BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hedayati M, Neufeld MJ, Reynolds MM, Kipper MJ. The quest for blood-compatible materials: Recent advances and future technologies. Materials Science and Engineering: R: Reports 2019;138:118-52. [DOI: 10.1016/j.mser.2019.06.002] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Shan Y, Chen G, Shi Q, Huang J, Mi Y, Zhang W, Zhang H, Jia B. Heparin/Collagen-REDV Modification of Expanded Polytetrafluoroethylene Improves Regional Anti-thrombosis and Reduces Foreign Body Reactions in Local Tissues. Front Bioeng Biotechnol 2022;10:916931. [DOI: 10.3389/fbioe.2022.916931] [Reference Citation Analysis]
2 Ari B, Demirci S, Ayyala RS, Salih B, Sahiner N. Superporous poly(β-Cyclodextrin) cryogels as promising materials for simultaneous delivery of both hydrophilic and hydrophobic drugs. European Polymer Journal 2022;176:111399. [DOI: 10.1016/j.eurpolymj.2022.111399] [Reference Citation Analysis]
3 Vlcek JR, Madruga LYC, Reynolds MM, Kipper MJ. Modifications to Polysaccharide Polyelectrolyte Multilayers: Improved Mechanical Stability and Hemocompatibility. ACS Appl Polym Mater . [DOI: 10.1021/acsapm.2c00828] [Reference Citation Analysis]
4 Drobota M, Ursache S, Aflori M. Surface Functionalities of Polymers for Biomaterial Applications. Polymers (Basel) 2022;14:2307. [PMID: 35745883 DOI: 10.3390/polym14122307] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Hu Y, Zhou H, Liu T, Yang M, Zhang Q, Pan C, Lin J. Construction of Mussel-Inspired Dopamine–Zn2+ Coating on Titanium Oxide Nanotubes to Improve Hemocompatibility, Cytocompatibility, and Antibacterial Activity. Front Bioeng Biotechnol 2022;10:884258. [DOI: 10.3389/fbioe.2022.884258] [Reference Citation Analysis]
6 Polukhina AE, Malashchenko VV, Grenaderov AS, Yurova KA, Solov’ev AA, Litvinova LS, Khlusov IA. Cellular and Molecular Issues of Hemo- and Biocompatibility of Diamond-Like Carbon Films. A Brief Critical Review. Cell Tiss Biol 2022;16:1-14. [DOI: 10.1134/s1990519x22010084] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Popov S, Paderin N, Khramova D, Kvashninova E, Melekhin A, Vityazev F. Characterization and Biocompatibility Properties In Vitro of Gel Beads Based on the Pectin and κ-Carrageenan. Marine Drugs 2022;20:94. [DOI: 10.3390/md20020094] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Schulze M, Adigüzel S, Nickl P, Schmitt A, Dernedde J, Ballauff M, Haag R. A Simple and Robust Method to Prepare Polyelectrolyte Brushes on Polymer Surfaces. Adv Materials Inter 2022;9:2102005. [DOI: 10.1002/admi.202102005] [Reference Citation Analysis]
9 Suner SS, Ari B, Duygu Sutekin S, Sahiner N. Biocompatible poly(galacturonic acid) micro/nanogels with controllable degradation via tunable chemical crosslinking. Int J Biol Macromol 2022;201:351-63. [PMID: 34998881 DOI: 10.1016/j.ijbiomac.2021.12.107] [Reference Citation Analysis]
10 Madruga LYC, Popat KC, Balaban RC, Kipper MJ. Enhanced blood coagulation and antibacterial activities of carboxymethyl-kappa-carrageenan-containing nanofibers. Carbohydr Polym 2021;273:118541. [PMID: 34560953 DOI: 10.1016/j.carbpol.2021.118541] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
11 Chen X, Chen J, Huang N. The structure, formation, and effect of plasma protein layer on the blood contact materials: A review. Biosurface and Biotribology 2022;8:1-14. [DOI: 10.1049/bsb2.12029] [Reference Citation Analysis]
12 Fontelo R, Soares da Costa D, Reis RL, Novoa-Carballal R, Pashkuleva I. Antithrombotic and hemocompatible properties of nanostructured coatings assembled from block copolymers. J Colloid Interface Sci 2021;608:1608-18. [PMID: 34742077 DOI: 10.1016/j.jcis.2021.10.076] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Li W, Yang Y, Ehrhardt CJ, Lewinski N, Gascoyne D, Lucas G, Zhao H, Wang X. 3D Printing of Antibacterial Polymer Devices Based on Nitric Oxide Release from Embedded S-Nitrosothiol Crystals. ACS Appl Bio Mater 2021;4:7653-62. [PMID: 35006705 DOI: 10.1021/acsabm.1c00887] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Liu Y, Zhang F, Lang S, Yang L, Gao S, Wu D, Liu G, Wang Y. A Uniform and Robust Bioinspired Zwitterion Coating for Use in Blood-Contacting Catheters with Improved Anti-Inflammatory and Antithrombotic Properties. Macromol Biosci 2021;:e2100341. [PMID: 34644005 DOI: 10.1002/mabi.202100341] [Reference Citation Analysis]
15 Celik N, Sahin F, Ruzi M, Yay M, Unal E, Onses MS. Blood repellent superhydrophobic surfaces constructed from nanoparticle-free and biocompatible materials. Colloids Surf B Biointerfaces 2021;205:111864. [PMID: 34049000 DOI: 10.1016/j.colsurfb.2021.111864] [Cited by in Crossref: 1] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
16 Rufato KB, Souza PR, de Oliveira AC, Berton SBR, Sabino RM, Muniz EC, Popat KC, Radovanovic E, Kipper MJ, Martins AF. Antimicrobial and cytocompatible chitosan, N,N,N-trimethyl chitosan, and tanfloc-based polyelectrolyte multilayers on gellan gum films. Int J Biol Macromol 2021;183:727-42. [PMID: 33915214 DOI: 10.1016/j.ijbiomac.2021.04.138] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
17 Vlcek JR, Hedayati M, Melvin AC, Reynolds MM, Kipper MJ. Blood-Compatible Materials: Vascular Endothelium-Mimetic Surfaces that Mitigate Multiple Cell-Material Interactions. Adv Healthc Mater 2021;10:e2001748. [PMID: 33448158 DOI: 10.1002/adhm.202001748] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
18 Hedayati M, Krapf D, Kipper MJ. Dynamics of long-term protein aggregation on low-fouling surfaces. J Colloid Interface Sci 2021;589:356-66. [PMID: 33482534 DOI: 10.1016/j.jcis.2021.01.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
19 Penna M, Yarovsky I. Nanoscale in silico classification of ligand functionalised surfaces for protein adsorption resistance. Nanoscale 2020;12:7240-55. [PMID: 32196038 DOI: 10.1039/c9nr10009a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
20 Gao X, Xu Z, Liu G, Wu J. Polyphenols as a versatile component in tissue engineering. Acta Biomater 2021;119:57-74. [PMID: 33166714 DOI: 10.1016/j.actbio.2020.11.004] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 24.0] [Reference Citation Analysis]
21 Song X, Ji H, Zhao W, Sun S, Zhao C. Hemocompatibility enhancement of polyethersulfone membranes: Strategies and challenges. Advanced Membranes 2021;1:100013. [DOI: 10.1016/j.advmem.2021.100013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
22 Park SJ, Lee J, Choi JW, Yang JH, Lee JH, Lee J, Son Y, Ha CW, Lee NK, Kim SH, Park SH. Additive manufacturing of the core template for the fabrication of an artificial blood vessel: the relationship between the extruded deposition diameter and the filament/nozzle transition ratio. Mater Sci Eng C Mater Biol Appl 2021;118:111406. [PMID: 33255009 DOI: 10.1016/j.msec.2020.111406] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
23 Xu W, Li S, Ye Z, Zhang J, Deng L, Dong A. Optimization of sulfonated polyethyleneimine zwitterionic coating mediated by polydopamine for poly(vinyl chloride) antifouling. J of Applied Polymer Sci 2021;138:49636. [DOI: 10.1002/app.49636] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
24 da Câmara PC, Madruga LY, Sabino RM, Vlcek J, Balaban RC, Popat KC, Martins AF, Kipper MJ. Polyelectrolyte multilayers containing a tannin derivative polyphenol improve blood compatibility through interactions with platelets and serum proteins. Materials Science and Engineering: C 2020;112:110919. [DOI: 10.1016/j.msec.2020.110919] [Cited by in Crossref: 12] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
25 Galante AJ, Haghanifar S, Romanowski EG, Shanks RMQ, Leu PW. Superhemophobic and Antivirofouling Coating for Mechanically Durable and Wash-Stable Medical Textiles. ACS Appl Mater Interfaces 2020;12:22120-8. [PMID: 32320200 DOI: 10.1021/acsami.9b23058] [Cited by in Crossref: 15] [Cited by in F6Publishing: 25] [Article Influence: 7.5] [Reference Citation Analysis]
26 Facchi SP, de Oliveira AC, Bezerra EO, Vlcek J, Hedayati M, Reynolds MM, Kipper MJ, Martins AF. Polycationic condensed tannin/polysaccharide-based polyelectrolyte multilayers prevent microbial adhesion and proliferation. European Polymer Journal 2020;130:109677. [DOI: 10.1016/j.eurpolymj.2020.109677] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
27 Sun W, Liu W, Wu Z, Chen H. Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications. Macromol Rapid Commun 2020;41:1900430. [DOI: 10.1002/marc.201900430] [Cited by in Crossref: 17] [Cited by in F6Publishing: 26] [Article Influence: 8.5] [Reference Citation Analysis]
28 Hedayati M, Kipper MJ, Krapf D. Anomalous protein kinetics on low-fouling surfaces. Phys Chem Chem Phys 2020;22:5264-71. [PMID: 32095800 DOI: 10.1039/d0cp00326c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Martins AF, Vlcek J, Wigmosta T, Hedayati M, Reynolds MM, Popat KC, Kipper MJ. Chitosan/iota-carrageenan and chitosan/pectin polyelectrolyte multilayer scaffolds with antiadhesive and bactericidal properties. Applied Surface Science 2020;502:144282. [DOI: 10.1016/j.apsusc.2019.144282] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 15.5] [Reference Citation Analysis]
30 Hedayati M, Marruecos DF, Krapf D, Kaar JL, Kipper MJ. Protein adsorption measurements on low fouling and ultralow fouling surfaces: A critical comparison of surface characterization techniques. Acta Biomater 2020;102:169-80. [PMID: 31731023 DOI: 10.1016/j.actbio.2019.11.019] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
31 Hong JK, Gao L, Singh J, Goh T, Ruhoff AM, Neto C, Waterhouse A. Evaluating medical device and material thrombosis under flow: current and emerging technologies. Biomater Sci 2020;8:5824-45. [DOI: 10.1039/d0bm01284j] [Cited by in Crossref: 4] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
32 da Câmara PCF, Balaban RC, Hedayati M, Popat KC, Martins AF, Kipper MJ. Novel cationic tannin/glycosaminoglycan-based polyelectrolyte multilayers promote stem cells adhesion and proliferation. RSC Adv 2019;9:25836-46. [DOI: 10.1039/c9ra03903a] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]