BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Uswatta SP, Okeke IU, Jayasuriya AC. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration. Mater Sci Eng C Mater Biol Appl 2016;69:505-12. [PMID: 27612741 DOI: 10.1016/j.msec.2016.06.089] [Cited by in Crossref: 47] [Cited by in F6Publishing: 33] [Article Influence: 7.8] [Reference Citation Analysis]
Number Citing Articles
1 Easter QT. Biopolymer hydroxyapatite composite materials: Adding fluorescence lifetime imaging microscopy to the characterization toolkit. Nano Select. [DOI: 10.1002/nano.202100014] [Reference Citation Analysis]
2 Meskinfam M, Bertoldi S, Albanese N, Cerri A, Tanzi M, Imani R, Baheiraei N, Farokhi M, Farè S. Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration. Materials Science and Engineering: C 2018;82:130-40. [DOI: 10.1016/j.msec.2017.08.064] [Cited by in Crossref: 49] [Cited by in F6Publishing: 35] [Article Influence: 12.3] [Reference Citation Analysis]
3 Samie M, Yameen MA, Ikram HF, Iqbal H, Chaudhry AA, ur Rehman I, Khan AF. Fabrication of dual drug loaded bilayered chitosan based composite scaffolds as osteochondral substitutes and evaluation of in vitro cell response using the MC3T3 pre-osteoblast cell line. Cellulose 2020;27:2253-66. [DOI: 10.1007/s10570-019-02915-x] [Reference Citation Analysis]
4 Vallejos Baier R, Benjumeda Wijnhoven I, Irribarra Del Valle V, Millán Giovanetti C, Vivanco JF. Microporosity Clustering Assessment in Calcium Phosphate Bioceramic Particles. Front Bioeng Biotechnol 2019;7:281. [PMID: 31709245 DOI: 10.3389/fbioe.2019.00281] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Gaihre B, Lecka-Czernik B, Jayasuriya AC. Injectable nanosilica-chitosan microparticles for bone regeneration applications. J Biomater Appl 2018;32:813-25. [PMID: 29160129 DOI: 10.1177/0885328217741523] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
6 Liu C, Wu J, Gan D, Li Z, Shen J, Tang P, Luo S, Li P, Lu X, Zheng W. The characteristics of mussel‐inspired nHA/OSA injectable hydrogel and repaired bone defect in rabbit. J Biomed Mater Res 2020;108:1814-25. [DOI: 10.1002/jbm.b.34524] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
7 Kocak FZ, Talari ACS, Yar M, Rehman IU. In-Situ Forming pH and Thermosensitive Injectable Hydrogels to Stimulate Angiogenesis: Potential Candidates for Fast Bone Regeneration Applications. Int J Mol Sci 2020;21:E1633. [PMID: 32120998 DOI: 10.3390/ijms21051633] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
8 Hasan A, Waibhaw G, Saxena V, Pandey LM. Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. International Journal of Biological Macromolecules 2018;111:923-34. [DOI: 10.1016/j.ijbiomac.2018.01.089] [Cited by in Crossref: 95] [Cited by in F6Publishing: 64] [Article Influence: 23.8] [Reference Citation Analysis]
9 Ghiasi B, Sefidbakht Y, Mozaffari-Jovin S, Gharehcheloo B, Mehrarya M, Khodadadi A, Rezaei M, Ranaei Siadat SO, Uskoković V. Hydroxyapatite as a biomaterial - a gift that keeps on giving. Drug Dev Ind Pharm 2020;46:1035-62. [PMID: 32476496 DOI: 10.1080/03639045.2020.1776321] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 6.5] [Reference Citation Analysis]
10 Xu Z, Gao Y, Li J, Dai J, Zhu S, Meng K, Yin W, Zhao H. Bio-macromolecules/modified-halloysite composite hydrogel used as multi-functional wound dressing. Smart Materials in Medicine 2021;2:134-44. [DOI: 10.1016/j.smaim.2021.03.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Liu Y, Wu Y, Lin H, Xiao Y, Zhu X, Zhang K, Fan Y, Zhang X. Study on an injectable biomedical paste using cross-linked sodium hyaluronate as a carrier of hydroxyapatite particles. Carbohydr Polym 2018;195:378-86. [PMID: 29804989 DOI: 10.1016/j.carbpol.2018.04.093] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
12 Fu Y, Cui S, Luo D, Liu Y. Novel Inorganic Nanomaterial-Based Therapy for Bone Tissue Regeneration. Nanomaterials (Basel) 2021;11:789. [PMID: 33808788 DOI: 10.3390/nano11030789] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Goh CY, Lim SS, Tshai KY, El Azab AWZZ, Loh H. Fabrication and in vitro biocompatibility of sodium tripolyphosphate-crosslinked chitosan–hydroxyapatite scaffolds for bone regeneration. J Mater Sci 2019;54:3403-20. [DOI: 10.1007/s10853-018-3087-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
14 Pistone A, Iannazzo D, Celesti C, Scolaro C, Giofré SV, Romeo R, Visco A. Chitosan/PAMAM/Hydroxyapatite Engineered Drug Release Hydrogels with Tunable Rheological Properties. Polymers (Basel) 2020;12:E754. [PMID: 32244275 DOI: 10.3390/polym12040754] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
15 Pereira M, Honório L, Lima-júnior C, Silva Filho E, Gaslain F, Rigaud B, Fonseca M, Jaber M. Modulating the structure of organofunctionalized hydroxyapatite/tripolyphosphate/chitosan spheres for dye removal. Journal of Environmental Chemical Engineering 2020;8:103980. [DOI: 10.1016/j.jece.2020.103980] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
16 Jodati H, Yılmaz B, Evis Z. A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features. Ceramics International 2020;46:15725-39. [DOI: 10.1016/j.ceramint.2020.03.192] [Cited by in Crossref: 24] [Cited by in F6Publishing: 7] [Article Influence: 12.0] [Reference Citation Analysis]
17 Lei Y, Xu Z, Ke Q, Yin W, Chen Y, Zhang C, Guo Y. Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 2017;72:134-42. [PMID: 28024569 DOI: 10.1016/j.msec.2016.11.063] [Cited by in Crossref: 84] [Cited by in F6Publishing: 70] [Article Influence: 14.0] [Reference Citation Analysis]
18 Cai L, Pan Y, Tang S, Li Q, Tang T, Zheng K, Boccaccini AR, Wei S, Wei J, Su J. Macro-mesoporous composites containing PEEK and mesoporous diopside as bone implants: characterization, in vitro mineralization, cytocompatibility, and vascularization potential and osteogenesis in vivo. J Mater Chem B 2017;5:8337-52. [DOI: 10.1039/c7tb02344h] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 3.2] [Reference Citation Analysis]
19 Gaihre B, Uswatta S, Jayasuriya AC. Nano-scale characterization of nano-hydroxyapatite incorporated chitosan particles for bone repair. Colloids Surf B Biointerfaces 2018;165:158-64. [PMID: 29477936 DOI: 10.1016/j.colsurfb.2018.02.034] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
20 Sharma R, Sharma PK, Malviya R. Polysaccharide-based Scaffolds for Bone Marrow Regeneration: Recent Work and Commercial Utility (Patent). CSM 2019;4:29-35. [DOI: 10.2174/2405465804666190326151131] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Ebhodaghe SO. Natural Polymeric Scaffolds for Tissue Engineering Applications. J Biomater Sci Polym Ed 2021;:1-51. [PMID: 34328068 DOI: 10.1080/09205063.2021.1958185] [Reference Citation Analysis]
22 Gaihre B, Uswatta S, Jayasuriya AC. Reconstruction of Craniomaxillofacial Bone Defects Using Tissue-Engineering Strategies with Injectable and Non-Injectable Scaffolds. J Funct Biomater 2017;8:E49. [PMID: 29156629 DOI: 10.3390/jfb8040049] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
23 Silvestro I, Francolini I, Di Lisio V, Martinelli A, Pietrelli L, Scotto d'Abusco A, Scoppio A, Piozzi A. Preparation and Characterization of TPP-Chitosan Crosslinked Scaffolds for Tissue Engineering. Materials (Basel) 2020;13:E3577. [PMID: 32823636 DOI: 10.3390/ma13163577] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
24 L Dantas MJ, F Dos Santos BF, A Tavares A, Maciel MA, Lucena BM, L Fook MV, de L Silva SM. The Impact of the Ionic Cross-Linking Mode on the Physical and In Vitro Dexamethasone Release Properties of Chitosan/Hydroxyapatite Beads. Molecules 2019;24:E4510. [PMID: 31835480 DOI: 10.3390/molecules24244510] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
25 Bharadwaz A, Jayasuriya AC. Fabrication of porous chitosan particles using a novel two-step porogen leaching and lyophilization method with the label-free multivariate spectral assessment of live adhered cells. Colloids Surf B Biointerfaces 2021;208:112094. [PMID: 34500203 DOI: 10.1016/j.colsurfb.2021.112094] [Reference Citation Analysis]
26 Pipattanawarothai A, Suksai C, Srisook K, Trakulsujaritchok T. Non-cytotoxic hybrid bioscaffolds of chitosan-silica: Sol-gel synthesis, characterization and proposed application. Carbohydr Polym 2017;178:190-9. [PMID: 29050585 DOI: 10.1016/j.carbpol.2017.09.047] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
27 Li H, Song X, Li B, Kang J, Liang C, Wang H, Yu Z, Qiao Z. Carbon nanotube-reinforced mesoporous hydroxyapatite composites with excellent mechanical and biological properties for bone replacement material application. Materials Science and Engineering: C 2017;77:1078-87. [DOI: 10.1016/j.msec.2017.04.048] [Cited by in Crossref: 29] [Cited by in F6Publishing: 16] [Article Influence: 5.8] [Reference Citation Analysis]
28 Shukla A, Dasgupta N, Ranjan S, Singh S, Chidambram R. Nanotechnology towards prevention of anaemia and osteoporosis: from concept to market. Biotechnology & Biotechnological Equipment 2017;31:863-79. [DOI: 10.1080/13102818.2017.1335615] [Cited by in Crossref: 34] [Cited by in F6Publishing: 8] [Article Influence: 6.8] [Reference Citation Analysis]
29 Li Y, Zhang Z, Zhang Z. Porous Chitosan/Nano-Hydroxyapatite Composite Scaffolds Incorporating Simvastatin-Loaded PLGA Microspheres for Bone Repair. Cells Tissues Organs 2018;205:20-31. [PMID: 29393155 DOI: 10.1159/000485502] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
30 Afifi M, El-naggar ME, Muhammad S, Alghamdi NA, Wageh S, Abu-saied M, El-morsy M, Salem WM, Mostafa MS, Salem SR. Chemical stability, morphological behavior of Mg/Sr-hydroxyapatite@chitosan biocomposites for medical applications. Journal of Materials Research and Technology 2022;18:681-92. [DOI: 10.1016/j.jmrt.2022.02.107] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
31 Mellati A, Hasanzadeh E, Gholipourmalekabadi M, Enderami SE. Injectable nanocomposite hydrogels as an emerging platform for biomedical applications: A review. Mater Sci Eng C Mater Biol Appl 2021;131:112489. [PMID: 34857275 DOI: 10.1016/j.msec.2021.112489] [Reference Citation Analysis]
32 Nie L, Wu Q, Long H, Hu K, Li P, Wang C, Sun M, Dong J, Wei X, Suo J, Hua D, Liu S, Yuan H, Yang S. Development of chitosan/gelatin hydrogels incorporation of biphasic calcium phosphate nanoparticles for bone tissue engineering. J Biomater Sci Polym Ed 2019;30:1636-57. [PMID: 31393229 DOI: 10.1080/09205063.2019.1654210] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 7.3] [Reference Citation Analysis]
33 Kao CT, Chiu YC, Lee AK, Lin YH, Huang TH, Liu YC, Shie MY. The synergistic effects of Xu Duan combined Sr-contained calcium silicate/poly-ε-caprolactone scaffolds for the promotion of osteogenesis marker expression and the induction of bone regeneration in osteoporosis. Mater Sci Eng C Mater Biol Appl 2021;119:111629. [PMID: 33321669 DOI: 10.1016/j.msec.2020.111629] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
34 Liu X, Wu Y, Zhao X, Wang Z. Fabrication and applications of bioactive chitosan-based organic-inorganic hybrid materials: A review. Carbohydr Polym 2021;267:118179. [PMID: 34119147 DOI: 10.1016/j.carbpol.2021.118179] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
35 Ding Y, Su Y, Lv Z, Sun H, Bi X, Lu L, Zhou H, You Z, Wang Y, Ruan J, Gu P, Fan X. Poly (fumaroyl bioxirane) maleate: A potential functional scaffold for bone regeneration. Mater Sci Eng C Mater Biol Appl 2017;76:249-59. [PMID: 28482524 DOI: 10.1016/j.msec.2017.02.164] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
36 Xu Z, Lei Y, Yin W, Chen Y, Ke Q, Guo Y, Zhang C. Enhanced antibacterial activity and osteoinductivity of Ag-loaded strontium hydroxyapatite/chitosan porous scaffolds for bone tissue engineering. J Mater Chem B 2016;4:7919-28. [DOI: 10.1039/c6tb01282e] [Cited by in Crossref: 45] [Cited by in F6Publishing: 5] [Article Influence: 7.5] [Reference Citation Analysis]
37 Song JE, Jeon YS, Tian J, Kim WK, Choi MJ, Carlomagno C, Khang G. Evaluation of silymarin/duck's feet-derived collagen/hydroxyapatite sponges for bone tissue regeneration. Mater Sci Eng C Mater Biol Appl 2019;97:347-55. [PMID: 30678920 DOI: 10.1016/j.msec.2018.12.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
38 Chiu YC, Shie MY, Lin YH, Lee AK, Chen YW. Effect of Strontium Substitution on the Physicochemical Properties and Bone Regeneration Potential of 3D Printed Calcium Silicate Scaffolds. Int J Mol Sci 2019;20:E2729. [PMID: 31163656 DOI: 10.3390/ijms20112729] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
39 Pita-lópez ML, Fletes-vargas G, Espinosa-andrews H, Rodríguez-rodríguez R. Physically cross-linked chitosan-based hydrogels for tissue engineering applications: A state-of-the-art review. European Polymer Journal 2021;145:110176. [DOI: 10.1016/j.eurpolymj.2020.110176] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
40 Iqbal H, Ali M, Zeeshan R, Mutahir Z, Iqbal F, Nawaz MAH, Shahzadi L, Chaudhry AA, Yar M, Luan S, Khan AF, Rehman IU. Chitosan/hydroxyapatite (HA)/hydroxypropylmethyl cellulose (HPMC) spongy scaffolds-synthesis and evaluation as potential alveolar bone substitutes. Colloids Surf B Biointerfaces 2017;160:553-63. [PMID: 29024920 DOI: 10.1016/j.colsurfb.2017.09.059] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 5.8] [Reference Citation Analysis]