1 |
Dalgic SS, Al-sawaff ZH, Dalgic S, Kandemirli F. A comparative DFT study on Al- and Si- doped single-wall carbon nanotubes (SWCNTs) for Ribavirin drug sensing and detection. Materials Science in Semiconductor Processing 2023;158:107360. [DOI: 10.1016/j.mssp.2023.107360] [Reference Citation Analysis]
|
2 |
Zhang Y, Poon K, Masonsong GSP, Ramaswamy Y, Singh G. Sustainable Nanomaterials for Biomedical Applications. Pharmaceutics 2023;15:922. [DOI: 10.3390/pharmaceutics15030922] [Reference Citation Analysis]
|
3 |
Ahmad I, Parween T, Khandare L, Tantray A, Siddiqi WA. Applications of Functionalized Carbon Nanotubes in Cancer Therapy and Diagnosis. Functionalized Carbon Nanotubes for Biomedical Applications 2023. [DOI: 10.1002/9781119905080.ch8] [Reference Citation Analysis]
|
4 |
Masoudi Asil S, Guerrero ED, Bugarini G, Cayme J, De Avila N, Garcia J, Hernandez A, Mecado J, Madero Y, Moncayo F, Olmos R, Perches D, Roman J, Salcido‐padilla D, Sanchez E, Trejo C, Trevino P, Nurunnabi M, Narayan M. Theranostic applications of multifunctional carbon nanomaterials. VIEW 2023. [DOI: 10.1002/viw.20220056] [Reference Citation Analysis]
|
5 |
Gubert P, Gubert G, Oliveira RCD, Fernandes ICO, Bezerra IC, Ramos BD, Lima MFD, Rodrigues DT, Cruz AFND, Pereira EC, Ávila DS, Mosca DH. Caenorhabditis elegans as a Prediction Platform for Nanotechnology-Based Strategies: Insights on Analytical Challenges. Toxics 2023;11:239. [DOI: 10.3390/toxics11030239] [Reference Citation Analysis]
|
6 |
Zhang X, Hu X, Zhang Y, Liu B, Pan H, Liu Z, Yao Z, Zhu Q, Wu C, Shen T. Impaired autophagy-accelerated senescence of alveolar type II epithelial cells drives pulmonary fibrosis induced by single-walled carbon nanotubes. J Nanobiotechnology 2023;21:69. [PMID: 36849924 DOI: 10.1186/s12951-023-01821-6] [Reference Citation Analysis]
|
7 |
Florek E, Witkowska M, Szukalska M, Richter M, Trzeciak T, Miechowicz I, Marszałek A, Piekoszewski W, Wyrwa Z, Giersig M. Oxidative Stress in Long-Term Exposure to Multi-Walled Carbon Nanotubes in Male Rats. Antioxidants (Basel) 2023;12. [PMID: 36830022 DOI: 10.3390/antiox12020464] [Reference Citation Analysis]
|
8 |
Thirabowonkitphithan P, Phuengmaung P, Leelahavanichkul A, Laiwattanapaisal W. MWCNTs/PVA Hydrogel-Modified Electrochemical Sensors for Ex Vivo and In Vivo Detection of Pyocyanin Biomarker for Pseudomonas aeruginosa Wound Infection. ACS Appl Electron Mater 2023. [DOI: 10.1021/acsaelm.2c01396] [Reference Citation Analysis]
|
9 |
Lee SS, Paliouras M, Trifiro MA. Functionalized Carbon Nanoparticles as Theranostic Agents and Their Future Clinical Utility in Oncology. Bioengineering (Basel) 2023;10. [PMID: 36671680 DOI: 10.3390/bioengineering10010108] [Reference Citation Analysis]
|
10 |
Li D, Son Y, Jang M, Wang S, Zhu W. Nanoparticle Based Cardiac Specific Drug Delivery. Biology (Basel) 2023;12. [PMID: 36671774 DOI: 10.3390/biology12010082] [Reference Citation Analysis]
|
11 |
Arıcı Ş, Kaçmaz EG, Kamali AR, Ege D. Influence of graphene oxide and carbon nanotubes on physicochemical properties of bone cements. Materials Chemistry and Physics 2023;293:126961. [DOI: 10.1016/j.matchemphys.2022.126961] [Reference Citation Analysis]
|
12 |
Harmanci D, Hanoglu SB, Beduk D, Durmus C, Timur S. Theranostic applications of functionalized carbon nanotubes. Emerging Applications of Carbon Nanotubes in Drug and Gene Delivery 2023. [DOI: 10.1016/b978-0-323-85199-2.00002-9] [Reference Citation Analysis]
|
13 |
Tu C, Luo W, Peng Y, Yu P, Shi C, Wu Z, Shao L, Zhan P. Preparation of lignin-based carbon nanotubes using micelles as soft template. Industrial Crops and Products 2023;191:116009. [DOI: 10.1016/j.indcrop.2022.116009] [Reference Citation Analysis]
|
14 |
Sun T, Li C, Li X, Song H, Su B, You H, Zhang T, Jiang C. Pharmaceutical Nanotechnology. Nanomedicine 2023. [DOI: 10.1007/978-981-16-8984-0_10] [Reference Citation Analysis]
|
15 |
Vidya B, Johnson AP, Hrishikesh G, Jyothi S, Kumar SH, Pramod K, Gangadharappa H. Biomedical applications of carbon nanotubes. Fiber and Textile Engineering in Drug Delivery Systems 2023. [DOI: 10.1016/b978-0-323-96117-2.00015-7] [Reference Citation Analysis]
|
16 |
Pasika SR, Bulusu R, Rao BVK, Kommineni N, Bolla PK, Kala SG, Godugu C. Nanotechnology for Biomedical Applications. Nanomaterials 2023. [DOI: 10.1007/978-981-19-7963-7_11] [Reference Citation Analysis]
|
17 |
Bagheri B, Surwase SS, Lee SS, Park H, Faraji Rad Z, Trevaskis NL, Kim YC. Carbon-based nanostructures for cancer therapy and drug delivery applications. J Mater Chem B 2022;10:9944-67. [PMID: 36415922 DOI: 10.1039/d2tb01741e] [Reference Citation Analysis]
|
18 |
Yazdani S, Mozaffarian M, Pazuki G, Hadidi N, Gallego I, Puras G, Pedraz JL. Design of double functionalized carbon nanotube for amphotericin B and genetic material delivery. Sci Rep 2022;12:21114. [PMID: 36476955 DOI: 10.1038/s41598-022-25222-1] [Reference Citation Analysis]
|
19 |
Kang MS, Kwon M, Jang HJ, Jeong SJ, Han D, Kim KS. Biosafety of inorganic nanomaterials for theranostic applications. emergent mater 2022. [DOI: 10.1007/s42247-022-00426-3] [Reference Citation Analysis]
|
20 |
Shen B, Xu Y, Zhang Y, Xie Z, Zhang F, Kang J, Cao Y, Xiang M. Effects of Different End Functional Groups Hyperbranched Polymers-Modified Carbon Nanotubes on the Crystallization and Mechanical Properties of Poly(l-lactic acid) (PLLA). ACS Omega 2022. [DOI: 10.1021/acsomega.2c05104] [Reference Citation Analysis]
|
21 |
Almeida MR, Barros RA, Pereira MM, de Castro DF, Faria JL, Freire MG, Silva CG, Tavares AP. Multi-walled carbon nanotubes as a platform for Immunoglobulin G attachment. Chemical Engineering and Processing - Process Intensification 2022. [DOI: 10.1016/j.cep.2022.109214] [Reference Citation Analysis]
|
22 |
Ramar V, Balraj A. Critical Review on Carbon-Based Nanomaterial for Carbon Capture: Technical Challenges, Opportunities, and Future Perspectives. Energy Fuels 2022. [DOI: 10.1021/acs.energyfuels.2c02585] [Reference Citation Analysis]
|
23 |
Gakis GP, Termine S, Trompeta AA, Aviziotis IG, Charitidis CA. Unraveling the mechanisms of carbon nanotube growth by chemical vapor deposition. Chemical Engineering Journal 2022;445:136807. [DOI: 10.1016/j.cej.2022.136807] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
24 |
Sarma H, Kashyap P, Zothantluanga JH, Devi R. Nanotherapeutics of Phytoantioxidants for Cardiovascular Diseases. Phytoantioxidants and Nanotherapeutics 2022. [DOI: 10.1002/9781119811794.ch18] [Reference Citation Analysis]
|
25 |
Yadav TP, Awasthi K. Carbon Nanomaterials: Fullerene to Graphene. Trans Indian Natl Acad Eng 2022;7:715-737. [DOI: 10.1007/s41403-022-00348-w] [Reference Citation Analysis]
|
26 |
Yazdani S, Mozaffarian M, Pazuki G, Hadidi N, Gallego I, Puras G, Pedraz JL. Design of Double Functionalized Carbon Nanotube for Amphotericin B and Genetic Material Delivery.. [DOI: 10.21203/rs.3.rs-1958531/v1] [Reference Citation Analysis]
|
27 |
Murjani BO, Kadu PS, Bansod M, Vaidya SS, Yadav MD. Carbon nanotubes in biomedical applications: current status, promises, and challenges. Carbon Lett 2022;32:1207-1226. [DOI: 10.1007/s42823-022-00364-4] [Reference Citation Analysis]
|
28 |
Alvarez-paguay J, Fernández L, Bolaños-mendez D, González G, Espinoza-montero PJ. Evaluation of an electrochemical biosensor based on carbon nanotubes, hydroxyapatite and horseradish peroxidase for the detection of hydrogen peroxide. Sensing and Bio-Sensing Research 2022. [DOI: 10.1016/j.sbsr.2022.100514] [Reference Citation Analysis]
|
29 |
Javed IT, Qureshi KN, Alharbi F, Jeon G. Terahertz fading model for wireless nanosensor networks in advanced medical manufacturing technologies. Int J Adv Manuf Technol. [DOI: 10.1007/s00170-022-09660-9] [Reference Citation Analysis]
|
30 |
Karimzadeh Z, Mahmoudpour M, Rahimpour E, Jouyban A. Nanomaterial based PVA nanocomposite hydrogels for biomedical sensing: Advances toward designing the ideal flexible/wearable nanoprobes. Adv Colloid Interface Sci 2022;305:102705. [PMID: 35640315 DOI: 10.1016/j.cis.2022.102705] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
|
31 |
Saito N, Haniu H, Aoki K, Nishimura N, Uemura T. Future Prospects for Clinical Applications of Nanocarbons Focusing on Carbon Nanotubes. Adv Sci (Weinh) 2022;:e2201214. [PMID: 35754236 DOI: 10.1002/advs.202201214] [Reference Citation Analysis]
|
32 |
Kang MS, Lee H, Jeong SJ, Eom TJ, Kim J, Han D. State of the Art in Carbon Nanomaterials for Photoacoustic Imaging. Biomedicines 2022;10:1374. [DOI: 10.3390/biomedicines10061374] [Reference Citation Analysis]
|
33 |
Babu PN, Pal S. Molecular Dynamics Simulation Based Study of Creep-Ratcheting Behavior of CNT Reinforced Nanocrystalline Aluminum Composite. Trans Indian Natl Acad Eng 2022;7:565-573. [DOI: 10.1007/s41403-021-00280-5] [Reference Citation Analysis]
|
34 |
Shen B, Lu S, Sun C, Song Z, Zhang F, Kang J, Cao Y, Xiang M. Effects of Amino Hyperbranched Polymer-Modified Carbon Nanotubes on the Crystallization Behavior of Poly (L-Lactic Acid) (PLLA). Polymers (Basel) 2022;14:2188. [PMID: 35683866 DOI: 10.3390/polym14112188] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
35 |
Litasova EV, Iljin VV, Myznikov LV, Piotrovskiy LB. Toxicology of carbon nanostructures. Part I. Spherical nanoparticles (fullerenes and nanoonions). Rev Clin Pharm Drug Ther 2022;20:5-15. [DOI: 10.17816/rcf2015-15] [Reference Citation Analysis]
|
36 |
Liang M, Li J, Han L. Receptor-mediated cascade targeting strategies for the application to medical diagnoses and therapeutics of glioma. J Nanopart Res 2022;24. [DOI: 10.1007/s11051-022-05482-8] [Reference Citation Analysis]
|
37 |
Liu Z, Liu Y, Yushan M, Yusufu A. Enhanced Nerve Regeneration by Bionic Conductive Nerve Scaffold Under Electrical Stimulation. Front Neurosci 2022;16:810676. [DOI: 10.3389/fnins.2022.810676] [Reference Citation Analysis]
|
38 |
Ghaidaa S. Hameed, Methaq Hamad Sabar. Nano-carriers as a Selective Treatment for Cancer. AJPS 2022;21:55-66. [DOI: 10.32947/ajps.v21i1.802] [Reference Citation Analysis]
|
39 |
Hassan A, Quanfang C, Abbas S, Jie L, Youming L, Hussain F. Comparative Thermal Analysis of Carbon Nanotubes and Their Metal Composites with Copper and Aluminum as Winding Material in Induction Motor. J Electr Eng Technol 2022;17:2353-65. [DOI: 10.1007/s42835-022-01072-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
40 |
Salehpour M, Saadati Z, Asadi L. Potential application of Al and Si doped carbon nanotubes for metronidazole detection: A theoretical study. Computational and Theoretical Chemistry 2022;1209:113573. [DOI: 10.1016/j.comptc.2021.113573] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
41 |
Molaparast M, Malekinejad H, Rahimi M, Shafiei-irannejad V. Biocompatible functionalized graphene nanosheet for delivery of doxorubicin to breast cancer cells. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103234] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
42 |
Rezvova MA, Nikishau PA, Makarevich MI, Glushkova TV, Klyshnikov KY, Akentieva TN, Efimova OS, Nikitin AP, Malysheva VY, Matveeva VG, Senokosova EA, Khanova MY, Danilov VV, Russakov DM, Ismagilov ZR, Kostjuk SV, Ovcharenko EA. Biomaterials Based on Carbon Nanotube Nanocomposites of Poly(styrene-b-isobutylene-b-styrene): The Effect of Nanotube Content on the Mechanical Properties, Biocompatibility and Hemocompatibility. Nanomaterials (Basel) 2022;12:733. [PMID: 35269222 DOI: 10.3390/nano12050733] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
43 |
Guan X, Zhu T, Zhang D. Development in polymerization shrinkage control of dental light-cured resin composites: a literature review. Journal of Adhesion Science and Technology. [DOI: 10.1080/01694243.2022.2042122] [Reference Citation Analysis]
|
44 |
Raza A, Altaf S, Ali S, Ikram M, Li G. Recent advances in carbonaceous sustainable nanomaterials for wastewater treatments. Sustainable Materials and Technologies 2022. [DOI: 10.1016/j.susmat.2022.e00406] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
|
45 |
Zhang X, Zhu J, Yang S, Yao Z, Zhao S, Wang Y, Zhou C, Zhu Q, Shen T. IL-4-activated C/EBPβ is involved in alveolar macrophage polarization towards the M2 phenotype during pulmonary fibrosis induced by single-walled carbon nanotubes. Environ Sci : Nano 2022. [DOI: 10.1039/d2en00581f] [Reference Citation Analysis]
|
46 |
Ramezani M, Dehghani A, Sherif MM. Carbon nanotube reinforced cementitious composites: A comprehensive review. Construction and Building Materials 2022;315:125100. [DOI: 10.1016/j.conbuildmat.2021.125100] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 21.0] [Reference Citation Analysis]
|
47 |
Rajakumari R, Thomas S, Kalarikkal N. Carbon Nanotubes for Tissue Engineering Scaffold Applications. Handbook of Carbon Nanotubes 2022. [DOI: 10.1007/978-3-030-91346-5_38] [Reference Citation Analysis]
|
48 |
Paliwal R, Chaurasiya A, Panchal K, Nayak P, Parveen N, Paliwal SR. Engineering and functionalization of nanomaterials for theranostic applications in infectious diseases. Nanotheranostics for Treatment and Diagnosis of Infectious Diseases 2022. [DOI: 10.1016/b978-0-323-91201-3.00003-7] [Reference Citation Analysis]
|
49 |
Kukut Hatipoglu M, Akkus Sut P. Synthesis and Biological Use of Nanomaterials. Topics in Applied Physics 2022. [DOI: 10.1007/978-3-030-93460-6_29] [Reference Citation Analysis]
|
50 |
Usmani S, Ballerini L. Nanostructures to Potentiate Axon Navigation and Regrowth in the Damaged Central Nervous Tissue. Engineering Biomaterials for Neural Applications 2022. [DOI: 10.1007/978-3-030-81400-7_4] [Reference Citation Analysis]
|
51 |
Sun T, Li C, Li X, Song H, Su B, You H, Zhang T, Jiang C. Pharmaceutical Nanotechnology. Nanomedicine 2022. [DOI: 10.1007/978-981-13-9374-7_10-1] [Reference Citation Analysis]
|
52 |
Cazaña F, Latorre N, Tarifa P, Royo C, Sebastián V, Romeo E, Centeno M, Monzón A. Performance of AISI 316L-stainless steel foams towards the formation of graphene related nanomaterials by catalytic decomposition of methane at high temperature. Catalysis Today 2022;383:236-46. [DOI: 10.1016/j.cattod.2020.12.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
53 |
Almeida MR, Nunes JCF, Cristóvão RO, Faria JL, Tavares APM, Silva CG, Freire MG. Carbon Nanotubes for Biomedical Applications. Nanotechnology for Biomedical Applications 2022. [DOI: 10.1007/978-981-16-7483-9_14] [Reference Citation Analysis]
|
54 |
Tang L, Xiao Q, Mei Y, He S, Zhang Z, Wang R, Wang W. Insights on functionalized carbon nanotubes for cancer theranostics. J Nanobiotechnology 2021;19:423. [PMID: 34915901 DOI: 10.1186/s12951-021-01174-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
|
55 |
Al Kury LT, Papandreou D, Hurmach VV, Dryn DO, Melnyk MI, Platonov MO, Prylutskyy YI, Ritter U, Scharff P, Zholos AV. Single-Walled Carbon Nanotubes Inhibit TRPC4-Mediated Muscarinic Cation Current in Mouse Ileal Myocytes. Nanomaterials (Basel) 2021;11:3410. [PMID: 34947764 DOI: 10.3390/nano11123410] [Reference Citation Analysis]
|
56 |
Anuar NS, Bachok N, Pop I. Hybrid Carbon Nanotube Flow near the Stagnation Region over a Permeable Vertical Plate with Heat Generation/Absorption. Mathematics 2021;9:2925. [DOI: 10.3390/math9222925] [Reference Citation Analysis]
|
57 |
Oliveira ER, Fayer L, Zanette RSS, Ladeira LO, de Oliveira LFC, Maranduba CMC, Brandão HM, Munk M. Cytocompatibility of carboxylated multi-wall carbon nanotubes in stem cells from human exfoliated deciduous teeth. Nanotechnology 2021;33. [PMID: 34700304 DOI: 10.1088/1361-6528/ac335b] [Reference Citation Analysis]
|
58 |
Hadidi N, Shahbahrami Moghadam N, Pazuki G, Parvin P, Shahi F. In Vitro Evaluation of DSPE-PEG (5000) Amine SWCNT Toxicity and Efficacy as a Novel Nanovector Candidate in Photothermal Therapy by Response Surface Methodology (RSM). Cells 2021;10:2874. [PMID: 34831097 DOI: 10.3390/cells10112874] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
59 |
Raczyński P, Górny K, Bełdowski P, Yuvan S, Marciniak B, Dendzik Z. Steered Molecular Dynamics of Lipid Membrane Indentation by Carbon and Silicon-Carbide Nanotubes-The Impact of Indenting Angle Uncertainty. Sensors (Basel) 2021;21:7011. [PMID: 34770317 DOI: 10.3390/s21217011] [Reference Citation Analysis]
|
60 |
Abd Elkodous M, El-husseiny HM, El-sayyad GS, Hashem AH, Doghish AS, Elfadil D, Radwan Y, El-zeiny HM, Bedair H, Ikhdair OA, Hashim H, Salama AM, Alshater H, Ahmed AA, Elsayed MG, Nagy M, Ali NY, Elahmady M, Kamel AM, Elkodous MA, Maallem I, Kaml MBS, Nasser N, Nouh AA, Safwat FM, Alshal MM, Ahmed SK, Nagib T, El-sayed FM, Almahdi M, Adla Y, Elnashar NT, Hussien AM, Salih AS, Mahmoud SA, Magdy S, Ahmed DI, Hassan FMS, Edward NA, Milad KS, Halasa SR, Arafa MM, Hegazy A, Kawamura G, Tan WK, Matsuda A. Recent advances in waste-recycled nanomaterials for biomedical applications: Waste-to-wealth. Nanotechnology Reviews 2021;10:1662-739. [DOI: 10.1515/ntrev-2021-0099] [Cited by in Crossref: 16] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
|
61 |
Wahid F, Huang LH, Zhao XQ, Li WC, Wang YY, Jia SR, Zhong C. Bacterial cellulose and its potential for biomedical applications. Biotechnol Adv 2021;53:107856. [PMID: 34666147 DOI: 10.1016/j.biotechadv.2021.107856] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 9.5] [Reference Citation Analysis]
|
62 |
Svadlakova T, Kolackova M, Vankova R, Karakale R, Malkova A, Kulich P, Hubatka F, Turanek-Knotigova P, Kratochvilova I, Raska M, Krejsek J, Turanek J. Carbon-Based Nanomaterials Increase Reactivity of Primary Monocytes towards Various Bacteria and Modulate Their Differentiation into Macrophages. Nanomaterials (Basel) 2021;11:2510. [PMID: 34684950 DOI: 10.3390/nano11102510] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
63 |
Kang MS, Jang HJ, Lee SH, Lee JE, Jo HJ, Jeong SJ, Kim B, Han DW. Potential of Carbon-Based Nanocomposites for Dental Tissue Engineering and Regeneration. Materials (Basel) 2021;14:5104. [PMID: 34501203 DOI: 10.3390/ma14175104] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
64 |
Kaur K, Paiva SS, Caffrey D, Cavanagh BL, Murphy CM. Injectable chitosan/collagen hydrogels nano-engineered with functionalized single wall carbon nanotubes for minimally invasive applications in bone. Mater Sci Eng C Mater Biol Appl 2021;128:112340. [PMID: 34474890 DOI: 10.1016/j.msec.2021.112340] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
|
65 |
Giraud L, Tourrette A, Flahaut E. Carbon nanomaterials-based polymer-matrix nanocomposites for antimicrobial applications: A review. Carbon 2021;182:463-83. [DOI: 10.1016/j.carbon.2021.06.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
|
66 |
Ahmed SF, Mofijur M, Rafa N, Chowdhury AT, Chowdhury S, Nahrin M, Islam ABMS, Ong HC. Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. Environ Res 2021;204:111967. [PMID: 34450159 DOI: 10.1016/j.envres.2021.111967] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 14.0] [Reference Citation Analysis]
|
67 |
Bibi S, Urrehman S, Khalid L, Yaseen M, Khan AQ, Jia R. Metal doped fullerene complexes as promising drug delivery materials against COVID-19. Chem Zvesti 2021;:1-11. [PMID: 34393329 DOI: 10.1007/s11696-021-01815-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
68 |
Habibzadeh Mashatooki M, Ghalami - Choobar B. Characterization of self-aggregated mitomycin C onto the boron-nitride nanotube as a drug delivery carrier: A molecular dynamics investigation. Journal of Molecular Liquids 2021;334:116065. [DOI: 10.1016/j.molliq.2021.116065] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
69 |
Emran MY, Shenashen MA, El-safty SA, Selim MM. Design of porous S-doped carbon nanostructured electrode sensor for sensitive and selective detection of guanine from DNA samples. Microporous and Mesoporous Materials 2021;320:111097. [DOI: 10.1016/j.micromeso.2021.111097] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
|
70 |
Campbell E, Hasan MT, Gonzalez-Rodriguez R, Truly T, Lee BH, Green KN, Akkaraju G, Naumov AV. Graphene quantum dot formulation for cancer imaging and redox-based drug delivery. Nanomedicine 2021;:102408. [PMID: 34015513 DOI: 10.1016/j.nano.2021.102408] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
|
71 |
Assali M, Kittana N, Dayyeh S, Khiar N. Dual covalent functionalization of single-walled carbon nanotubes for effective targeted cancer therapy. Nanotechnology 2021;32:205101. [PMID: 33561838 DOI: 10.1088/1361-6528/abe48c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
72 |
Mazari SA, Ali E, Abro R, Khan FSA, Ahmed I, Ahmed M, Nizamuddin S, Siddiqui TH, Hossain N, Mubarak NM, Shah A. Nanomaterials: Applications, waste-handling, environmental toxicities, and future challenges – A review. Journal of Environmental Chemical Engineering 2021;9:105028. [DOI: 10.1016/j.jece.2021.105028] [Cited by in Crossref: 48] [Cited by in F6Publishing: 55] [Article Influence: 24.0] [Reference Citation Analysis]
|
73 |
Sarma A, Bania R, Devi JR, Deka S. Therapeutic nanostructures and nanotoxicity. J Appl Toxicol 2021;41:1494-517. [PMID: 33641187 DOI: 10.1002/jat.4157] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
74 |
Gómez IJ, Vázquez Sulleiro M, Mantione D, Alegret N. Carbon Nanomaterials Embedded in Conductive Polymers: A State of the Art. Polymers (Basel) 2021;13:745. [PMID: 33673680 DOI: 10.3390/polym13050745] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
|
75 |
Nag A, Alahi MEE, Mukhopadhyay SC, Liu Z. Multi-Walled Carbon Nanotubes-Based Sensors for Strain Sensing Applications. Sensors (Basel) 2021;21:1261. [PMID: 33578782 DOI: 10.3390/s21041261] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
|
76 |
Montané X, Matulewicz K, Balik K, Modrakowska P, Łuczak M, Pérez Pacheco Y, Reig-vano B, Montornés JM, Bajek A, Tylkowski B. Present trends in the encapsulation of anticancer drugs. Physical Sciences Reviews 2021;0. [DOI: 10.1515/psr-2020-0080] [Reference Citation Analysis]
|
77 |
Zhang Y, Zhang Y, Wu J, Liu J, Kang Y, Hu C, Feng X, Liu W, Luo H, Chen A, Chen L, Shao L. Effects of carbon-based nanomaterials on vascular endothelia under physiological and pathological conditions: interactions, mechanisms and potential therapeutic applications. Journal of Controlled Release 2021;330:945-62. [DOI: 10.1016/j.jconrel.2020.10.067] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
|
78 |
Nikzamir M, Akbarzadeh A, Panahi Y. An overview on nanoparticles used in biomedicine and their cytotoxicity. Journal of Drug Delivery Science and Technology 2021;61:102316. [DOI: 10.1016/j.jddst.2020.102316] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
|
79 |
Alimohammadi E, Nikzad A, Khedri M, Rezaian M, Jahromi AM, Rezaei N, Maleki R. Potential treatment of Parkinson's disease using new-generation carbon nanotubes: a biomolecular in silico study. Nanomedicine (Lond) 2021;16:189-204. [PMID: 33502255 DOI: 10.2217/nnm-2020-0372] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
|
80 |
Alagarsamy KN, Mathan S, Yan W, Rafieerad A, Sekaran S, Manego H, Dhingra S. Carbon nanomaterials for cardiovascular theranostics: Promises and challenges. Bioact Mater 2021;6:2261-80. [PMID: 33553814 DOI: 10.1016/j.bioactmat.2020.12.030] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
|
81 |
Ostos FJ, Lebrón JA, Moyá ML, Bernal E, Flores A, Lépori C, Maestre Á, Sánchez F, López-Cornejo P, López-López M. Potentiometric Study of Carbon Nanotube/Surfactant Interactions by Ion-Selective Electrodes. Driving Forces in the Adsorption and Dispersion Processes. Int J Mol Sci 2021;22:E826. [PMID: 33467613 DOI: 10.3390/ijms22020826] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
82 |
Emran MY, Talat E, El-safty SA, Shenashen MA, Saad EM. Influence of hollow sphere surface heterogeneity and geometry of N-doped carbon on sensitive monitoring of acetaminophen in human fluids and pharmaceutical products. New J Chem 2021;45:5452-62. [DOI: 10.1039/d0nj05442a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
83 |
Maruyama T. Carbon nanotubes. Handbook of Carbon-Based Nanomaterials 2021. [DOI: 10.1016/b978-0-12-821996-6.00009-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
84 |
Babu PN, Pal S. Molecular Dynamics Simulation-Based Investigation of Mechanical Behavior of CNT Embedded Nanocrystalline Al at Cryogenic Temperature. Springer Proceedings in Materials 2021. [DOI: 10.1007/978-981-16-3937-1_22] [Reference Citation Analysis]
|
85 |
Wang Y, Ji W, Xu Y, Zou L, Lu H, Sun C. Dispersion and fluorescence properties of multiwalled carbon nanotubes modified with hyperbranched poly(phenylalanine-lysine). Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;608:125557. [DOI: 10.1016/j.colsurfa.2020.125557] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
|
86 |
Henao W, Cazaña F, Tarifa P, Romeo E, Latorre N, Sebastian V, Delgado J, Monzón A. Selective synthesis of carbon nanotubes by catalytic decomposition of methane using Co-Cu/cellulose derived carbon catalysts: A comprehensive kinetic study. Chemical Engineering Journal 2021;404:126103. [DOI: 10.1016/j.cej.2020.126103] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
|
87 |
Mancino D, Alegret N. Biomedical applications of carbon nanotubes. Handbook of Carbon-Based Nanomaterials 2021. [DOI: 10.1016/b978-0-12-821996-6.00003-8] [Reference Citation Analysis]
|
88 |
Rajakumari R, Thomas S, Kalarikkal N. Carbon Nanotubes for Tissue Engineering Scaffold Applications. Handbook of Carbon Nanotubes 2021. [DOI: 10.1007/978-3-319-70614-6_38-1] [Reference Citation Analysis]
|
89 |
Yáñez-Sedeño P, González-Cortés A, Campuzano S, Pingarrón JM. Multimodal/Multifunctional Nanomaterials in (Bio)electrochemistry: Now and in the Coming Decade. Nanomaterials (Basel) 2020;10:E2556. [PMID: 33352731 DOI: 10.3390/nano10122556] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
90 |
Zhu T, Wang X, Chang W, Zhang Y, Maruyama T, Luo L, Zhao X. Green fabrication of Cu/rGO decorated SWCNT buckypaper as a flexible electrode for glucose detection. Mater Sci Eng C Mater Biol Appl 2021;120:111757. [PMID: 33545898 DOI: 10.1016/j.msec.2020.111757] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
|
91 |
Emran MY, Shenashen MA, El-safty SA, Selim MM, Minowa T, Elmarakbi A. Three-Dimensional Circular Surface Curvature of a Spherule-Based Electrode for Selective Signaling and Dynamic Mobility of Norepinephrine in Living Cells. ACS Appl Bio Mater 2020;3:8496-506. [DOI: 10.1021/acsabm.0c00882] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
|
92 |
Rasheed T, Hassan AA, Kausar F, Sher F, Bilal M, Iqbal HM. Carbon nanotubes assisted analytical detection – Sensing/delivery cues for environmental and biomedical monitoring. TrAC Trends in Analytical Chemistry 2020;132:116066. [DOI: 10.1016/j.trac.2020.116066] [Cited by in Crossref: 59] [Cited by in F6Publishing: 55] [Article Influence: 19.7] [Reference Citation Analysis]
|
93 |
Wahid F, Zhao X, Jia S, Bai H, Zhong C. Nanocomposite hydrogels as multifunctional systems for biomedical applications: Current state and perspectives. Composites Part B: Engineering 2020;200:108208. [DOI: 10.1016/j.compositesb.2020.108208] [Cited by in Crossref: 60] [Cited by in F6Publishing: 65] [Article Influence: 20.0] [Reference Citation Analysis]
|
94 |
Tan JM, Bullo S, Fakurazi S, Hussein MZ. Preparation, characterisation and biological evaluation of biopolymer-coated multi-walled carbon nanotubes for sustained-delivery of silibinin. Sci Rep 2020;10:16941. [PMID: 33037287 DOI: 10.1038/s41598-020-73963-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
|
95 |
Hurmach VV, Khrapatiy SV, Zavodovskyi DO, Prylutskyy YI, Täuscher E, Ritter U. Modeling of Single-Walled Carbon Nanotube Binding to Nitric Oxide Synthase and Guanylate Cyclase Molecular Structures. Neurophysiology 2020;52:110-5. [DOI: 10.1007/s11062-020-09859-0] [Reference Citation Analysis]
|
96 |
Shapoval LM, Dmytrenko OV, Sagach VF, Prylutska SV, Khrapatiy SV, Zavodovskyi DO, Prylutskyy YI, Tsierkezos N, Ritter U. Systemic Administrations of Water-Dispersible Single-Walled Carbon Nanotubes: Activation of NOS in Spontaneously Hypertensive Rats. Neurophysiology 2020;52:101-9. [DOI: 10.1007/s11062-020-09858-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
97 |
Tham GX, Fisher AC, Webster RD. Voltammetric studies on surface-modified electrodes with functionalised carbon nanotubes under different dispersion conditions. Electrochimica Acta 2020;357:136880. [DOI: 10.1016/j.electacta.2020.136880] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
98 |
Huynh MT, Veyan JF, Pham H, Rahman R, Yousuf S, Brown A, Lin J, Balkus KJ Jr, Diwakara SD, Smaldone RA, LeGrand B, Mikoryak C, Draper R, Pantano P. The Importance of Evaluating the Lot-to-Lot Batch Consistency of Commercial Multi-Walled Carbon Nanotube Products. Nanomaterials (Basel) 2020;10:E1930. [PMID: 32992617 DOI: 10.3390/nano10101930] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
99 |
Claudio-rizo JA, Cano Salazar LF, Flores-guia TE, Cabrera-munguia DA. Estructuras metal-orgánicas (MOFs) nanoestructuradas para la liberación controlada de fármacos. MN 2020;14:1e-29e. [DOI: 10.22201/ceiich.24485691e.2021.26.69634] [Reference Citation Analysis]
|
100 |
Lekshmi G, Sana SS, Nguyen VH, Nguyen THC, Nguyen CC, Le QV, Peng W. Recent Progress in Carbon Nanotube Polymer Composites in Tissue Engineering and Regeneration. Int J Mol Sci 2020;21:E6440. [PMID: 32899409 DOI: 10.3390/ijms21176440] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
|
101 |
Banerjee S, McCracken S, Hossain MF, Slaughter G. Electrochemical Detection of Neurotransmitters. Biosensors (Basel) 2020;10:E101. [PMID: 32824869 DOI: 10.3390/bios10080101] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 8.3] [Reference Citation Analysis]
|
102 |
Henna TK, Raphey VR, Sankar R, Ameena Shirin VK, Gangadharappa HV, Pramod K. Carbon nanostructures: The drug and the delivery system for brain disorders. Int J Pharm 2020;587:119701. [PMID: 32736018 DOI: 10.1016/j.ijpharm.2020.119701] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 8.7] [Reference Citation Analysis]
|
103 |
Luo M, Yu Y, Jin Z, Dong H, Li Y. Multi-scale simulations on biocompatibility of boron nitride nanomaterials with different curvatures: A comparative study. Applied Surface Science 2020;517:146181. [DOI: 10.1016/j.apsusc.2020.146181] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
104 |
Fan C, Joshi J, Li F, Xu B, Khan M, Yang J, Zhu W. Nanoparticle-Mediated Drug Delivery for Treatment of Ischemic Heart Disease. Front Bioeng Biotechnol 2020;8:687. [PMID: 32671049 DOI: 10.3389/fbioe.2020.00687] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
|
105 |
Montanheiro TLDA, Ribas RG, Montagna LS, Menezes BRC, Schatkoski VM, Rodrigues KF, Thim GP. A brief review concerning the latest advances in the influence of nanoparticle reinforcement into polymeric-matrix biomaterials. J Biomater Sci Polym Ed 2020;31:1869-93. [PMID: 32579490 DOI: 10.1080/09205063.2020.1781527] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
106 |
Nguyen TN, Yoo D, Kim JJ. Cementitious material reinforced by carbon nanotube-Nylon 66 hybrid nanofibers: Mechanical strength and microstructure analysis. Materials Today Communications 2020;23:100845. [DOI: 10.1016/j.mtcomm.2019.100845] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
|
107 |
Veclani D, Tolazzi M, Melchior A. Molecular Interpretation of Pharmaceuticals’ Adsorption on Carbon Nanomaterials: Theory Meets Experiments. Processes 2020;8:642. [DOI: 10.3390/pr8060642] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
|
108 |
Li D, Li S, Liu J, Zhan L, Wang P, Zhu H, Wei J. Surface modification of carbon nanotube with gelatin via mussel inspired method. Mater Sci Eng C Mater Biol Appl 2020;112:110887. [PMID: 32409043 DOI: 10.1016/j.msec.2020.110887] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
109 |
Santos JRA, Macedo AT, Santana AA, Souza MEP, Holanda RA, Cruz G. Green Adhesives for Biomedical Applications. Green Adhesives 2020. [DOI: 10.1002/9781119655053.ch4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
110 |
Sun L, Wang M, Li W, Luo S, Wu Y, Ma C, Liu S. Carbon material-immobilized ionic liquids were applied on absorption of Hg2+ from water phase. Environ Sci Pollut Res Int 2020;27:26882-904. [PMID: 32382911 DOI: 10.1007/s11356-020-09054-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
|
111 |
Zhu L, Shen D, Luo KH. A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods. Journal of Hazardous Materials 2020;389:122102. [DOI: 10.1016/j.jhazmat.2020.122102] [Cited by in Crossref: 247] [Cited by in F6Publishing: 195] [Article Influence: 82.3] [Reference Citation Analysis]
|
112 |
Pal S, Babu PN, Gargeya B, Becquart CS. Molecular Dynamics simulation based investigation of possible enhancement in strength and ductility of nanocrystalline aluminum by CNT reinforcement. Materials Chemistry and Physics 2020;243:122593. [DOI: 10.1016/j.matchemphys.2019.122593] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
113 |
Vaghri E, Khalaj Z, Dorranian D. Investigating the Effects of Different Liquid Environments on the Characteristics of Multilayer Graphene and Graphene Oxide Nanosheets Synthesized by Green Laser Ablation Method. Diamond and Related Materials 2020;103:107697. [DOI: 10.1016/j.diamond.2020.107697] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
|
114 |
Svadlakova T, Hubatka F, Turanek Knotigova P, Kulich P, Masek J, Kotoucek J, Macak J, Motola M, Kalbac M, Kolackova M, Vankova R, Vicherkova P, Malkova A, Simeckova P, Volkov Y, Prina-Mello A, Kratochvilova I, Fiala Z, Raska M, Krejsek J, Turanek J. Proinflammatory Effect of Carbon-Based Nanomaterials: In Vitro Study on Stimulation of Inflammasome NLRP3 via Destabilisation of Lysosomes. Nanomaterials (Basel) 2020;10:E418. [PMID: 32120988 DOI: 10.3390/nano10030418] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
|
115 |
Jang Y, Kim SM, Spinks GM, Kim SJ. Carbon Nanotube Yarn for Fiber-Shaped Electrical Sensors, Actuators, and Energy Storage for Smart Systems. Adv Mater 2020;32:e1902670. [PMID: 31403227 DOI: 10.1002/adma.201902670] [Cited by in Crossref: 111] [Cited by in F6Publishing: 115] [Article Influence: 37.0] [Reference Citation Analysis]
|
116 |
Sukhodub LB, Sukhodub LF, Kumeda MO, Prylutskyy YI, Pogorielov MV, Evstigneev MP, Kostjukov VV, Strutynska NY, Vovchenko LL, Khrapatiy SV, Ritter U. Single-walled carbon nanotubes loaded hydroxyapatite-alginate beads with enhanced mechanical properties and sustained drug release ability. Prog Biomater 2020;9:1-14. [PMID: 32002771 DOI: 10.1007/s40204-020-00127-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
117 |
Negri V, Pacheco-Torres J, Calle D, López-Larrubia P. Carbon Nanotubes in Biomedicine. Top Curr Chem (Cham) 2020;378:15. [PMID: 31938922 DOI: 10.1007/s41061-019-0278-8] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 16.0] [Reference Citation Analysis]
|
118 |
Prajapati SK, Malaiya A, Kesharwani P, Soni D, Jain A. Biomedical applications and toxicities of carbon nanotubes. Drug and Chemical Toxicology. [DOI: 10.1080/01480545.2019.1709492] [Cited by in Crossref: 39] [Cited by in F6Publishing: 26] [Article Influence: 13.0] [Reference Citation Analysis]
|
119 |
Sorrentino A, Cataldo A, Curatolo R, Tagliatesta P, Mosca L, Bellucci S. Novel optimized biopolymer-based nanoparticles for nose-to-brain delivery in the treatment of depressive diseases. RSC Adv 2020;10:28941-28949. [DOI: 10.1039/d0ra04212a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
120 |
Mallakpour S, Azadi E. Sonochemical protocol for the organo-synthesis of TiO2 and its hybrids: Properties and applications. Green Sustainable Process for Chemical and Environmental Engineering and Science 2020. [DOI: 10.1016/b978-0-12-819540-6.00011-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
121 |
Pattnaik S, Surendra Y, Rao JV, Swain K. Carbon family nanomaterials for drug delivery applications. Nanoengineered Biomaterials for Advanced Drug Delivery 2020. [DOI: 10.1016/b978-0-08-102985-5.00018-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
122 |
Siuzdak K, Haryński Ł, Wawrzyniak J, Kupracz P, Grochowska K. Self-standing Nanoarchitectures. Self-standing Substrates 2020. [DOI: 10.1007/978-3-030-29522-6_1] [Reference Citation Analysis]
|
123 |
Dutt TS, Saxena RK. Enhanced antibody response to ovalbumin coupled to poly-dispersed acid functionalized single walled carbon nanotubes. Immunology Letters 2020;217:77-83. [DOI: 10.1016/j.imlet.2019.11.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
124 |
Zhang Z, Liu G, Ma R, Qi X, Wang G, Zhu B, Ling F. The immunoprotective effect of whole-cell lysed inactivated vaccine with SWCNT as a carrier against Aeromonas hydrophila infection in grass carp. Fish Shellfish Immunol 2020;97:336-43. [PMID: 31874296 DOI: 10.1016/j.fsi.2019.12.069] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
|
125 |
González-García Y, López-Vargas ER, Cadenas-Pliego G, Benavides-Mendoza A, González-Morales S, Robledo-Olivo A, Alpuche-Solís ÁG, Juárez-Maldonado A. Impact of Carbon Nanomaterials on the Antioxidant System of Tomato Seedlings. Int J Mol Sci 2019;20:E5858. [PMID: 31766644 DOI: 10.3390/ijms20235858] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
|
126 |
Liu Y, Wang T, Cao J, Zang Z, Wu Q, Wang H, Tai F, He R. Quaternary Ammonium Salts of Iminofullerenes: Fabrication and Effect on Seed Germination. J Agric Food Chem 2019;67:13509-17. [DOI: 10.1021/acs.jafc.9b04783] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
|
127 |
Filippi M, Born G, Felder-Flesch D, Scherberich A. Use of nanoparticles in skeletal tissue regeneration and engineering. Histol Histopathol 2020;35:331-50. [PMID: 31721139 DOI: 10.14670/HH-18-184] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
|
128 |
Baby R, Saifullah B, Hussein MZ. Carbon Nanomaterials for the Treatment of Heavy Metal-Contaminated Water and Environmental Remediation. Nanoscale Res Lett 2019;14:341. [PMID: 31712991 DOI: 10.1186/s11671-019-3167-8] [Cited by in Crossref: 103] [Cited by in F6Publishing: 105] [Article Influence: 25.8] [Reference Citation Analysis]
|
129 |
Pei B, Wang W, Dunne N, Li X. Applications of Carbon Nanotubes in Bone Tissue Regeneration and Engineering: Superiority, Concerns, Current Advancements, and Prospects. Nanomaterials (Basel) 2019;9:E1501. [PMID: 31652533 DOI: 10.3390/nano9101501] [Cited by in Crossref: 63] [Cited by in F6Publishing: 72] [Article Influence: 15.8] [Reference Citation Analysis]
|
130 |
Mota AF, Loja MAR. Mechanical Behavior of Porous Functionally Graded Nanocomposite Materials. C 2019;5:34. [DOI: 10.3390/c5020034] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
|
131 |
Tavakolian-Ardakani Z, Hosu O, Cristea C, Mazloum-Ardakani M, Marrazza G. Latest Trends in Electrochemical Sensors for Neurotransmitters: A Review. Sensors (Basel) 2019;19:E2037. [PMID: 31052309 DOI: 10.3390/s19092037] [Cited by in Crossref: 55] [Cited by in F6Publishing: 57] [Article Influence: 13.8] [Reference Citation Analysis]
|
132 |
Bains PS, Singh G, Bhui AS, Sidhu SS. Parametric Evaluation of Medical Grade Titanium Alloy in MWCNTs Mixed Dielectric Using Graphite Electrode. Biomaterials in Orthopaedics and Bone Regeneration 2019. [DOI: 10.1007/978-981-13-9977-0_1] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|