/s12951-021-01235-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
46 Zhu Y, Xu P, Zhang X, Wu D. Emerging porous organic polymers for biomedical applications. Chem Soc Rev . [DOI: 10.1039/d1cs00871d] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 19.0] [Reference Citation Analysis]
47 Sokolova V, Epple M. Bioceramic nanoparticles in tissue engineering and drug delivery. Tissue Engineering Using Ceramics and Polymers 2022. [DOI: 10.1016/b978-0-12-820508-2.00022-2] [Reference Citation Analysis]
48 Zhao Y, Liu X, Liu X, Yu J, Bai X, Wu X, Guo X, Liu Z, Liu X. Combination of phototherapy with immune checkpoint blockade: Theory and practice in cancer. Front Immunol 2022;13:955920. [PMID: 36119019 DOI: 10.3389/fimmu.2022.955920] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
49 Tezcan T, Hsu C. Nanotechnology in healthcare: nanoparticles for diagnostic and therapy. Biotechnology in Healthcare, Volume 1 2022. [DOI: 10.1016/b978-0-323-89837-9.00005-x] [Reference Citation Analysis]
50 Hada V, Malvi D, Mili M, Khan MM, Chaturvedi G, Hashmi S, Srivastava A, Verma S. MXenes: promising 2D materials for wound dressing applications – a perspective review. Mater Adv 2022. [DOI: 10.1039/d1ma01199e] [Reference Citation Analysis]
51 Shi E, Bai L, Mao L, Wang H, Yang X, Wang Y, Zhang M, Li C, Wang Y. Self-assembled nanoparticles containing photosensitizer and polycationic brush for synergistic photothermal and photodynamic therapy against periodontitis. J Nanobiotechnology 2021;19:413. [PMID: 34895255 DOI: 10.1186/s12951-021-01114-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
52 Dai Y, Du W, Gao D, Zhu H, Zhang F, Chen K, Ni H, Li M, Fan Q, Shen Q. Near-infrared-II light excitation thermosensitive liposomes for photoacoustic imaging-guided enhanced photothermal-chemo synergistic tumor therapy. Biomater Sci 2021. [PMID: 34878465 DOI: 10.1039/d1bm01669e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
53 Machado MGC, de Oliveira MA, Lanna EG, Siqueira RP, Pound-Lana G, Branquinho RT, Mosqueira VCF. Photodynamic therapy with the dual-mode association of IR780 to PEG-PLA nanocapsules and the effects on human breast cancer cells. Biomed Pharmacother 2022;145:112464. [PMID: 34864313 DOI: 10.1016/j.biopha.2021.112464] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
54 Gao D, Shi Y, Ni J, Chen S, Wang Y, Zhao B, Song M, Guo X, Ren X, Zhang X, Tian Z, Yang Z. NIR/MRI-Guided Oxygen-Independent Carrier-Free Anti-Tumor Nano-Theranostics. Small 2021;:e2106000. [PMID: 34854571 DOI: 10.1002/smll.202106000] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
55 Gündüz EÖ, Gedik ME, Günaydın G, Okutan E. Amphiphilic Fullerene-BODIPY Photosensitizers for Targeted Photodynamic Therapy. ChemMedChem 2021;:e202100693. [PMID: 34859597 DOI: 10.1002/cmdc.202100693] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
56 Liu L, Bi M, Wang Y, Liu J, Jiang X, Xu Z, Zhang X. Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis. Nanoscale 2021;13:19352-66. [PMID: 34812823 DOI: 10.1039/d1nr06195j] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
57 Bortot B, Apollonio M, Baj G, Andolfi L, Zupin L, Crovella S, di Giosia M, Cantelli A, Saporetti R, Ulfo L, Petrosino A, Di Lorenzo G, Romano F, Ricci G, Mongiat M, Danielli A, Calvaresi M, Biffi S. Advanced photodynamic therapy with an engineered M13 phage targeting EGFR: Mitochondrial localization and autophagy induction in ovarian cancer cell lines. Free Radic Biol Med 2021:S0891-5849(21)00816-9. [PMID: 34808331 DOI: 10.1016/j.freeradbiomed.2021.11.019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
58 Li J, Qi J, Tang Y, Liu H, Zhou K, Dai Z, Yuan L, Sun C. A nanodrug system overexpressed circRNA_0001805 alleviates nonalcoholic fatty liver disease via miR-106a-5p/miR-320a and ABCA1/CPT1 axis. J Nanobiotechnology 2021;19:363. [PMID: 34789275 DOI: 10.1186/s12951-021-01108-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
59 Didamson OC, Abrahamse H. Targeted Photodynamic Diagnosis and Therapy for Esophageal Cancer: Potential Role of Functionalized Nanomedicine. Pharmaceutics 2021;13:1943. [PMID: 34834358 DOI: 10.3390/pharmaceutics13111943] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
60 Xu S, Chang L, Hu Y, Zhao X, Huang S, Chen Z, Ren X, Mei X. Tea polyphenol modified, photothermal responsive and ROS generative black phosphorus quantum dots as nanoplatforms for promoting MRSA infected wounds healing in diabetic rats. J Nanobiotechnology 2021;19:362. [PMID: 34758829 DOI: 10.1186/s12951-021-01106-w] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
61 Shahrivarkevishahi A, Luzuriaga MA, Herbert FC, Tumac AC, Brohlin OR, Wijesundara YH, Adlooru AV, Benjamin C, Lee H, Parsamian P, Gadhvi J, De Nisco NJ, Gassensmith JJ. PhotothermalPhage: A Virus-Based Photothermal Therapeutic Agent. J Am Chem Soc 2021;143:16428-38. [PMID: 34551259 DOI: 10.1021/jacs.1c05090] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
62 Pezzotti G, Boschetto F, Ohgitani E, Fujita Y, Shin-Ya M, Adachi T, Yamamoto T, Kanamura N, Marin E, Zhu W, Nishimura I, Mazda O. Mechanisms of instantaneous inactivation of SARS-CoV-2 by silicon nitride bioceramic. Mater Today Bio 2021;12:100144. [PMID: 34632359 DOI: 10.1016/j.mtbio.2021.100144] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
63 Han Z, Qian Y, Wu Y, Cai Y, Jin J, Yang Z. Metal‐Organic Frameworks Deliver a Conjugate of Functional Oligonucleotides and Photosensitizer to Induce Apoptosis for Enhancing Chemotherapy. ChemNanoMat 2021;7:1361-8. [DOI: 10.1002/cnma.202100321] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
64 Richter F, Leer K, Martin L, Mapfumo P, Solomun JI, Kuchenbrod MT, Hoeppener S, Brendel JC, Traeger A. The impact of anionic polymers on gene delivery: how composition and assembly help evading the toxicity-efficiency dilemma. J Nanobiotechnology 2021;19:292. [PMID: 34579715 DOI: 10.1186/s12951-021-00994-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
65 Li J, Song S, Meng J, Tan L, Liu X, Zheng Y, Li Z, Yeung KWK, Cui Z, Liang Y, Zhu S, Zhang X, Wu S. 2D MOF Periodontitis Photodynamic Ion Therapy. J Am Chem Soc 2021;143:15427-39. [PMID: 34516125 DOI: 10.1021/jacs.1c07875] [Cited by in Crossref: 56] [Cited by in F6Publishing: 64] [Article Influence: 28.0] [Reference Citation Analysis]
66 Panikar SS, Ramírez-garcía G, Banu N, Vallejo-cardona AA, Lugo-fabres P, Camacho-villegas TA, Salas P, De la Rosa E. Ligand-targeted Theranostic Liposomes combining methylene blue attached upconversion nanoparticles for NIR activated bioimaging and photodynamic therapy against HER-2 positive breast cancer. Journal of Luminescence 2021;237:118143. [DOI: 10.1016/j.jlumin.2021.118143] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
67 Li Z, Zhang X, Guo Z, Shi L, Jin L, Zhu L, Cai X, Zhang J, Zhang Y, Li J. Nature-derived bionanomaterials for sustained release of 5-fluorouracil to inhibit subconjunctival fibrosis. Materials Today Advances 2021;11:100150. [DOI: 10.1016/j.mtadv.2021.100150] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
68 Zhang L, Yang R, Yu H, Xu Z, Kang Y, Cui H, Xue P. MnO2-capped silk fibroin (SF) nanoparticles with chlorin e6 (Ce6) encapsulation for augmented photo-driven therapy by modulating the tumor microenvironment. J Mater Chem B 2021;9:3677-88. [PMID: 33949613 DOI: 10.1039/d1tb00296a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
69 Han Z, Tu X, Qiao L, Sun Y, Li Z, Sun X, Wu Z. Phototherapy and multimodal imaging of cancers based on perfluorocarbon nanomaterials. J Mater Chem B 2021;9:6751-69. [PMID: 34346475 DOI: 10.1039/d1tb00554e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
70 Yang Y, Wang H. The Golden Age: Shining the Light on Theragnostics. Adv NanoBio Res 2021;1:2000103. [DOI: 10.1002/anbr.202000103] [Reference Citation Analysis]
71 Bienia A, Wiecheć-Cudak O, Murzyn AA, Krzykawska-Serda M. Photodynamic Therapy and Hyperthermia in Combination Treatment-Neglected Forces in the Fight against Cancer. Pharmaceutics 2021;13:1147. [PMID: 34452108 DOI: 10.3390/pharmaceutics13081147] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
72 Zeng F, Peng K, Han L, Yang J. Photothermal and Photodynamic Therapies via NIR-Activated Nanoagents in Combating Alzheimer's Disease. ACS Biomater Sci Eng 2021;7:3573-85. [PMID: 34279071 DOI: 10.1021/acsbiomaterials.1c00605] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
73 Jain NK, Chathoth BM, Bhaskar VS, Meena H, Prasad R, Srivastava R. Nanoengineered photoactive theranostic agents for cancer. Nanophotonics 2021;10:2973-97. [DOI: 10.1515/nanoph-2021-0205] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
74 Guo Y, Liu Y, Wu W, Ling D, Zhang Q, Zhao P, Hu X. Indoleamine 2,3-dioxygenase (Ido) inhibitors and their nanomedicines for cancer immunotherapy. Biomaterials 2021;276:121018. [PMID: 34284200 DOI: 10.1016/j.biomaterials.2021.121018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 22] [Article Influence: 8.0] [Reference Citation Analysis]
75 Wang X, Yao M, Ma L, Yu P, Lu T, Zhang L, Yuan X, Zhang Y, Ye J. NIR-Responsive Ti3 C2 MXene Colloidal Solution for Curing Purulent Subcutaneous Infection through the "Nanothermal Blade" Effect. Adv Healthc Mater 2021;10:e2100392. [PMID: 34050712 DOI: 10.1002/adhm.202100392] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
76 Son S, Zhang C, Won M, Jangili P, Choi M, Wu J, Kim JS. Ultrasound activatable antiangiogenic sonosensitizer for VEGFR associated glioblastoma tumor models. Aggregate 2021;2. [DOI: 10.1002/agt2.97] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
77 Li X, Dai B, Guo J, Zheng L, Guo Q, Peng J, Xu J, Qin L. Nanoparticle-Cartilage Interaction: Pathology-Based Intra-articular Drug Delivery for Osteoarthritis Therapy. Nanomicro Lett 2021;13:149. [PMID: 34160733 DOI: 10.1007/s40820-021-00670-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
78 Shrestha B, Wang L, Brey EM, Uribe GR, Tang L. Smart Nanoparticles for Chemo-Based Combinational Therapy. Pharmaceutics 2021;13:853. [PMID: 34201333 DOI: 10.3390/pharmaceutics13060853] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
79 Khan A, Jain NK, Gandhi M, Prasad R, Srivastava R. Photo-Triggered Nanomaterials for Cancer Theranostic Applications. Nano LIFE 2021;11:2130004. [DOI: 10.1142/s1793984421300041] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
80 Zhu M, Zhang H, Ran G, Mangel DN, Yao Y, Zhang R, Tan J, Zhang W, Song J, Sessler JL, Zhang JL. Metal Modulation: An Easy-to-Implement Tactic for Tuning Lanthanide Phototheranostics. J Am Chem Soc 2021;143:7541-52. [PMID: 33973784 DOI: 10.1021/jacs.1c03041] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
81 Cetin S, Elmazoglu Z, Karaman O, Gunduz H, Gunbas G, Kolemen S. Balanced Intersystem Crossing in Iodinated Silicon-Fluoresceins Allows New Class of Red Shifted Theranostic Agents. ACS Med Chem Lett 2021;12:752-7. [PMID: 34055222 DOI: 10.1021/acsmedchemlett.1c00018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
82 Liu Z, Wang C, Zhu Z, Lou Q, Shen C, Chen Y, Sun J, Ye Y, Zang J, Dong L, Shan C. Wafer-scale growth of two-dimensional graphitic carbon nitride films. Matter 2021;4:1625-38. [DOI: 10.1016/j.matt.2021.02.014] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 14.5] [Reference Citation Analysis]
83 Kolesnikov IE, Kurochkin MA, Meshkov IN, Akasov RA, Kalinichev AA, Kolesnikov EY, Gorbunova YG, Lähderanta E. Water-soluble multimode fluorescent thermometers based on porphyrins photosensitizers. Materials & Design 2021;203:109613. [DOI: 10.1016/j.matdes.2021.109613] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
84 Xia J, Qian M, Yao Q, Meng Z, Cui H, Zhang L, Li Y, Wu S, Wang J, Chen Q, Peng X. Synthetic infrared nano-photosensitizers with hierarchical zoom-in target-delivery functionalities for precision photodynamic therapy. J Control Release 2021;334:263-74. [PMID: 33930477 DOI: 10.1016/j.jconrel.2021.04.031] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
85 Kaur J, Mishra V, Singh SK, Gulati M, Kapoor B, Chellappan DK, Gupta G, Dureja H, Anand K, Dua K, Khatik GL, Gowthamarajan K. Harnessing amphiphilic polymeric micelles for diagnostic and therapeutic applications: Breakthroughs and bottlenecks. J Control Release 2021;334:64-95. [PMID: 33887283 DOI: 10.1016/j.jconrel.2021.04.014] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
86 Gao D, Chen T, Chen S, Ren X, Han Y, Li Y, Wang Y, Guo X, Wang H, Chen X, Guo M, Zhang YS, Hong G, Zhang X, Tian Z, Yang Z. Targeting Hypoxic Tumors with Hybrid Nanobullets for Oxygen-Independent Synergistic Photothermal and Thermodynamic Therapy. Nanomicro Lett 2021;13:99. [PMID: 34138317 DOI: 10.1007/s40820-021-00616-4] [Cited by in Crossref: 29] [Cited by in F6Publishing: 39] [Article Influence: 14.5] [Reference Citation Analysis]
87 Farahavar G, Abolmaali SS, Nejatollahi F, Safaie A, Javanmardi S, Khajeh Zadeh H, Yousefi R, Nadgaran H, Mohammadi-samani S, Tamaddon AM, Ahadian S. Single-chain antibody-decorated Au nanocages@liposomal layer nanoprobes for targeted SERS imaging and remote-controlled photothermal therapy of melanoma cancer cells. Materials Science and Engineering: C 2021;124:112086. [DOI: 10.1016/j.msec.2021.112086] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
88 Landry MR, Walker JM, Sun C. Exploiting Phagocytic Checkpoints in Nanomedicine: Applications in Imaging and Combination Therapies. Front Chem 2021;9:642530. [PMID: 33748077 DOI: 10.3389/fchem.2021.642530] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
89 Pham TC, Heo S, Nguyen VN, Lee MW, Yoon J, Lee S. Molecular Design toward Heavy-Atom-free Photosensitizers Based on the C═S Bond and their Dual Functions in Hypoxia Photodynamic Cancer Therapy and ClO- Detection. ACS Appl Mater Interfaces 2021;13:13949-57. [PMID: 33729767 DOI: 10.1021/acsami.0c22174] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
90 Di Giosia M, Soldà A, Seeger M, Cantelli A, Arnesano F, Nardella MI, Mangini V, Valle F, Montalti M, Zerbetto F, Rapino S, Calvaresi M, Ntziachristos V. A Bio‐Conjugated Fullerene as a Subcellular‐Targeted and Multifaceted Phototheranostic Agent. Adv Funct Mater 2021;31:2101527. [DOI: 10.1002/adfm.202101527] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
91 Jin L, Guo X, Gao D, Wu C, Hu B, Tan G, Du N, Cai X, Yang Z, Zhang X. NIR-responsive MXene nanobelts for wound healing. NPG Asia Mater 2021;13. [DOI: 10.1038/s41427-021-00289-w] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 18.0] [Reference Citation Analysis]
92 Jiang Q, Liu L, Li Q, Cao Y, Chen D, Du Q, Yang X, Huang D, Pei R, Chen X, Huang G. NIR-laser-triggered gadolinium-doped carbon dots for magnetic resonance imaging, drug delivery and combined photothermal chemotherapy for triple negative breast cancer. J Nanobiotechnology 2021;19:64. [PMID: 33653352 DOI: 10.1186/s12951-021-00811-w] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
93 Spyratou E, Kareliotis G, Makropoulou M, Efstathopoulos E, Serafetinides AA. Theoretical study of laser-based phototherapies’ improvement via upconverting nanoparticles. J Phys : Conf Ser 2021;1859:012043. [DOI: 10.1088/1742-6596/1859/1/012043] [Reference Citation Analysis]
94 Kataoka H, Nishie H, Tanaka M, Sasaki M, Nomoto A, Osaki T, Okamoto Y, Yano S. Potential of Photodynamic Therapy Based on Sugar-Conjugated Photosensitizers. J Clin Med 2021;10:841. [PMID: 33670714 DOI: 10.3390/jcm10040841] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
95 Ji X, Ge L, Liu C, Tang Z, Xiao Y, Chen W, Lei Z, Gao W, Blake S, De D, Shi B, Zeng X, Kong N, Zhang X, Tao W. Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite for cancer theranostics. Nat Commun 2021;12:1124. [PMID: 33602928 DOI: 10.1038/s41467-021-21436-5] [Cited by in Crossref: 122] [Cited by in F6Publishing: 135] [Article Influence: 61.0] [Reference Citation Analysis]
96 Shahzad K, Majid ASA, Khan M, Iqbal MA, Ali A. Recent advances in the synthesis of ( 99m Technetium) based radio-pharmaceuticals. Reviews in Inorganic Chemistry 2021;41:151-98. [DOI: 10.1515/revic-2020-0021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
97 Singh B, Arora S, D'Souza A, Kale N, Aland G, Bharde A, Quadir M, Calderón M, Chaturvedi P, Khandare J. Chemo-specific designs for the enumeration of circulating tumor cells: advances in liquid biopsy. J Mater Chem B 2021;9:2946-78. [PMID: 33480960 DOI: 10.1039/d0tb02574g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
98 Ling C, Wang X, Shen Y. Advances in Hollow Inorganic Nanomedicines for Photothermal-Based Therapies. Int J Nanomedicine 2021;16:493-513. [PMID: 33519198 DOI: 10.2147/IJN.S285115] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
99 Zhang W, Dang G, Dong J, Li Y, Jiao P, Yang M, Zou X, Cao Y, Ji H, Dong L. A multifunctional nanoplatform based on graphitic carbon nitride quantum dots for imaging-guided and tumor-targeted chemo-photodynamic combination therapy. Colloids Surf B Biointerfaces 2021;199:111549. [PMID: 33388720 DOI: 10.1016/j.colsurfb.2020.111549] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
100 Yao W, Liu C, Wang N, Zhou H, Chen H, Qiao W. Triple-responsive targeted hybrid liposomes with high MRI performance for tumor diagnosis and therapy. Mater Chem Front 2021;5:6226-43. [DOI: 10.1039/d1qm00788b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
101 Chintamaneni PK, Krishnamurthy PT, Sathyamoorthy N. Nanocarriers for theranostic applications. Nanocarriers for the Delivery of Combination Drugs 2021. [DOI: 10.1016/b978-0-12-820779-6.00003-7] [Reference Citation Analysis]
102 Ahmad I, Tabassum H, Shamsi FB, Saeed SM, Aslam S, Tabassum S. Nanomedicine and cancer. Nanomedicine Manufacturing and Applications 2021. [DOI: 10.1016/b978-0-12-820773-4.00004-4] [Reference Citation Analysis]
103 Wang M, Rao J, Wang M, Li X, Liu K, Naylor MF, Nordquist RE, Chen WR, Zhou F. Cancer photo-immunotherapy: from bench to bedside. Theranostics 2021;11:2218-31. [PMID: 33500721 DOI: 10.7150/thno.53056] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 13.0] [Reference Citation Analysis]
104 Shang L, Zhao Y. Droplet-Templated Synthetic Cells. Matter 2021;4:95-115. [DOI: 10.1016/j.matt.2020.10.003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
105 Wang L, Liu Y, Liu H, Tian H, Wang Y, Zhang G, Lei Y, Xue L, Zheng B, Fan T, Zheng Y, Tan F, Xue Q, Gao S, Li C, He J. The therapeutic significance of the novel photodynamic material TPE-IQ-2O in tumors. Aging (Albany NY) 2020;13:1383-409. [PMID: 33472175 DOI: 10.18632/aging.202355] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
106 Dhas N, Kudarha R, Garkal A, Ghate V, Sharma S, Panzade P, Khot S, Chaudhari P, Singh A, Paryani M, Lewis S, Garg N, Singh N, Bangar P, Mehta T. Molybdenum-based hetero-nanocomposites for cancer therapy, diagnosis and biosensing application: Current advancement and future breakthroughs. J Control Release 2021;330:257-83. [PMID: 33345832 DOI: 10.1016/j.jconrel.2020.12.015] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 6.7] [Reference Citation Analysis]
107 Husni P, Shin Y, Kim JC, Kang K, Lee ES, Youn YS, Rusdiana T, Oh KT. Photo-Based Nanomedicines Using Polymeric Systems in the Field of Cancer Imaging and Therapy. Biomedicines 2020;8:E618. [PMID: 33339198 DOI: 10.3390/biomedicines8120618] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
108 Choi S. Activation Strategies in Image-Guided Nanotherapeutic Delivery. JNT 2020;1:78-104. [DOI: 10.3390/jnt1010007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
109 Zangoli M, Di Maria F. Synthesis, characterization, and biological applications of semiconducting polythiophene‐based nanoparticles. View 2021;2:20200086. [DOI: 10.1002/viw.20200086] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
110 Wang Y, Gao D, Liu Y, Guo X, Chen S, Zeng L, Ma J, Zhang X, Tian Z, Yang Z. Immunogenic-cell-killing and immunosuppression-inhibiting nanomedicine. Bioact Mater 2021;6:1513-27. [PMID: 33294730 DOI: 10.1016/j.bioactmat.2020.11.016] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 12.0] [Reference Citation Analysis]
111 Yang Z, Gao D, Guo X, Jin L, Zheng J, Wang Y, Chen S, Zheng X, Zeng L, Guo M, Zhang X, Tian Z. Fighting Immune Cold and Reprogramming Immunosuppressive Tumor Microenvironment with Red Blood Cell Membrane-Camouflaged Nanobullets. ACS Nano 2020. [PMID: 33166111 DOI: 10.1021/acsnano.0c07721] [Cited by in Crossref: 97] [Cited by in F6Publishing: 112] [Article Influence: 32.3] [Reference Citation Analysis]
112 Kumar V, Khan I, Gupta U. Lipid-dendrimer nanohybrid system or dendrosomes: evidences of enhanced encapsulation, solubilization, cellular uptake and cytotoxicity of bortezomib. Appl Nanosci 2020;10:4049-4062. [DOI: 10.1007/s13204-020-01515-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
113 Dongying Q, Lan L, Qian D. Targeting of ovarian cancer cell through functionalized gold nanoparticles by novel glypican-3- binding peptide as a ultrasound contrast agents. Process Biochemistry 2020;98:51-8. [DOI: 10.1016/j.procbio.2020.07.019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
114 Roma-Rodrigues C, Pombo I, Fernandes AR, Baptista PV. Hyperthermia Induced by Gold Nanoparticles and Visible Light Photothermy Combined with Chemotherapy to Tackle Doxorubicin Sensitive and Resistant Colorectal Tumor 3D Spheroids. Int J Mol Sci 2020;21:E8017. [PMID: 33126535 DOI: 10.3390/ijms21218017] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
115 Zhang D, Zuo X, Wang P, Gao W, Pan L. Influence of chitosan modification on self-assembly behavior of Fe3O4 nanoparticles. Appl Nanosci 2021;11:21-7. [DOI: 10.1007/s13204-020-01582-w] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
116 Aikins ME, Xu C, Moon JJ. Engineered Nanoparticles for Cancer Vaccination and Immunotherapy. Acc Chem Res 2020;53:2094-105. [PMID: 33017150 DOI: 10.1021/acs.accounts.0c00456] [Cited by in Crossref: 51] [Cited by in F6Publishing: 56] [Article Influence: 17.0] [Reference Citation Analysis]
117 Dias LD, Mfouo-Tynga IS. Learning from Nature: Bioinspired Chlorin-Based Photosensitizers Immobilized on Carbon Materials for Combined Photodynamic and Photothermal Therapy. Biomimetics (Basel) 2020;5:E53. [PMID: 33066431 DOI: 10.3390/biomimetics5040053] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
118 Song J, Jia X, Ariga K. Interfacial nanoarchitectonics for responsive cellular biosystems. Mater Today Bio 2020;8:100075. [PMID: 33024954 DOI: 10.1016/j.mtbio.2020.100075] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
119 Kv R, Liu TI, Lu IL, Liu CC, Chen HH, Lu TY, Chiang WH, Chiu HC. Tumor microenvironment-responsive and oxygen self-sufficient oil droplet nanoparticles for enhanced photothermal/photodynamic combination therapy against hypoxic tumors. J Control Release 2020;328:87-99. [PMID: 32858076 DOI: 10.1016/j.jconrel.2020.08.038] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
120 He Y, Wang M, Fu M, Yuan X, Luo Y, Qiao B, Cao J, Wang Z, Hao L, Yuan G. Iron(II) phthalocyanine Loaded and AS1411 Aptamer Targeting Nanoparticles: A Nanocomplex for Dual Modal Imaging and Photothermal Therapy of Breast Cancer. Int J Nanomedicine 2020;15:5927-49. [PMID: 32848397 DOI: 10.2147/IJN.S254108] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
121 Yang ZS, Yao Y, Sedgwick AC, Li C, Xia Y, Wang Y, Kang L, Su H, Wang BW, Gao S, Sessler JL, Zhang JL. Rational design of an "all-in-one" phototheranostic. Chem Sci 2020;11:8204-13. [PMID: 34123091 DOI: 10.1039/d0sc03368e] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
122 Iannazzo D, Celesti C, Espro C. Recent Advances on Graphene Quantum Dots as Multifunctional Nanoplatforms for Cancer Treatment. Biotechnol J 2021;16:e1900422. [PMID: 32618417 DOI: 10.1002/biot.201900422] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
123 Matai I, Kaur G, Soni S, Sachdev A, Vikas, Mishra S. Near-infrared stimulated hydrogel patch for photothermal therapeutics and thermoresponsive drug delivery. J Photochem Photobiol B 2020;210:111960. [PMID: 32688263 DOI: 10.1016/j.jphotobiol.2020.111960] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
124 Özkan M, Hadi SE, Tunç İ, Midilli Y, Ortaç B, Tuncel D. Cucurbit[7]uril-Capped Hybrid Conjugated Oligomer-Gold Nanoparticles for Combined Photodynamic-Photothermal Therapy and Cellular Imaging. ACS Appl Polym Mater 2020;2:3840-9. [DOI: 10.1021/acsapm.0c00540] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
125 Boruah JS, Chowdhury D. Palmitic acid–carbon dot hybrid vesicles for absorption of uric acid. Appl Nanosci 2020;10:2207-18. [DOI: 10.1007/s13204-020-01374-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
126 Xu X, Lu H, Lee R. Near Infrared Light Triggered Photo/Immuno-Therapy Toward Cancers. Front Bioeng Biotechnol 2020;8:488. [PMID: 32528941 DOI: 10.3389/fbioe.2020.00488] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 12.0] [Reference Citation Analysis]
127 Kim DH, Seo J, Na K. pH-Sensitive Carbon Dots for Enhancing Photomediated Antitumor Immunity. Mol Pharmaceutics 2020;17:2532-45. [DOI: 10.1021/acs.molpharmaceut.0c00227] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
128 Yang HY, Li Y, Lee DS. Recent Advances of pH‐Induced Charge‐Convertible Polymer‐Mediated Inorganic Nanoparticles for Biomedical Applications. Macromol Rapid Commun 2020;41:2000106. [DOI: 10.1002/marc.202000106] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
129 Huang R, Chen X, Dong Y, Zhang X, Wei Y, Yang Z, Li W, Guo Y, Liu J, Yang Z, Wang H, Jin L. MXene Composite Nanofibers for Cell Culture and Tissue Engineering. ACS Appl Bio Mater 2020;3:2125-31. [DOI: 10.1021/acsabm.0c00007] [Cited by in Crossref: 51] [Cited by in F6Publishing: 55] [Article Influence: 17.0] [Reference Citation Analysis]
130 Han F, Lv S, Li Z, Jin L, Fan B, Zhang J, Zhang R, Zhang X, Han L, Li J. Triple-synergistic 2D material-based dual-delivery antibiotic platform. NPG Asia Mater 2020;12. [DOI: 10.1038/s41427-020-0195-x] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 10.3] [Reference Citation Analysis]
131 Vorotnikov YA, Novikova ED, Solovieva AO, Shanshin DV, Tsygankova AR, Shcherbakov DN, Efremova OA, Shestopalov MA. Single-domain antibody C7b for address delivery of nanoparticles to HER2-positive cancers. Nanoscale 2020;12:21885-94. [DOI: 10.1039/d0nr04899b] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
132 Guan Q, Wang G, Zhou L, Li W, Dong Y. Nanoscale covalent organic frameworks as theranostic platforms for oncotherapy: synthesis, functionalization, and applications. Nanoscale Adv 2020;2:3656-733. [DOI: 10.1039/d0na00537a] [Cited by in Crossref: 58] [Cited by in F6Publishing: 59] [Article Influence: 19.3] [Reference Citation Analysis]