BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Toker S, Canadinc D, Maier H, Birer O. Evaluation of passive oxide layer formation–biocompatibility relationship in NiTi shape memory alloys: Geometry and body location dependency. Materials Science and Engineering: C 2014;36:118-29. [DOI: 10.1016/j.msec.2013.11.040] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 3.1] [Reference Citation Analysis]
Number Citing Articles
1 Arulkirubakaran D, Rasalin Prince RM, Debnath T, Immanuel ID, Jayaprakash P. A comprehensive characterization of shape memory alloys concerning the attributes of fabrication and post machining responses. Materials for Advanced Heat Transfer Systems 2023. [DOI: 10.1016/b978-0-323-90498-8.00009-9] [Reference Citation Analysis]
2 Martinez A, Saugo M, Flamini D, Saidman S. Enhancing the corrosion behavior of Ti–6Al–4V and nitinol alloys by simple chemical oxidation in H2O2. Materials Chemistry and Physics 2022. [DOI: 10.1016/j.matchemphys.2022.127069] [Reference Citation Analysis]
3 Bhat RS, Manjunatha KB, Shetty SK. Surface Features and Electrochemical Properties of Corrosion Resistant Ni–Ti Coatings. Prot Met Phys Chem Surf. [DOI: 10.1134/s2070205122050045] [Reference Citation Analysis]
4 Gurel S, Nazarahari A, Canadinc D, Gerstein G, Maier H, Cabuk H, Bukulmez T, Cananoglu M, Yagci M, Toker S, Gunes S, Soykan M. From corrosion behavior to radiation response: A comprehensive biocompatibility assessment of a CoCrMo medium entropy alloy for utility in orthopedic and dental implants. Intermetallics 2022;149:107680. [DOI: 10.1016/j.intermet.2022.107680] [Reference Citation Analysis]
5 Toker SM, Özbulut E, Kolçak Z, Güner E. A preliminary Investigation of Surface Micro Modification Effects on the Biocompatibility of 316L Stainless Steel. European Mechanical Science 2021;5:109-115. [DOI: 10.26701/ems.820904] [Reference Citation Analysis]
6 Marandi L, Sen I. In-vitro mechanical behavior and high cycle fatigue characteristics of NiTi-based shape memory alloy wire. International Journal of Fatigue 2021;148:106226. [DOI: 10.1016/j.ijfatigue.2021.106226] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Girón J, Kerstner E, Medeiros T, Oliveira L, Machado GM, Malfatti CF, Pranke P. Biomaterials for bone regeneration: an orthopedic and dentistry overview. Braz J Med Biol Res 2021;54:e11055. [PMID: 34133539 DOI: 10.1590/1414-431X2021e11055] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
8 Saugo M, Flamini DO, Saidman SB. Low-Voltage Polarization in AOT Solution to Enhance the Corrosion Resistance of Nitinol. J of Materi Eng and Perform 2021;30:1816-1824. [DOI: 10.1007/s11665-021-05493-x] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Razaghi M, Ramazani A, Khoobi M, Mortezazadeh T, Aksoy EA, Küçükkılınç TT. Highly fluorinated graphene oxide nanosheets for anticancer linoleic-curcumin conjugate delivery and T2-Weighted magnetic resonance imaging: In vitro and in vivo studies. Journal of Drug Delivery Science and Technology 2020;60:101967. [DOI: 10.1016/j.jddst.2020.101967] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
10 Kurtoğlu SF, Yağcı MB, Uzun A, Ünal U, Canadinc D. Enhancing biocompatibility of NiTi shape memory alloys by simple NH3 treatments. Applied Surface Science 2020;525:146547. [DOI: 10.1016/j.apsusc.2020.146547] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
11 Uzer B. Modulating the Surface Properties of Metallic Implants and the Response of Breast Cancer Cells by Surface Relief Induced via Bulk Plastic Deformation. Front Mater 2020;7. [DOI: 10.3389/fmats.2020.00099] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
12 Constant C, Nichols S, Wagnac É, Petit Y, Desrochers A, Braïlovski V. Biocompatibility and mechanical stability of Nitinol as biomaterial for intra-articular prosthetic devices. Materialia 2020;9:100567. [DOI: 10.1016/j.mtla.2019.100567] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
13 Christy Catherine Mary A, Jeyasundari J, Nazeera Banu V, Dorothy R, Rajendran S, Senthil Kumaran S, Peter Pascal Regis A. Corrosion behavior of orthodontic wires in artificial saliva with presence of beverage. Nanotechnology in the Beverage Industry 2020. [DOI: 10.1016/b978-0-12-819941-1.00016-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
14 Min G, Lee K, Sung S, Lee W, Yu S, Kim B. Bone and tissue reaction of porous nickel-titanium alloy implant for dental implants in rabbits. Oral Biol Res 2019;43:269-277. [DOI: 10.21851/obr.43.04.201912.269] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
15 Taşkan E, Bulak S, Taşkan B, Şaşmaz M, El Abed S, El Abed A. Nitinol as a suitable anode material for electricity generation in microbial fuel cells. Bioelectrochemistry 2019;128:118-25. [DOI: 10.1016/j.bioelechem.2019.03.008] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
16 Toker SM. Effects of Surface Characteristics on the in vitro Biocompatibility Response of NiTi Shape Memory Alloys. Academic Platform Journal of Engineering and Science 2019;7:285-290. [DOI: 10.21541/apjes.461169] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
17 Toker SM. NİKEL-TİTANYUM ŞEKİL BELLEKLİ ALAŞIMLARIN ÖRNEK GEOMETRİSİNE BAĞLI MEKANİK ÖZELLİK VE BİYOUYUMLULUK ANALİZİ. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 2018;26:8-13. [DOI: 10.31796/ogummf.331148] [Reference Citation Analysis]
18 Motallebzadeh A, Yagci MB, Bedir E, Aksoy CB, Canadinc D. Mechanical Properties of TiTaHfNbZr High-Entropy Alloy Coatings Deposited on NiTi Shape Memory Alloy Substrates. Metall and Mat Trans A 2018;49:1992-7. [DOI: 10.1007/s11661-018-4605-4] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 4.6] [Reference Citation Analysis]
19 Uzer B, Canadinc D. The Effect of Plastic Deformation on the Cell Viability and Adhesion Behavior in Metallic Implant Materials. Ceramic Transactions Series 2018. [DOI: 10.1002/9781119423829.ch16] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
20 Toker SM, Gerstein G, Maier HJ, Canadinc D. Effects of microstructural mechanisms on the localized oxidation behavior of NiTi shape memory alloys in simulated body fluid. J Mater Sci 2018;53:948-58. [DOI: 10.1007/s10853-017-1586-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
21 Witkowska J, Sowińska A, Czarnowska E, Płociński T, Kamiński J, Wierzchoń T. Hybrid a-CNH+TiO2+TiN-type surface layers produced on NiTi shape memory alloy for cardiovascular applications. Nanomedicine (Lond) 2017;12:2233-44. [PMID: 28818003 DOI: 10.2217/nnm-2017-0092] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
22 Uzer B, Birer O, Canadinc D. Investigation of the Dissolution–Reformation Cycle of the Passive Oxide Layer on NiTi Orthodontic Archwires. Shap Mem Superelasticity 2017;3:264-73. [DOI: 10.1007/s40830-017-0114-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
23 Saugo M, Flamini D, Zampieri G, Saidman S. Corrosion resistance improvement of nitinol by anodisation in the presence of molybdate ions. Materials Chemistry and Physics 2017;190:136-45. [DOI: 10.1016/j.matchemphys.2017.01.017] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
24 O’brien B, Weafer F, Bruzzi M. 1.3 Shape Memory Alloys for Use in Medicine ☆. Comprehensive Biomaterials II 2017. [DOI: 10.1016/b978-0-12-803581-8.10084-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
25 Čolić M, Tomić S, Rudolf R, Marković E, Šćepan I. Differences in cytocompatibility, dynamics of the oxide layers' formation, and nickel release between superelastic and thermo-activated nickel-titanium archwires. J Mater Sci Mater Med 2016;27:128. [PMID: 27364903 DOI: 10.1007/s10856-016-5742-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
26 Uzer B, Toker SM, Cingoz A, Bagci-Onder T, Gerstein G, Maier HJ, Canadinc D. An exploration of plastic deformation dependence of cell viability and adhesion in metallic implant materials. J Mech Behav Biomed Mater 2016;60:177-86. [PMID: 26807771 DOI: 10.1016/j.jmbbm.2016.01.001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.9] [Reference Citation Analysis]
27 Sun C, Wang Y, Su Q, Guo Z, Shi L. The Tribological Property and Microstructure of Ni-Ti Coating Prepared by Electrodeposition and Heat Treatment. Advances in Materials Science and Engineering 2016;2016:1-6. [DOI: 10.1155/2016/8750657] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
28 Toker SM, Canadinc D. Evaluation of the biocompatibility of NiTi dental wires: a comparison of laboratory experiments and clinical conditions. Mater Sci Eng C Mater Biol Appl 2014;40:142-7. [PMID: 24857476 DOI: 10.1016/j.msec.2014.03.060] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 2.4] [Reference Citation Analysis]
29 Onal O, Bal B, Toker SM, Mirzajanzadeh M, Canadinc D, Maier HJ. Microstructure-based modeling of the impact response of a biomedical niobium–zirconium alloy. J Mater Res 2014;29:1123-34. [DOI: 10.1557/jmr.2014.105] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]