BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sensharma P, Madhumathi G, Jayant RD, Jaiswal AK. Biomaterials and cells for neural tissue engineering: Current choices. Mater Sci Eng C Mater Biol Appl 2017;77:1302-15. [PMID: 28532008 DOI: 10.1016/j.msec.2017.03.264] [Cited by in Crossref: 98] [Cited by in F6Publishing: 83] [Article Influence: 19.6] [Reference Citation Analysis]
Number Citing Articles
1 Li C, Liu SY, Zhang M, Pi W, Wang B, Li QC, Lu CF, Zhang PX. Sustained release of exosomes loaded into polydopamine-modified chitin conduits promotes peripheral nerve regeneration in rats. Neural Regen Res 2022;17:2050-7. [PMID: 35142696 DOI: 10.4103/1673-5374.335167] [Reference Citation Analysis]
2 Generali M, Kehl D, Capulli AK, Parker KK, Hoerstrup SP, Weber B. Comparative analysis of poly-glycolic acid-based hybrid polymer starter matrices for in vitro tissue engineering. Colloids and Surfaces B: Biointerfaces 2017;158:203-12. [DOI: 10.1016/j.colsurfb.2017.06.046] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
3 Zhang Q, Nguyen PD, Shi S, Burrell JC, Xu Q, Cullen KD, Le AD. Neural Crest Stem-Like Cells Non-genetically Induced from Human Gingiva-Derived Mesenchymal Stem Cells Promote Facial Nerve Regeneration in Rats. Mol Neurobiol 2018;55:6965-83. [PMID: 29372546 DOI: 10.1007/s12035-018-0913-3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
4 Seyedebrahimi R, Razavi S, Varshosaz J, Vatankhah E, Kazemi M. Beneficial effects of biodelivery of brain-derived neurotrophic factor and gold nanoparticles from functionalized electrospun PLGA scaffold for nerve tissue engineering. J Clust Sci 2021;32:631-42. [DOI: 10.1007/s10876-020-01822-7] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
5 Garrudo FFF, Mikael PE, Rodrigues CAV, Udangawa RW, Paradiso P, Chapman CA, Hoffman P, Colaço R, Cabral JMS, Morgado J, Linhardt RJ, Ferreira FC. Polyaniline-polycaprolactone fibers for neural applications: Electroconductivity enhanced by pseudo-doping. Mater Sci Eng C Mater Biol Appl 2021;120:111680. [PMID: 33545842 DOI: 10.1016/j.msec.2020.111680] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
6 Asghari Niari S, Rahbarghazi R, Salehi R, Kazemi L, Fathi Karkan S, Karimipour M. Fabrication, characterization and evaluation of the effect of PLGA and PLGA-PEG biomaterials on the proliferation and neurogenesis potential of human neural SH-SY5Y cells. Microsc Res Tech 2021. [PMID: 34859937 DOI: 10.1002/jemt.24006] [Reference Citation Analysis]
7 Guo S, Redenski I, Levenberg S. Spinal Cord Repair: From Cells and Tissue Engineering to Extracellular Vesicles. Cells 2021;10:1872. [PMID: 34440641 DOI: 10.3390/cells10081872] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
8 Moore KM, Murthy AB, Graham-Gurysh EG, Hingtgen SD, Bachelder EM, Ainslie KM. Polymeric Biomaterial Scaffolds for Tumoricidal Stem Cell Glioblastoma Therapy. ACS Biomater Sci Eng 2020;6:3762-77. [PMID: 33463324 DOI: 10.1021/acsbiomaterials.0c00477] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
9 Chen S, Zhao Y, Yan X, Zhang L, Li G, Yang Y. PAM/GO/gel/SA composite hydrogel conduit with bioactivity for repairing peripheral nerve injury. J Biomed Mater Res 2019;107:1273-83. [DOI: 10.1002/jbm.a.36637] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
10 de la Vega L, Lee C, Sharma R, Amereh M, Willerth SM. 3D bioprinting models of neural tissues: The current state of the field and future directions. Brain Research Bulletin 2019;150:240-9. [DOI: 10.1016/j.brainresbull.2019.06.007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
11 Lin B, Dun G, Jin D, Du Y. Development of polypyrrole/collagen/nano-strontium substituted bioactive glass composite for boost sciatic nerve rejuvenation in vivo. Artificial Cells, Nanomedicine, and Biotechnology 2019;47:3423-30. [DOI: 10.1080/21691401.2019.1638794] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
12 Shahidi S, Janmaleki M, Riaz S, Sanati Nezhad A, Syed N. A tuned gelatin methacryloyl (GelMA) hydrogel facilitates myelination of dorsal root ganglia neurons in vitro. Mater Sci Eng C Mater Biol Appl 2021;126:112131. [PMID: 34082948 DOI: 10.1016/j.msec.2021.112131] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Chen WS, Guo LY, Tang CC, Tsai CK, Huang HH, Chin TY, Yang ML, Chen-Yang YW. The Effect of Laminin Surface Modification of Electrospun Silica Nanofiber Substrate on Neuronal Tissue Engineering. Nanomaterials (Basel) 2018;8:E165. [PMID: 29538349 DOI: 10.3390/nano8030165] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
14 Seiti M, Ginestra PS, Ceretti E, Ferraris E, Ranga A. Emerging Three‐Dimensional Integrated Systems for Biomimetic Neural In Vitro Cultures. Adv Materials Inter 2022;9:2101297. [DOI: 10.1002/admi.202101297] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Pillai MM, Sathishkumar G, Houshyar S, Senthilkumar R, Quigley A, Shanthakumari S, Padhye R, Bhattacharyya A. Nanocomposite-Coated Silk-Based Artificial Conduits: The Influence of Structures on Regeneration of the Peripheral Nerve. ACS Appl Bio Mater 2020;3:4454-64. [DOI: 10.1021/acsabm.0c00430] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
16 Jhang J, Lin J, Lou C, Chen Y. Biodegradable and conductive PVA/CNT nanofibrous membranes used in nerve conduit applications. Journal of Industrial Textiles. [DOI: 10.1177/15280837211032086] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
17 Yadav S, Gangwar S. An Overview on Recent progresses and future perspective of biomaterials. IOP Conf Ser : Mater Sci Eng 2018;404:012013. [DOI: 10.1088/1757-899x/404/1/012013] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
18 Sandhurst ES, Jaswandkar SV, Kundu K, Katti DR, Katti KS, Sun H, Engebretson D, Francis KR. Nanoarchitectonics of a Microsphere-Based Scaffold for Modeling Neurodevelopment and Neurological Disease. ACS Appl Bio Mater 2022. [PMID: 35045249 DOI: 10.1021/acsabm.1c01012] [Reference Citation Analysis]
19 Lotfi L, Khakbiz M, Moosazadeh Moghaddam M, Bonakdar S. A biomaterials approach to Schwann cell development in neural tissue engineering. J Biomed Mater Res 2019;107:2425-46. [DOI: 10.1002/jbm.a.36749] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
20 Akhtar A, Andleeb A, Waris TS, Bazzar M, Moradi AR, Awan NR, Yar M. Neurodegenerative diseases and effective drug delivery: A review of challenges and novel therapeutics. J Control Release 2021;330:1152-67. [PMID: 33197487 DOI: 10.1016/j.jconrel.2020.11.021] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
21 Zhang X, Qu W, Li D, Shi K, Li R, Han Y, Jin E, Ding J, Chen X. Functional Polymer‐Based Nerve Guide Conduits to Promote Peripheral Nerve Regeneration. Adv Mater Interfaces 2020;7:2000225. [DOI: 10.1002/admi.202000225] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 9.5] [Reference Citation Analysis]
22 Rocha LA, Sousa RA, Learmonth DA, Salgado AJ. The Role of Biomaterials as Angiogenic Modulators of Spinal Cord Injury: Mimetics of the Spinal Cord, Cell and Angiogenic Factor Delivery Agents. Front Pharmacol 2018;9:164. [PMID: 29535633 DOI: 10.3389/fphar.2018.00164] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
23 Accardo A, Cirillo C, Lionnet S, Vieu C, Loubinoux I. Interfacing cells with microengineered scaffolds for neural tissue reconstruction. Brain Res Bull 2019;152:202-11. [PMID: 31348979 DOI: 10.1016/j.brainresbull.2019.07.020] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
24 Coenen AMJ, Bernaerts KV, Harings JAW, Jockenhoevel S, Ghazanfari S. Elastic materials for tissue engineering applications: Natural, synthetic, and hybrid polymers. Acta Biomater 2018;79:60-82. [PMID: 30165203 DOI: 10.1016/j.actbio.2018.08.027] [Cited by in Crossref: 63] [Cited by in F6Publishing: 54] [Article Influence: 15.8] [Reference Citation Analysis]
25 Hached F, Vinatier C, Le Visage C, Gondé H, Guicheux J, Grimandi G, Billon-chabaud A. Biomaterial-assisted cell therapy in osteoarthritis: From mesenchymal stem cells to cell encapsulation. Best Practice & Research Clinical Rheumatology 2017;31:730-45. [DOI: 10.1016/j.berh.2018.05.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
26 Takeuchi H, Ikeguchi R, Aoyama T, Oda H, Yurie H, Mitsuzawa S, Tanaka M, Ohta S, Akieda S, Miyazaki Y, Nakayama K, Matsuda S. A scaffold-free Bio 3D nerve conduit for repair of a 10-mm peripheral nerve defect in the rats. Microsurgery 2020;40:207-16. [PMID: 31724780 DOI: 10.1002/micr.30533] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
27 Niemczyk B, Sajkiewicz P, Kolbuk D. Injectable hydrogels as novel materials for central nervous system regeneration. J Neural Eng 2018;15:051002. [DOI: 10.1088/1741-2552/aacbab] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 5.5] [Reference Citation Analysis]
28 Agarwal G, Kumar N, Srivastava A. Highly elastic, electroconductive, immunomodulatory graphene crosslinked collagen cryogel for spinal cord regeneration. Mater Sci Eng C Mater Biol Appl 2021;118:111518. [PMID: 33255073 DOI: 10.1016/j.msec.2020.111518] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
29 Morelli S, Piscioneri A, Curcio E, Salerno S, Chen C, De Bartolo L. Membrane bioreactor for investigation of neurodegeneration. Materials Science and Engineering: C 2019;103:109793. [DOI: 10.1016/j.msec.2019.109793] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
30 Zhong J, Xu J, Lu S, Wang Z, Zheng Y, Tang Q, Zhu J, Zhu T. A Prevascularization Strategy Using Novel Fibrous Porous Silk Scaffolds for Tissue Regeneration in Mice with Spinal Cord Injury. Stem Cells and Development 2020;29:615-24. [DOI: 10.1089/scd.2019.0199] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Zhang L, Yang W, Xie H, Wang H, Wang J, Su Q, Li X, Song Y, Wang G, Wang L, Wang Z. Sericin Nerve Guidance Conduit Delivering Therapeutically Repurposed Clobetasol for Functional and Structural Regeneration of Transected Peripheral Nerves. ACS Biomater Sci Eng 2019;5:1426-39. [PMID: 33405618 DOI: 10.1021/acsbiomaterials.8b01297] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
32 Singh B, Kumar A, Rohit. Synthesis and characterization of alginate and sterculia gum based hydrogel for brain drug delivery applications. International Journal of Biological Macromolecules 2020;148:248-57. [DOI: 10.1016/j.ijbiomac.2020.01.147] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 6.5] [Reference Citation Analysis]
33 Doncel-Pérez E, Ellis G, Sandt C, Shuttleworth PS, Bastida A, Revuelta J, García-Junceda E, Fernández-Mayoralas A, Garrido L. Biochemical profiling of rat embryonic stem cells grown on electrospun polyester fibers using synchrotron infrared microspectroscopy. Anal Bioanal Chem 2018;410:3649-60. [PMID: 29671028 DOI: 10.1007/s00216-018-1049-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 Cho Y, Lee M, Park S, Kim Y, Lee E, Im SG. A Versatile Surface Modification Method via Vapor-phase Deposited Functional Polymer Films for Biomedical Device Applications. Biotechnol Bioprocess Eng 2021;:1-14. [PMID: 33821132 DOI: 10.1007/s12257-020-0269-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Zhao Y, Wang Y, Niu C, Zhang L, Li G, Yang Y. Construction of polyacrylamide/graphene oxide/gelatin/sodium alginate composite hydrogel with bioactivity for promoting Schwann cells growth: CONSTRUCTION OF PAM/GO/GEL/SA. J Biomed Mater Res 2018;106:1951-64. [DOI: 10.1002/jbm.a.36393] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 4.8] [Reference Citation Analysis]
36 He W, Wei D, Zhang J, Huang X, He D, Liu B, Wang Q, Liu M, Liu L, Liu Y, Tian W. Novel bone repairing scaffold consisting of bone morphogenetic Protein-2 and human Beta Defensin-3. J Biol Eng 2021;15:5. [PMID: 33557881 DOI: 10.1186/s13036-021-00258-5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Pan S, Qi Z, Li Q, Ma Y, Fu C, Zheng S, Kong W, Liu Q, Yang X. Graphene oxide-PLGA hybrid nanofibres for the local delivery of IGF-1 and BDNF in spinal cord repair. Artificial Cells, Nanomedicine, and Biotechnology 2019;47:650-63. [DOI: 10.1080/21691401.2019.1575843] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
38 Sun W, Zhang Y, Gregory DA, Jimenez-franco A, Tomeh MA, Lv S, Wang J, Haycock JW, Lu JR, Zhao X. Patterning the neuronal cells via inkjet printing of self-assembled peptides on silk scaffolds. Progress in Natural Science: Materials International 2020;30:686-96. [DOI: 10.1016/j.pnsc.2020.09.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
39 Sun Y, Liu X, George MN, Park S, Gaihre B, Terzic A, Lu L. Enhanced nerve cell proliferation and differentiation on electrically conductive scaffolds embedded with graphene and carbon nanotubes. J Biomed Mater Res A 2021;109:193-206. [PMID: 32441388 DOI: 10.1002/jbm.a.37016] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
40 Kumar R, Aadil KR, Ranjan S, Kumar VB. Advances in nanotechnology and nanomaterials based strategies for neural tissue engineering. Journal of Drug Delivery Science and Technology 2020;57:101617. [DOI: 10.1016/j.jddst.2020.101617] [Cited by in Crossref: 24] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
41 Sun X, Bai Y, Zhai H, Liu S, Zhang C, Xu Y, Zou J, Wang T, Chen S, Zhu Q, Liu X, Mao H, Quan D. Devising micro/nano-architectures in multi-channel nerve conduits towards a pro-regenerative matrix for the repair of spinal cord injury. Acta Biomater 2019;86:194-206. [PMID: 30586646 DOI: 10.1016/j.actbio.2018.12.032] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 8.7] [Reference Citation Analysis]
42 Profire L, Constantin SM. Nanomaterials in Tissue Engineering. Polymeric Nanomaterials in Nanotherapeutics. Elsevier; 2019. pp. 421-36. [DOI: 10.1016/b978-0-12-813932-5.00012-1] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
43 Marrazzo P, O'Leary C. Repositioning Natural Antioxidants for Therapeutic Applications in Tissue Engineering. Bioengineering (Basel) 2020;7:E104. [PMID: 32887327 DOI: 10.3390/bioengineering7030104] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
44 Chen L, Liu J, Guan M, Zhou T, Duan X, Xiang Z. Growth Factor and Its Polymer Scaffold-Based Delivery System for Cartilage Tissue Engineering. Int J Nanomedicine 2020;15:6097-111. [PMID: 32884266 DOI: 10.2147/IJN.S249829] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
45 Xu Y, Chen C, Hellwarth PB, Bao X. Biomaterials for stem cell engineering and biomanufacturing.Bioact Mater. 2019;4:366-379. [PMID: 31872161 DOI: 10.1016/j.bioactmat.2019.11.002] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
46 Hsiao YS, Lin CL, Liao IH, Chen FJ, Liu CT, Tseng HS, Yu J. Facile Fabrication of Microwrinkled Poly(3,4-Ethylenedioxythiophene) Films that Promote Neural Differentiation under Electrical Stimulation. ACS Appl Bio Mater 2021;4:2354-62. [PMID: 35014356 DOI: 10.1021/acsabm.0c01204] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
47 He L, Xiao Q, Zhao Y, Li J, Reddy S, Shi X, Su X, Chiu K, Ramakrishna S. Engineering an Injectable Electroactive Nanohybrid Hydrogel for Boosting Peripheral Nerve Growth and Myelination in Combination with Electrical Stimulation. ACS Appl Mater Interfaces 2020;12:53150-63. [PMID: 33179500 DOI: 10.1021/acsami.0c16885] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
48 Chen C, Ruan S, Bai X, Lin C, Xie C, Lee IS. Patterned iridium oxide film as neural electrode interface: Biocompatibility and improved neurite outgrowth with electrical stimulation. Mater Sci Eng C Mater Biol Appl 2019;103:109865. [PMID: 31349419 DOI: 10.1016/j.msec.2019.109865] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
49 Pereira HF, Cengiz IF, Silva FS, Reis RL, Oliveira JM. Scaffolds and coatings for bone regeneration. J Mater Sci: Mater Med 2020;31. [DOI: 10.1007/s10856-020-06364-y] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
50 Yu X, Sun M, He J, Wang H, Yu M, Dong L. Accelerated Neurite Outgrowth and Neurogenesis of PC12 Cells on an Fe-doped TiO2 Nanorod Film Triggered by Visible Light. ACS Biomater Sci Eng 2021;7:577-85. [PMID: 33443408 DOI: 10.1021/acsbiomaterials.0c01742] [Reference Citation Analysis]
51 Guzelgulgen M, Ozkendir-Inanc D, Yildiz UH, Arslan-Yildiz A. Glucuronoxylan-based quince seed hydrogel: A promising scaffold for tissue engineering applications. Int J Biol Macromol 2021;180:729-38. [PMID: 33757854 DOI: 10.1016/j.ijbiomac.2021.03.096] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
52 Kirillova A, Yeazel TR, Asheghali D, Petersen SR, Dort S, Gall K, Becker ML. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chem Rev 2021. [PMID: 33856196 DOI: 10.1021/acs.chemrev.0c01200] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
53 Chen WS, Guo LY, Masroujeh AM, Augustine AM, Tsai CK, Chin TY, Chen-Yang YW, Yang ML. A Single-Step Surface Modification of Electrospun Silica Nanofibers Using a Silica Binding Protein Fused with an RGD Motif for Enhanced PC12 Cell Growth and Differentiation. Materials (Basel) 2018;11:E927. [PMID: 29848981 DOI: 10.3390/ma11060927] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
54 Sánchez-González S, Diban N, Bianchi F, Ye H, Urtiaga A. Evidences of the Effect of GO and rGO in PCL Membranes on the Differentiation and Maturation of Human Neural Progenitor Cells. Macromol Biosci 2018;18:e1800195. [PMID: 30253070 DOI: 10.1002/mabi.201800195] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
55 Daskalova A, Trifonov A, Bliznakova I, Nathala C, Ajami A, Husinsky W, Declercq H, Buchvarov I. Selective cell response on natural polymer bio-interfaces textured by femtosecond laser. Appl Phys A 2018;124. [DOI: 10.1007/s00339-018-1628-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
56 J. B, M. M. B, Chanda K. Evolutionary approaches in protein engineering towards biomaterial construction. RSC Adv 2019;9:34720-34. [DOI: 10.1039/c9ra06807d] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
57 Bilginer R, Ozkendir‐inanc D, Yildiz UH, Arslan‐yildiz A. Biocomposite scaffolds for 3D cell culture: Propolis enriched polyvinyl alcohol nanofibers favoring cell adhesion. J Appl Polym Sci 2021;138:50287. [DOI: 10.1002/app.50287] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
58 Tan Z, Parisi C, Di Silvio L, Dini D, Forte AE. Cryogenic 3D Printing of Super Soft Hydrogels. Sci Rep 2017;7:16293. [PMID: 29176756 DOI: 10.1038/s41598-017-16668-9] [Cited by in Crossref: 56] [Cited by in F6Publishing: 38] [Article Influence: 11.2] [Reference Citation Analysis]
59 Niemczyk-Soczynska B, Zaszczyńska A, Zabielski K, Sajkiewicz P. Hydrogel, Electrospun and Composite Materials for Bone/Cartilage and Neural Tissue Engineering. Materials (Basel) 2021;14:6899. [PMID: 34832300 DOI: 10.3390/ma14226899] [Reference Citation Analysis]
60 Vigani B, Rossi S, Sandri G, Bonferoni MC, Ferrari F. Design and criteria of electrospun fibrous scaffolds for the treatment of spinal cord injury. Neural Regen Res 2017;12:1786-90. [PMID: 29239316 DOI: 10.4103/1673-5374.219029] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
61 Wartenberg A, Weisser J, Schnabelrauch M. Glycosaminoglycan-Based Cryogels as Scaffolds for Cell Cultivation and Tissue Regeneration. Molecules 2021;26:5597. [PMID: 34577067 DOI: 10.3390/molecules26185597] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Memic A, Colombani T, Eggermont LJ, Rezaeeyazdi M, Steingold J, Rogers ZJ, Navare KJ, Mohammed HS, Bencherif SA. Latest Advances in Cryogel Technology for Biomedical Applications. Adv Therap 2019;2:1800114. [DOI: 10.1002/adtp.201800114] [Cited by in Crossref: 85] [Cited by in F6Publishing: 39] [Article Influence: 28.3] [Reference Citation Analysis]
63 Zhou J, Nie Y, Jin C, Zhang JXJ. Engineering Biomimetic Extracellular Matrix with Silica Nanofibers: From 1D Material to 3D Network. ACS Biomater Sci Eng 2022;8:2258-80. [PMID: 35377596 DOI: 10.1021/acsbiomaterials.1c01525] [Reference Citation Analysis]
64 Jiang L, Wang Y, Liu Z, Ma C, Yan H, Xu N, Gang F, Wang X, Zhao L, Sun X. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application. Tissue Eng Part B Rev 2019;25:398-411. [PMID: 31115274 DOI: 10.1089/ten.TEB.2019.0100] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 10.7] [Reference Citation Analysis]
65 Sharma P, Pal VK, Roy S. An overview of latest advances in exploring bioactive peptide hydrogels for neural tissue engineering. Biomater Sci 2021;9:3911-38. [PMID: 33973582 DOI: 10.1039/d0bm02049d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
66 Ma C, Jiang L, Wang Y, Gang F, Xu N, Li T, Liu Z, Chi Y, Wang X, Zhao L, Feng Q, Sun X. 3D Printing of Conductive Tissue Engineering Scaffolds Containing Polypyrrole Nanoparticles with Different Morphologies and Concentrations. Materials (Basel) 2019;12:E2491. [PMID: 31390733 DOI: 10.3390/ma12152491] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
67 Bolívar-monsalve EJ, Alvarez MM, Hosseini S, Espinosa-hernandez MA, Ceballos-gonzález CF, Sanchez-dominguez M, Shin SR, Cecen B, Hassan S, Di Maio E, Trujillo-de Santiago G. Engineering bioactive synthetic polymers for biomedical applications: a review with emphasis on tissue engineering and controlled release. Mater Adv 2021;2:4447-78. [DOI: 10.1039/d1ma00092f] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
68 Ferreira CL, Valente CA, Zanini ML, Sgarioni B, Ferreira Tondo PH, Chagastelles PC, Braga J, Campos MM, Malmonge JA, de Souza Basso NR. Biocompatible PCL/PLGA/Polypyrrole Composites for Regenerating Nerves. Macromol Symp 2019;383:1800028. [DOI: 10.1002/masy.201800028] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
69 Wu Y, Zhang Q, Wang H, Wang M. Multiscale engineering of functional organic polymer interfaces for neuronal stimulation and recording. Mater Chem Front 2020;4:3444-71. [DOI: 10.1039/d0qm00279h] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
70 Klimek K, Ginalska G. Proteins and Peptides as Important Modifiers of the Polymer Scaffolds for Tissue Engineering Applications-A Review. Polymers (Basel) 2020;12:E844. [PMID: 32268607 DOI: 10.3390/polym12040844] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 12.0] [Reference Citation Analysis]
71 Rocha I, Cerqueira G, Varella Penteado F, Córdoba de Torresi SI. Electrical Stimulation and Conductive Polymers as a Powerful Toolbox for Tailoring Cell Behaviour in vitro. Front Med Technol 2021;3:670274. [PMID: 35047926 DOI: 10.3389/fmedt.2021.670274] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
72 Garrudo FFF, Mikael PE, Xia K, Silva JC, Ouyang Y, Chapman CA, Hoffman PR, Yu Y, Han X, Rodrigues CAV, Cabral JMS, Morgado J, Ferreira FC, Linhardt RJ. The effect of electrospun scaffolds on the glycosaminoglycan profile of differentiating neural stem cells. Biochimie 2021;182:61-72. [PMID: 33422570 DOI: 10.1016/j.biochi.2021.01.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
73 Ruiz IM, Vilariño-Feltrer G, Mnatsakanyan H, Vallés-Lluch A, Monleón Pradas M. Development and evaluation of hyaluronan nanocomposite conduits for neural tissue regeneration. J Biomater Sci Polym Ed 2021;:1-19. [PMID: 34396936 DOI: 10.1080/09205063.2021.1963930] [Reference Citation Analysis]
74 Markov A, Wördenweber R, Ichkitidze L, Gerasimenko A, Kurilova U, Suetina I, Mezentseva M, Offenhäusser A, Telyshev D. Biocompatible SWCNT Conductive Composites for Biomedical Applications. Nanomaterials (Basel) 2020;10:E2492. [PMID: 33322503 DOI: 10.3390/nano10122492] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
75 Rehman A, Houshyar S, Wang X. Nanodiamond in composite: Biomedical application. J Biomed Mater Res 2020;108:906-22. [DOI: 10.1002/jbm.a.36868] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
76 Baklaushev VP, Bogush VG, Kalsin VA, Sovetnikov NN, Samoilova EM, Revkova VA, Sidoruk KV, Konoplyannikov MA, Timashev PS, Kotova SL, Yushkov KB, Averyanov AV, Troitskiy AV, Ahlfors JE. Tissue Engineered Neural Constructs Composed of Neural Precursor Cells, Recombinant Spidroin and PRP for Neural Tissue Regeneration. Sci Rep 2019;9:3161. [PMID: 30816182 DOI: 10.1038/s41598-019-39341-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
77 Peressotti S, Koehl GE, Goding JA, Green RA. Self-Assembling Hydrogel Structures for Neural Tissue Repair. ACS Biomater Sci Eng 2021;7:4136-63. [PMID: 33780230 DOI: 10.1021/acsbiomaterials.1c00030] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Shi W, Dong P, Kuss MA, Gu L, Kievit F, Kim HJ, Duan B. Design and Evaluation of an In Vitro Mild Traumatic Brain Injury Modeling System Using 3D Printed Mini Impact Device on the 3D Cultured Human iPSC Derived Neural Progenitor Cells. Adv Healthc Mater 2021;10:e2100180. [PMID: 33890428 DOI: 10.1002/adhm.202100180] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
79 Wu S, Qi Y, Shi W, Kuss M, Chen S, Duan B. Electrospun conductive nanofiber yarns for accelerating mesenchymal stem cells differentiation and maturation into Schwann cell-like cells under a combination of electrical stimulation and chemical induction. Acta Biomater 2022;139:91-104. [PMID: 33271357 DOI: 10.1016/j.actbio.2020.11.042] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
80 Kong W, Qi Z, Xia P, Chang Y, Li H, Qu Y, Pan S, Yang X. Local delivery of FTY720 and NSCs on electrospun PLGA scaffolds improves functional recovery after spinal cord injury. RSC Adv 2019;9:17801-11. [DOI: 10.1039/c9ra01717h] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
81 Aadil KR, Nathani A, Sharma CS, Lenka N, Gupta P. Investigation of poly(vinyl) alcohol-gellan gum based nanofiber as scaffolds for tissue engineering applications. Journal of Drug Delivery Science and Technology 2019;54:101276. [DOI: 10.1016/j.jddst.2019.101276] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 4.7] [Reference Citation Analysis]
82 Pratim Das P, Aditya Bachchan A, Sahu R, Chaudhary V. Whole body vibration: Effects on human body and role of biomaterials in repairing fracture joints and tissues. Materials Today: Proceedings 2021;43:141-7. [DOI: 10.1016/j.matpr.2020.11.250] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Zhang N, Milbreta U, Chin JS, Pinese C, Lin J, Shirahama H, Jiang W, Liu H, Mi R, Hoke A, Wu W, Chew SY. Biomimicking Fiber Scaffold as an Effective In Vitro and In Vivo MicroRNA Screening Platform for Directing Tissue Regeneration. Adv Sci (Weinh) 2019;6:1800808. [PMID: 31065509 DOI: 10.1002/advs.201800808] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
84 Burnstine‐townley A, Eshel Y, Amdursky N. Conductive Scaffolds for Cardiac and Neuronal Tissue Engineering: Governing Factors and Mechanisms. Adv Funct Mater 2020;30:1901369. [DOI: 10.1002/adfm.201901369] [Cited by in Crossref: 50] [Cited by in F6Publishing: 33] [Article Influence: 16.7] [Reference Citation Analysis]
85 Liu S, Xie YY, Wang B. Role and prospects of regenerative biomaterials in the repair of spinal cord injury. Neural Regen Res 2019;14:1352-63. [PMID: 30964053 DOI: 10.4103/1673-5374.253512] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 12.7] [Reference Citation Analysis]
86 Bakhtiary S, Chegeni A, Babaeipour V, Omidi M, Keshel SH, Khodamoradi N. Culture and maintenance of neural progressive cells on cellulose acetate/graphene‑gold nanocomposites. Int J Biol Macromol 2022;210:63-75. [PMID: 35537583 DOI: 10.1016/j.ijbiomac.2022.05.026] [Reference Citation Analysis]
87 Arzaghi H, Adel B, Jafari H, Askarian-Amiri S, Shiralizadeh Dezfuli A, Akbarzadeh A, Pazoki-Toroudi H. Nanomaterial integration into the scaffolding materials for nerve tissue engineering: a review. Rev Neurosci 2020:/j/revneuro. [PMID: 32776904 DOI: 10.1515/revneuro-2020-0008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
88 Mahumane GD, Kumar P, du Toit LC, Choonara YE, Pillay V. 3D scaffolds for brain tissue regeneration: architectural challenges. Biomater Sci 2018;6:2812-37. [DOI: 10.1039/c8bm00422f] [Cited by in Crossref: 31] [Cited by in F6Publishing: 10] [Article Influence: 7.8] [Reference Citation Analysis]
89 Kenry, Liu B. Recent Advances in Biodegradable Conducting Polymers and Their Biomedical Applications. Biomacromolecules 2018;19:1783-803. [DOI: 10.1021/acs.biomac.8b00275] [Cited by in Crossref: 83] [Cited by in F6Publishing: 56] [Article Influence: 20.8] [Reference Citation Analysis]
90 Wianny F, Vezoli J. Transplantation in the nonhuman primate MPTP model of Parkinson's disease: update and perspectives. Primate Biol 2017;4:185-213. [PMID: 32110706 DOI: 10.5194/pb-4-185-2017] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
91 Sun X, Zhang C, Xu J, Zhai H, Liu S, Xu Y, Hu Y, Long H, Bai Y, Quan D. Neurotrophin-3-Loaded Multichannel Nanofibrous Scaffolds Promoted Anti-Inflammation, Neuronal Differentiation, and Functional Recovery after Spinal Cord Injury. ACS Biomater Sci Eng 2020;6:1228-38. [PMID: 33464858 DOI: 10.1021/acsbiomaterials.0c00023] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
92 Kenry, Liu B. Conductive Polymer-Based Functional Structures for Neural Therapeutic Applications. In: Liu BL, editor. Conjugated Polymers for Biological and Biomedical Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2018. pp. 243-67. [DOI: 10.1002/9783527342747.ch9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
93 Garrudo FF, Chapman CA, Hoffman PR, Udangawa RW, Silva JC, Mikael PE, Rodrigues CA, Cabral JM, Morgado JM, Ferreira FC, Linhardt RJ. Polyaniline-polycaprolactone blended nanofibers for neural cell culture. European Polymer Journal 2019;117:28-37. [DOI: 10.1016/j.eurpolymj.2019.04.048] [Cited by in Crossref: 26] [Cited by in F6Publishing: 10] [Article Influence: 8.7] [Reference Citation Analysis]
94 Tanasa E, Zaharia C, Hudita A, Radu IC, Costache M, Galateanu B. Impact of the magnetic field on 3T3-E1 preosteoblasts inside SMART silk fibroin-based scaffolds decorated with magnetic nanoparticles. Mater Sci Eng C Mater Biol Appl 2020;110:110714. [PMID: 32204026 DOI: 10.1016/j.msec.2020.110714] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
95 He Y, Wang C, Wang C, Xiao Y, Lin W. An Overview on Collagen and Gelatin-Based Cryogels: Fabrication, Classification, Properties and Biomedical Applications. Polymers (Basel) 2021;13:2299. [PMID: 34301056 DOI: 10.3390/polym13142299] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
96 Gerasimenko AY, Kitsyuk E, Kurilova UE, Suetina IA, Russu L, Mezentseva MV, Markov A, Narovlyansky AN, Kravchenko S, Selishchev SV, Glukhova OE. Interfaces Based on Laser-Structured Arrays of Carbon Nanotubes with Albumin for Electrical Stimulation of Heart Cell Growth. Polymers 2022;14:1866. [DOI: 10.3390/polym14091866] [Reference Citation Analysis]
97 Nawrotek K, Rudnicka K, Gatkowska J, Michlewska S, Pearson BL, Płociński P, Wieczorek M. Ten-eleven translocation methylcytosine dioxygenase 3-loaded microspheres penetrate neurons in vitro causing active demethylation and neurite outgrowth. J Tissue Eng Regen Med 2021;15:463-74. [PMID: 33735542 DOI: 10.1002/term.3185] [Reference Citation Analysis]
98 Wibowo A, Vyas C, Cooper G, Qulub F, Suratman R, Mahyuddin AI, Dirgantara T, Bartolo P. 3D Printing of Polycaprolactone-Polyaniline Electroactive Scaffolds for Bone Tissue Engineering. Materials (Basel) 2020;13:E512. [PMID: 31978961 DOI: 10.3390/ma13030512] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 13.0] [Reference Citation Analysis]
99 Garrudo FFF, Udangawa RN, Hoffman PR, Sordini L, Chapman CA, Mikael PE, Ferreira FA, Silva JC, Rodrigues CAV, Cabral JMS, Morgado JMF, Ferreira FC, Linhardt RJ. POLYBENZIMIDAZOLE NANOFIBERS FOR NEURAL STEM CELL CULTURE. Mater Today Chem 2019;14:100185. [PMID: 32864530 DOI: 10.1016/j.mtchem.2019.08.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]