BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ventura RD, Padalhin AR, Kim B, Park M, Lee BT. Evaluation of bone regeneration potential of injectable extracellular matrix (ECM) from porcine dermis loaded with biphasic calcium phosphate (BCP) powder. Materials Science and Engineering: C 2020;110:110663. [DOI: 10.1016/j.msec.2020.110663] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Lopera AA, Bezzon VDN, Ospina V, Higuita-castro JL, Ramirez FJ, Ferraz HG, Orlando MTA, Paucar CG, Robledo SM, Garcia CP. Obtaining a fused PLA-calcium phosphate-tobramycin-based filament for 3D printing with potential antimicrobial application. J Korean Ceram Soc . [DOI: 10.1007/s43207-022-00255-4] [Reference Citation Analysis]
2 Chu TL, Tripathi G, Park M, Bae SH, Lee BT. In-vitro and in-vivo biocompatibility of dECM-alginate as a promising candidate in cell delivery for kidney regeneration. Int J Biol Macromol 2022;211:616-25. [PMID: 35577186 DOI: 10.1016/j.ijbiomac.2022.05.085] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Solarte David VA, Güiza-argüello VR, Arango-rodríguez ML, Sossa CL, Becerra-bayona SM. Decellularized Tissues for Wound Healing: Towards Closing the Gap Between Scaffold Design and Effective Extracellular Matrix Remodeling. Front Bioeng Biotechnol 2022;10:821852. [DOI: 10.3389/fbioe.2022.821852] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
4 Beheshtizadeh N, Azami M, Abbasi H, Farzin A. Applying extrusion-based 3D printing technique accelerates fabricating complex biphasic calcium phosphate-based scaffolds for bone tissue regeneration. Journal of Advanced Research 2021. [DOI: 10.1016/j.jare.2021.12.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
5 Sun Y, Li R, Yu X, Li X, Han Z, Sun J, Bi W, Liu W, Yu Y, Cui W. Highly active biological dermal acellular tissue scaffold composite with human bone powder for bone regeneration. Materials & Design 2021;209:109963. [DOI: 10.1016/j.matdes.2021.109963] [Reference Citation Analysis]
6 Lim HK, Kwon IJ, On SW, Hong SJ, Yang BE, Kim SM, Lee JH, Byun SH. Enhanced Bone Regeneration in Variable-Type Biphasic Ceramic Phosphate Scaffolds Using rhBMP-2. Int J Mol Sci 2021;22:11485. [PMID: 34768914 DOI: 10.3390/ijms222111485] [Reference Citation Analysis]
7 Dong C, Qiao F, Chen G, Lv Y. Demineralized and decellularized bone extracellular matrix-incorporated electrospun nanofibrous scaffold for bone regeneration. J Mater Chem B 2021;9:6881-94. [PMID: 34612335 DOI: 10.1039/d1tb00895a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
8 He S, Meng K, Chen M, Zhu L, Xiang Q, Quan Z, Xia G, Shen X. Transcriptome Analysis of Egg Yolk Sialoglycoprotein on Osteogenic Activity in MC3T3-E1 Cells. Applied Sciences 2021;11:6428. [DOI: 10.3390/app11146428] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Farazin A, Sahmani S, Soleimani M, Kolooshani A, Saber-samandari S, Khandan A. Effect of hexagonal structure nanoparticles on the morphological performance of the ceramic scaffold using analytical oscillation response. Ceramics International 2021;47:18339-50. [DOI: 10.1016/j.ceramint.2021.03.155] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
10 Chu TL, Tripathi G, Bae SH, Lee BT. Physico-mechanical and biological evaluation of an injectable m-TG cross-linked thrombin loaded amended gelatin hemostat to heal liver trauma. Int J Biol Macromol 2021;181:339-48. [PMID: 33781816 DOI: 10.1016/j.ijbiomac.2021.03.114] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
11 López-Martínez S, Campo H, de Miguel-Gómez L, Faus A, Navarro AT, Díaz A, Pellicer A, Ferrero H, Cervelló I. A Natural Xenogeneic Endometrial Extracellular Matrix Hydrogel Toward Improving Current Human in vitro Models and Future in vivo Applications. Front Bioeng Biotechnol 2021;9:639688. [PMID: 33748086 DOI: 10.3389/fbioe.2021.639688] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 16.0] [Reference Citation Analysis]
12 Da L, Lei X, Song Y, Huang Y, Xie H. Different Forms of Decellularized Tissues and Their Characteristics, Applications in Tissue Repair as Well as Performance Optimization. Decellularized Materials 2021. [DOI: 10.1007/978-981-33-6962-7_3] [Reference Citation Analysis]
13 Liao J, Da L, Xu B, Xie H, Li X. The Challenges and Development Directions of Decellularized Materials. Decellularized Materials 2021. [DOI: 10.1007/978-981-33-6962-7_8] [Reference Citation Analysis]
14 Liao J, Xu B, Zhang R, Fan Y, Xie H, Li X. Applications of decellularized materials in tissue engineering: advantages, drawbacks and current improvements, and future perspectives. J Mater Chem B 2020;8:10023-49. [DOI: 10.1039/d0tb01534b] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 16.5] [Reference Citation Analysis]