BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Stanzione A, Cuocolo R, Verde F, Galatola R, Romeo V, Mainenti PP, Aprea G, Guadagno E, Del Basso De Caro M, Maurea S. Handcrafted MRI radiomics and machine learning: Classification of indeterminate solid adrenal lesions. Magn Reson Imaging 2021;79:52-8. [PMID: 33727148 DOI: 10.1016/j.mri.2021.03.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Sut SK, Koc M, Zorlu G, Serhatlioglu I, Barua PD, Dogan S, Baygin M, Tuncer T, Tan RS, Acharya UR. Automated Adrenal Gland Disease Classes Using Patch-Based Center Symmetric Local Binary Pattern Technique with CT Images. J Digit Imaging 2023. [PMID: 36658376 DOI: 10.1007/s10278-022-00759-9] [Reference Citation Analysis]
2 Pang C, Zhang Y, Xue Z, Bao J, Keong Li B, Liu Y, Liu Y, Sheng M, Peng B, Dai Y. Improving model robustness via enhanced feature representation and sample distribution based on cascaded classifiers for computer-aided diagnosis of brain disease. Biomedical Signal Processing and Control 2023;79:104047. [DOI: 10.1016/j.bspc.2022.104047] [Reference Citation Analysis]
3 Barat M, Gaillard M, Cottereau AS, Fishman EK, Assié G, Jouinot A, Hoeffel C, Soyer P, Dohan A. Artificial intelligence in adrenal imaging: A critical review of current applications. Diagn Interv Imaging 2023;104:37-42. [PMID: 36163169 DOI: 10.1016/j.diii.2022.09.003] [Reference Citation Analysis]
4 Zhang H, Lei H, Pang J. Diagnostic performance of radiomics in adrenal masses: A systematic review and meta-analysis. Front Oncol 2022;12:975183. [DOI: 10.3389/fonc.2022.975183] [Reference Citation Analysis]
5 O'shea A, Kilcoyne A, Mcdermott E, O'grady M, Mcdermott S. Can radiomic feature analysis differentiate adrenal metastases from lipid-poor adenomas on single-phase contrast-enhanced CT abdomen? Clinical Radiology 2022. [DOI: 10.1016/j.crad.2022.06.015] [Reference Citation Analysis]
6 Piskin FC, Akkus G, Yucel SP, Unal I, Balli HT, Olgun ME, Sert M, Tetiker BT, Aikimbaev K. A machine learning approach to distinguishing between non-functioning and autonomous cortisol secreting adrenal incidentaloma on magnetic resonance imaging using texture analysis. Ir J Med Sci 2022. [PMID: 35877014 DOI: 10.1007/s11845-022-03105-8] [Reference Citation Analysis]
7 Scalco E, Rizzo G, Mastropietro A. The stability of oncologic MRI radiomic features and the potential role of deep learning: a review. Phys Med Biol 2022;67:09TR03. [DOI: 10.1088/1361-6560/ac60b9] [Reference Citation Analysis]
8 Stanzione A, Galatola R, Cuocolo R, Romeo V, Verde F, Mainenti PP, Brunetti A, Maurea S. Radiomics in Cross-Sectional Adrenal Imaging: A Systematic Review and Quality Assessment Study. Diagnostics 2022;12:578. [DOI: 10.3390/diagnostics12030578] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
9 Mainenti PP, Stanzione A, Cuocolo R, Grosso RD, Danzi R, Romeo V, Raffone A, Sardo ADS, Giordano E, Travaglino A, Insabato L, Scaglione M, Maurea S, Brunetti A. MRI radiomics: a machine learning approach for the risk stratification of endometrial cancer patients. European Journal of Radiology 2022. [DOI: 10.1016/j.ejrad.2022.110226] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
10 Barat M, Cottereau A, Gaujoux S, Tenenbaum F, Sibony M, Bertherat J, Libé R, Gaillard M, Jouinot A, Assié G, Hoeffel C, Soyer P, Dohan A. Adrenal Mass Characterization in the Era of Quantitative Imaging: State of the Art. Cancers 2022;14:569. [DOI: 10.3390/cancers14030569] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Stanzione A, Verde F, Galatola R, Romeo V, Liuzzi R, Mainenti PP, Aprea G, Klain M, Guadagno E, Del Basso De Caro M, Maurea S. Qualitative Heterogeneous Signal Drop on Chemical Shift (CS) MR Imaging: Correlative Quantitative Analysis between CS Signal Intensity Index and Contrast Washout Parameters Using T1-Weighted Sequences. Tomography 2021;7:961-71. [PMID: 34941651 DOI: 10.3390/tomography7040079] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]