BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wilson DM, Kim D, Berquist BR, Sigurdson AJ. Variation in base excision repair capacity. Mutat Res. 2011;711:100-112. [PMID: 21167187 DOI: 10.1016/j.mrfmmm.2010.12.004] [Cited by in Crossref: 84] [Cited by in F6Publishing: 80] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Mizuno Y, Inaba Y, Masuoka H, Kibe M, Kosaka S, Natsuhara K, Hirayama K, Inthavong N, Kounnavong S, Tomita S, Umezaki M. Impact of modernization on oxidative stress among indigenous populations in northern Laos. Am J Biol Anthropol 2023. [PMID: 36919625 DOI: 10.1002/ajpa.24722] [Reference Citation Analysis]
2 Maleki Dana P, Sadoughi F, Mirzaei H, Asemi Z, Yousefi B. DNA damage response and repair in the development and treatment of brain tumors. European Journal of Pharmacology 2022;924:174957. [DOI: 10.1016/j.ejphar.2022.174957] [Reference Citation Analysis]
3 Oliveira TT, Coutinho LG, de Oliveira LOA, Timoteo ARDS, Farias GC, Agnez-lima LF. APE1/Ref-1 Role in Inflammation and Immune Response. Front Immunol 2022;13:793096. [DOI: 10.3389/fimmu.2022.793096] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Mladenova V, Mladenov E, Stuschke M, Iliakis G. DNA Damage Clustering after Ionizing Radiation and Consequences in the Processing of Chromatin Breaks. Molecules 2022;27:1540. [PMID: 35268641 DOI: 10.3390/molecules27051540] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
5 Feiveson AH, Krieger SS, von Scheven G, Crucian BE, Bürkle A, Stahn AC, Wu H, Moreno-villanueva M. DNA Damage and Radiosensitivity in Blood Cells from Subjects Undergoing 45 Days of Isolation and Confinement: An Explorative Study. CIMB 2022;44:654-69. [DOI: 10.3390/cimb44020046] [Reference Citation Analysis]
6 Saad L, Zwiller J, Kalsbeek A, Anglard P. Epigenetic Regulation of Circadian Clocks and Its Involvement in Drug Addiction. Genes (Basel) 2021;12:1263. [PMID: 34440437 DOI: 10.3390/genes12081263] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
7 Saad L, Kalsbeek A, Zwiller J, Anglard P. Rhythmic Regulation of DNA Methylation Factors and Core-Clock Genes in Brain Structures Activated by Cocaine or Sucrose: Potential Role of Chromatin Remodeling. Genes (Basel) 2021;12:1195. [PMID: 34440369 DOI: 10.3390/genes12081195] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Alekseeva IV, Bakman AS, Iakovlev DA, Kuznetsov NA, Fedorova OS. Comparative Analysis of the Activity of the Polymorphic Variants of Human Uracil-DNA-Glycosylases SMUG1 and MBD4. Mol Biol 2021;55:241-51. [DOI: 10.1134/s0026893321020035] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Zheng Y, Deng Z, Tang M, Xiao D, Cai P. Impact of genetic factors on platinum-induced gastrointestinal toxicity. Mutat Res Rev Mutat Res 2020;786:108324. [PMID: 33339576 DOI: 10.1016/j.mrrev.2020.108324] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
10 Somuncu B, Keskin S, Antmen FM, Saglican Y, Ekmekcioglu A, Ertuzun T, Tuna MB, Obek C, Wilson DM 3rd, Ince U, Kural AR, Muftuoglu M. Non-muscle invasive bladder cancer tissues have increased base excision repair capacity. Sci Rep 2020;10:16371. [PMID: 33004944 DOI: 10.1038/s41598-020-73370-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
11 Kladova OA, Alekseeva IV, Saparbaev M, Fedorova OS, Kuznetsov NA. Modulation of the Apurinic/Apyrimidinic Endonuclease Activity of Human APE1 and of Its Natural Polymorphic Variants by Base Excision Repair Proteins. Int J Mol Sci 2020;21:E7147. [PMID: 32998246 DOI: 10.3390/ijms21197147] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
12 Betlej G, Bator E, Pyrkosz A, Kwiatkowska A. A Dual Face of APE1 in the Maintenance of Genetic Stability in Monocytes: An Overview of the Current Status and Future Perspectives. Genes (Basel) 2020;11:E643. [PMID: 32545201 DOI: 10.3390/genes11060643] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
13 Whitaker AM, Stark WJ, Flynn TS, Freudenthal BD. Molecular and structural characterization of disease-associated APE1 polymorphisms. DNA Repair (Amst) 2020;91-92:102867. [PMID: 32454397 DOI: 10.1016/j.dnarep.2020.102867] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
14 Douafer L, Zaidi N, Soltani N. Seasonal variation of biomarker responses in Cantareus aspersus and physic-chemical properties of soils from Northeast Algeria. Environ Sci Pollut Res 2020;27:24145-61. [DOI: 10.1007/s11356-020-08694-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
15 Chauhan R, Michalak TI. Kinetics of DNA damage repair response accompanying initial hepadnavirus-host genomic integration in woodchuck hepatitis virus infection of hepatocyte. Cancer Genet. 2020;244:1-10. [PMID: 32062411 DOI: 10.1016/j.cancergen.2020.02.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
16 Attia SM, Al-Hamamah MA, Ahmad SF, Nadeem A, Attia MSM, Ansari MA, Bakheet SA, Al-Ayadhi LY. Evaluation of DNA repair efficiency in autistic children by molecular cytogenetic analysis and transcriptome profiling. DNA Repair (Amst) 2020;85:102750. [PMID: 31765876 DOI: 10.1016/j.dnarep.2019.102750] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
17 Kang L, Zou X, Zhang G, Xiang J, Wang Y, Yang M, Chen X, Wu J, Guan AH. A variant in a microRNA binding site in NEIL2 3′UTR confers susceptibility to age‐related cataracts. FASEB j 2019;33:10469-76. [DOI: 10.1096/fj.201802291r] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
18 Mani M, Kabekkodu S, Joshi M, Dsouza H. Ecogenetics of lead toxicity and its influence on risk assessment. Hum Exp Toxicol 2019;38:1031-59. [DOI: 10.1177/0960327119851253] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
19 Mouzakis KD, Wu T, Haushalter KA. Thermostability and excision activity of polymorphic forms of hOGG1. BMC Res Notes 2019;12:92. [PMID: 30777129 DOI: 10.1186/s13104-019-4111-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
20 Huang HI, Chen CH, Wang SH, Wang LH, Lin YC. Effects of APE1 Asp148Glu polymorphisms on OPMD malignant transformation, and on susceptibility to and overall survival of oral cancer in Taiwan. Head Neck 2019;41:1557-64. [PMID: 30652382 DOI: 10.1002/hed.25576] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
21 Cheng Z, Cheng N, Shi D, Ren X, Gan T, Bai Y, Yang K. The Relationship between Nkx2.1 and DNA Oxidative Damage Repair in Nickel Smelting Workers: Jinchang Cohort Study. Int J Environ Res Public Health 2019;16:E120. [PMID: 30621196 DOI: 10.3390/ijerph16010120] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
22 Alsaad AM, Al-arifi MN, Maayah ZH, Attafi IM, Alanazi FE, Belali OM, Alhoshani A, Asiri YA, Korashy HM. Genotoxic impact of long-term cigarette and waterpipe smoking on DNA damage and oxidative stress in healthy subjects. Toxicology Mechanisms and Methods 2018;29:119-27. [DOI: 10.1080/15376516.2018.1528650] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 4.4] [Reference Citation Analysis]
23 Suresh Kumar MA, Laiakis EC, Ghandhi SA, Morton SR, Fornace AJ Jr, Amundson SA. Gene Expression in Parp1 Deficient Mice Exposed to a Median Lethal Dose of Gamma Rays. Radiat Res 2018;190:53-62. [PMID: 29746213 DOI: 10.1667/RR14990.1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
24 Lirussi L, Antoniali G, D'Ambrosio C, Scaloni A, Nilsen H, Tell G. APE1 polymorphic variants cause persistent genomic stress and affect cancer cell proliferation. Oncotarget 2016;7:26293-306. [PMID: 27050370 DOI: 10.18632/oncotarget.8477] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 4.6] [Reference Citation Analysis]
25 Wang L, Xu J, Duan B. Association between polymorphisms in DNA repair gene XRCC1 and non-melanoma skin cancer risk: a meta-analysis. Onco Targets Ther 2017;10:3475-83. [PMID: 28761356 DOI: 10.2147/OTT.S133978] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
26 Azevedo AP, Silva SN, De Lima JP, Reichert A, Lima F, Júnior E, Rueff J. DNA repair genes polymorphisms and genetic susceptibility to Philadelphia-negative myeloproliferative neoplasms in a Portuguese population: The role of base excision repair genes polymorphisms. Oncol Lett 2017;13:4641-50. [PMID: 28599464 DOI: 10.3892/ol.2017.6065] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
27 Das R, Ghosh SK. Genetic variants of the DNA repair genes from Exome Aggregation Consortium (EXAC) database: significance in cancer. DNA Repair 2017;52:92-102. [DOI: 10.1016/j.dnarep.2017.02.013] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
28 Whitaker AM, Schaich MA, Smith MR, Flynn TS, Freudenthal BD. Base excision repair of oxidative DNA damage: from mechanism to disease. Front Biosci (Landmark Ed) 2017;22:1493-522. [PMID: 28199214 DOI: 10.2741/4555] [Cited by in Crossref: 114] [Cited by in F6Publishing: 117] [Article Influence: 19.0] [Reference Citation Analysis]
29 Wang T, Goodman M, Sun YV, Thyagarajan B, Gross M, Bostick RM. DNA base excision repair genetic risk scores, oxidative balance, and incident, sporadic colorectal adenoma. Mol Carcinog 2017;56:1642-52. [PMID: 28120344 DOI: 10.1002/mc.22620] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
30 Illuzzi JL, McNeill DR, Bastian P, Brenerman B, Wersto R, Russell HR, Bunz F, McKinnon PJ, Becker KG, Wilson DM 3rd. Tumor-associated APE1 variant exhibits reduced complementation efficiency but does not promote cancer cell phenotypes. Environ Mol Mutagen 2017;58:84-98. [PMID: 28181292 DOI: 10.1002/em.22074] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
31 Romano R, Zaravinos A, Liadaki K, Caridha R, Lundin J, Carlsson G, Winiarski J, Pan-Hammarström Q, Hammarström L. NEIL1 is a candidate gene associated with common variable immunodeficiency in a patient with a chromosome 15q24 deletion. Clin Immunol 2017;176:71-6. [PMID: 28093361 DOI: 10.1016/j.clim.2017.01.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
32 Yarosh DB. DNA Damage and Repair in Skin Aging. Textbook of Aging Skin 2017. [DOI: 10.1007/978-3-662-47398-6_31] [Reference Citation Analysis]
33 Ray D, Kidane D. Gut Microbiota Imbalance and Base Excision Repair Dynamics in Colon Cancer. J Cancer 2016;7:1421-30. [PMID: 27471558 DOI: 10.7150/jca.15480] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
34 Mladenova V, Mladenov E, Iliakis G. Novel Biological Approaches for Testing the Contributions of Single DSBs and DSB Clusters to the Biological Effects of High LET Radiation. Front Oncol 2016;6:163. [PMID: 27446809 DOI: 10.3389/fonc.2016.00163] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
35 Lillenes MS, Rabano A, Støen M, Riaz T, Misaghian D, Møllersen L, Esbensen Y, Günther CC, Selnes P, Stenset VT, Fladby T, Tønjum T. Altered DNA base excision repair profile in brain tissue and blood in Alzheimer's disease. Mol Brain 2016;9:61. [PMID: 27234294 DOI: 10.1186/s13041-016-0237-z] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 4.4] [Reference Citation Analysis]
36 Healing E, Meira L, Aston P, Tindall M, Elliott R. Measurement of DNA repair activity in hepatocytes exposed to fatty acids. Proc Nutr Soc 2016;75:E72. [DOI: 10.1017/s0029665116000872] [Reference Citation Analysis]
37 Vascotto C, Poletto M, Tell G. Understanding the basics for translating the base excision repair pathway from benchtop to bedside in cancer treatment. DNA Repair in Cancer Therapy 2016. [DOI: 10.1016/b978-0-12-803582-5.00003-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
38 Yarosh DB. DNA Damage and Repair in Skin Aging. Textbook of Aging Skin 2016. [DOI: 10.1007/978-3-642-27814-3_31-3] [Reference Citation Analysis]
39 Reddy PT, Jaruga P, Nelson BC, Lowenthal MS, Jemth AS, Loseva O, Coskun E, Helleday T, Dizdaroglu M. Production, Purification, and Characterization of ¹⁵N-Labeled DNA Repair Proteins as Internal Standards for Mass Spectrometric Measurements. Methods Enzymol 2016;566:305-32. [PMID: 26791985 DOI: 10.1016/bs.mie.2015.06.044] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
40 Akbari M, Morevati M, Croteau D, Bohr VA. The role of DNA base excision repair in brain homeostasis and disease. DNA Repair (Amst) 2015;32:172-9. [PMID: 26002197 DOI: 10.1016/j.dnarep.2015.04.029] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 2.9] [Reference Citation Analysis]
41 Ghosh S, Canugovi C, Yoon JS, Wilson DM 3rd, Croteau DL, Mattson MP, Bohr VA. Partial loss of the DNA repair scaffolding protein, Xrcc1, results in increased brain damage and reduced recovery from ischemic stroke in mice. Neurobiol Aging 2015;36:2319-30. [PMID: 25971543 DOI: 10.1016/j.neurobiolaging.2015.04.004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
42 Skarpengland T, Laugsand LE, Janszky I, Luna L, Halvorsen B, Platou CG, Wang W, Vatten LJ, Damås JK, Aukrust P, Bjørås M, Åsvold BO. Genetic variants in the DNA repair gene NEIL3 and the risk of myocardial infarction in a nested case-control study. The HUNT Study. DNA Repair (Amst) 2015;28:21-7. [PMID: 25703835 DOI: 10.1016/j.dnarep.2015.01.013] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
43 Dutta A, Yang C, Sengupta S, Mitra S, Hegde ML. New paradigms in the repair of oxidative damage in human genome: mechanisms ensuring repair of mutagenic base lesions during replication and involvement of accessory proteins. Cell Mol Life Sci 2015;72:1679-98. [PMID: 25575562 DOI: 10.1007/s00018-014-1820-z] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 4.6] [Reference Citation Analysis]
44 Xie H, Gong Y, Dai J, Wu X, Gu J. Genetic variations in base excision repair pathway and risk of bladder cancer: a case-control study in the United States. Mol Carcinog 2015;54:50-7. [PMID: 24038406 DOI: 10.1002/mc.22073] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
45 Yarosh DB. DNA Damage and Repair in Skin Aging. Textbook of Aging Skin 2015. [DOI: 10.1007/978-3-642-27814-3_31-2] [Reference Citation Analysis]
46 Sykora P, Misiak M, Wang Y, Ghosh S, Leandro GS, Liu D, Tian J, Baptiste BA, Cong WN, Brenerman BM, Fang E, Becker KG, Hamilton RJ, Chigurupati S, Zhang Y, Egan JM, Croteau DL, Wilson DM 3rd, Mattson MP, Bohr VA. DNA polymerase β deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes. Nucleic Acids Res 2015;43:943-59. [PMID: 25552414 DOI: 10.1093/nar/gku1356] [Cited by in Crossref: 80] [Cited by in F6Publishing: 86] [Article Influence: 8.9] [Reference Citation Analysis]
47 Dizdaroglu M. Oxidatively induced DNA damage and its repair in cancer. Mutat Res Rev Mutat Res. 2015;763:212-245. [PMID: 25795122 DOI: 10.1016/j.mrrev.2014.11.002] [Cited by in Crossref: 155] [Cited by in F6Publishing: 159] [Article Influence: 17.2] [Reference Citation Analysis]
48 Brenerman BM, Illuzzi JL, Wilson DM 3rd. Base excision repair capacity in informing healthspan. Carcinogenesis 2014;35:2643-52. [PMID: 25355293 DOI: 10.1093/carcin/bgu225] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 3.3] [Reference Citation Analysis]
49 Liu XC, Liu XF, Hu ZD, Li ZH. Polymorphisms of DNA repair genes XPD (Lys751Gln) and XRCC1 (Arg399Gln), and the risk of age-related cataract: a meta-analysis. Curr Eye Res 2015;40:676-82. [PMID: 25285569 DOI: 10.3109/02713683.2014.957325] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
50 Voskarides K. Genetic Epidemiology of Cancer Predisposition DNA Repair Genes Is Probably Related with Ancestral Surviving Under Adverse Environmental Conditions. Genetic Testing and Molecular Biomarkers 2014;18:533-7. [DOI: 10.1089/gtmb.2014.0053] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
51 Nickson CM, Parsons JL. Monitoring regulation of DNA repair activities of cultured cells in-gel using the comet assay. Front Genet 2014;5:232. [PMID: 25076968 DOI: 10.3389/fgene.2014.00232] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
52 Zhang SH, Wang LA, Li Z, Peng Y, Cun YP, Dai N, Cheng Y, Xiao H, Xiong YL, Wang D. APE1 polymorphisms are associated with colorectal cancer susceptibility in Chinese Hans. World J Gastroenterol 2014; 20(26): 8700-8708 [PMID: 25024628 DOI: 10.3748/wjg.v20.i26.8700] [Cited by in CrossRef: 14] [Cited by in F6Publishing: 18] [Article Influence: 1.6] [Reference Citation Analysis]
53 Wallace SS. Base excision repair: a critical player in many games. DNA Repair (Amst) 2014;19:14-26. [PMID: 24780558 DOI: 10.1016/j.dnarep.2014.03.030] [Cited by in Crossref: 264] [Cited by in F6Publishing: 277] [Article Influence: 29.3] [Reference Citation Analysis]
54 Nagel ZD, Chaim IA, Samson LD. Inter-individual variation in DNA repair capacity: a need for multi-pathway functional assays to promote translational DNA repair research. DNA Repair (Amst) 2014;19:199-213. [PMID: 24780560 DOI: 10.1016/j.dnarep.2014.03.009] [Cited by in Crossref: 64] [Cited by in F6Publishing: 66] [Article Influence: 7.1] [Reference Citation Analysis]
55 Peng Y, Li Z, Zhang S, Xiong Y, Cun Y, Qian C, Li M, Ren T, Xia L, Cheng Y, Wang D. Association of DNA base excision repair genes (OGG1, APE1 and XRCC1) polymorphisms with outcome to platinum-based chemotherapy in advanced nonsmall-cell lung cancer patients. Int J Cancer 2014;135:2687-96. [PMID: 24729390 DOI: 10.1002/ijc.28892] [Cited by in Crossref: 45] [Cited by in F6Publishing: 49] [Article Influence: 5.0] [Reference Citation Analysis]
56 Nagel ZD, Margulies CM, Chaim IA, McRee SK, Mazzucato P, Ahmad A, Abo RP, Butty VL, Forget AL, Samson LD. Multiplexed DNA repair assays for multiple lesions and multiple doses via transcription inhibition and transcriptional mutagenesis. Proc Natl Acad Sci U S A 2014;111:E1823-32. [PMID: 24757057 DOI: 10.1073/pnas.1401182111] [Cited by in Crossref: 94] [Cited by in F6Publishing: 96] [Article Influence: 10.4] [Reference Citation Analysis]
57 Kim WC, Ma C, Li WM, Chohan M, Wilson DM 3rd, Lee CH. Altered endoribonuclease activity of apurinic/apyrimidinic endonuclease 1 variants identified in the human population. PLoS One 2014;9:e90837. [PMID: 24595156 DOI: 10.1371/journal.pone.0090837] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
58 Abbotts R, Thompson N, Madhusudan S. DNA repair in cancer: emerging targets for personalized therapy. Cancer Manag Res 2014;6:77-92. [PMID: 24600246 DOI: 10.2147/CMAR.S50497] [Cited by in Crossref: 8] [Cited by in F6Publishing: 23] [Article Influence: 0.9] [Reference Citation Analysis]
59 Li M, Wilson DM 3rd. Human apurinic/apyrimidinic endonuclease 1. Antioxid Redox Signal 2014;20:678-707. [PMID: 23834463 DOI: 10.1089/ars.2013.5492] [Cited by in Crossref: 174] [Cited by in F6Publishing: 177] [Article Influence: 19.3] [Reference Citation Analysis]
60 Broustas CG, Lieberman HB. DNA damage response genes and the development of cancer metastasis. Radiat Res 2014;181:111-30. [PMID: 24397478 DOI: 10.1667/RR13515.1] [Cited by in Crossref: 170] [Cited by in F6Publishing: 176] [Article Influence: 18.9] [Reference Citation Analysis]
61 Yaegaki K. The Role of p53 in Carcinogenesis and Apoptosis in Oral Tissues. Studies on Periodontal Disease 2014. [DOI: 10.1007/978-1-4614-9557-4_7] [Reference Citation Analysis]
62 Jacob KD, Noren Hooten N, Tadokoro T, Lohani A, Barnes J, Evans MK. Alzheimer's disease-associated polymorphisms in human OGG1 alter catalytic activity and sensitize cells to DNA damage. Free Radic Biol Med 2013;63:115-25. [PMID: 23684897 DOI: 10.1016/j.freeradbiomed.2013.05.010] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 3.8] [Reference Citation Analysis]
63 Kirkali G, Jaruga P, Reddy PT, Tona A, Nelson BC, Li M, Wilson DM 3rd, Dizdaroglu M. Identification and quantification of DNA repair protein apurinic/apyrimidinic endonuclease 1 (APE1) in human cells by liquid chromatography/isotope-dilution tandem mass spectrometry. PLoS One 2013;8:e69894. [PMID: 23922845 DOI: 10.1371/journal.pone.0069894] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
64 Sokolov M, Neumann R. Lessons learned about human stem cell responses to ionizing radiation exposures: a long road still ahead of us. Int J Mol Sci 2013;14:15695-723. [PMID: 23899786 DOI: 10.3390/ijms140815695] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 2.3] [Reference Citation Analysis]
65 Gurkan-Cavusoglu E, Avadhani S, Liu L, Kinsella TJ, Loparo KA. Developing an in silico model of the modulation of base excision repair using methoxyamine for more targeted cancer therapeutics. IET Syst Biol 2013;7:27-37. [PMID: 23847811 DOI: 10.1049/iet-syb.2011.0045] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
66 Schipler A, Iliakis G. DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice. Nucleic Acids Res 2013;41:7589-605. [PMID: 23804754 DOI: 10.1093/nar/gkt556] [Cited by in Crossref: 189] [Cited by in F6Publishing: 200] [Article Influence: 18.9] [Reference Citation Analysis]
67 Illuzzi JL, Harris NA, Manvilla BA, Kim D, Li M, Drohat AC, Wilson DM 3rd. Functional assessment of population and tumor-associated APE1 protein variants. PLoS One 2013;8:e65922. [PMID: 23776569 DOI: 10.1371/journal.pone.0065922] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 2.4] [Reference Citation Analysis]
68 Ouyang FD, Yang FL, Chen HC, Khan MA, Huang FM, Wan XX, Xu AH, Huang X, Zhou MJ, Fang Q, Zhang DZ. Polymorphisms of DNA repair genes XPD, XRCC1, and OGG1, and lung adenocarcinoma susceptibility in Chinese population. Tumour Biol 2013;34:2843-8. [PMID: 23700156 DOI: 10.1007/s13277-013-0844-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
69 Grinev VV, Ramanouskaya TV, Gloushen SV. Multidimensional control of cell structural robustness. Cell Biol Int 2013;37:1023-37. [PMID: 23686647 DOI: 10.1002/cbin.10128] [Reference Citation Analysis]
70 Iyama T, Wilson DM 3rd. DNA repair mechanisms in dividing and non-dividing cells. DNA Repair (Amst) 2013;12:620-36. [PMID: 23684800 DOI: 10.1016/j.dnarep.2013.04.015] [Cited by in Crossref: 449] [Cited by in F6Publishing: 462] [Article Influence: 44.9] [Reference Citation Analysis]
71 Noren Hooten N, Fitzpatrick M, Kompaniez K, Jacob KD, Moore BR, Nagle J, Barnes J, Lohani A, Evans MK. Coordination of DNA repair by NEIL1 and PARP-1: a possible link to aging. Aging (Albany NY) 2012;4:674-85. [PMID: 23104860 DOI: 10.18632/aging.100492] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 3.0] [Reference Citation Analysis]
72 Sacerdote C, Guarrera S, Ricceri F, Pardini B, Polidoro S, Allione A, Critelli R, Russo A, Andrew AS, Ye Y, Wu X, Kiemeney LA, Bosio A, Casetta G, Cucchiarale G, Destefanis P, Gontero P, Rolle L, Zitella A, Fontana D, Vineis P, Matullo G. Polymorphisms in the XRCC1 gene modify survival of bladder cancer patients treated with chemotherapy. Int J Cancer 2013;133:2004-9. [PMID: 23553206 DOI: 10.1002/ijc.28186] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 2.3] [Reference Citation Analysis]
73 Sultana R, Abdel-Fatah T, Perry C, Moseley P, Albarakti N, Mohan V, Seedhouse C, Chan S, Madhusudan S. Ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase inhibition is synthetically lethal in XRCC1 deficient ovarian cancer cells. PLoS One 2013;8:e57098. [PMID: 23451157 DOI: 10.1371/journal.pone.0057098] [Cited by in Crossref: 62] [Cited by in F6Publishing: 55] [Article Influence: 6.2] [Reference Citation Analysis]
74 Croteau D, Bohr V. Overview of DNA Repair Pathways. DNA Repair and Cancer 2013. [DOI: 10.1201/b14587-2] [Reference Citation Analysis]
75 García-quispes W, Pastor S, Galofré P, Biarnés F, Castell J, Velázquez A, Marcos R. Influence of DNA-repair gene variants on the micronucleus frequency in thyroid cancer patients. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2013;750:34-9. [DOI: 10.1016/j.mrgentox.2012.08.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
76 Abdel-Fatah T, Sultana R, Abbotts R, Hawkes C, Seedhouse C, Chan S, Madhusudan S. Clinicopathological and functional significance of XRCC1 expression in ovarian cancer. Int J Cancer 2013;132:2778-86. [PMID: 23225521 DOI: 10.1002/ijc.27980] [Cited by in Crossref: 38] [Cited by in F6Publishing: 43] [Article Influence: 3.5] [Reference Citation Analysis]
77 Karahalil B, Bohr VA, Wilson DM. Impact of DNA polymorphisms in key DNA base excision repair proteins on cancer risk. Hum Exp Toxicol. 2012;31:981-1005. [PMID: 23023028 DOI: 10.1177/0960327112444476] [Cited by in Crossref: 81] [Cited by in F6Publishing: 89] [Article Influence: 7.4] [Reference Citation Analysis]
78 Sokolov MV, Neumann RD. Human embryonic stem cell responses to ionizing radiation exposures: current state of knowledge and future challenges. Stem Cells Int 2012;2012:579104. [PMID: 22966236 DOI: 10.1155/2012/579104] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 1.2] [Reference Citation Analysis]
79 García-lestón J, Roma-torres J, Vilares M, Pinto R, Prista J, Teixeira JP, Mayan O, Conde J, Pingarilho M, Gaspar JF, Pásaro E, Méndez J, Laffon B. Genotoxic effects of occupational exposure to lead and influence of polymorphisms in genes involved in lead toxicokinetics and in DNA repair. Environment International 2012;43:29-36. [DOI: 10.1016/j.envint.2012.03.001] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 4.6] [Reference Citation Analysis]
80 Morris LP, Degtyareva N, Sheppard C, Heyburn L, Ivanov AA, Kow YW, Doetsch PW. Saccharomyces cerevisiae Apn1 mutation affecting stable protein expression mimics catalytic activity impairment: implications for assessing DNA repair capacity in humans. DNA Repair (Amst) 2012;11:753-65. [PMID: 22818187 DOI: 10.1016/j.dnarep.2012.06.008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
81 Il'yasova D, Scarbrough P, Spasojevic I. Urinary biomarkers of oxidative status. Clin Chim Acta 2012;413:1446-53. [PMID: 22683781 DOI: 10.1016/j.cca.2012.06.012] [Cited by in Crossref: 165] [Cited by in F6Publishing: 172] [Article Influence: 15.0] [Reference Citation Analysis]
82 Georgiadis P, Polychronaki N, Kyrtopoulos SA. Progress in high-throughput assays of MGMT and APE1 activities in cell extracts. Mutat Res 2012;736:25-32. [PMID: 22609488 DOI: 10.1016/j.mrfmmm.2012.05.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 1.3] [Reference Citation Analysis]
83 Berquist BR, Wilson DM. Pathways for repairing and tolerating the spectrum of oxidative DNA lesions. Cancer Lett. 2012;327:61-72. [PMID: 22353689 DOI: 10.1016/j.canlet.2012.02.001] [Cited by in Crossref: 98] [Cited by in F6Publishing: 103] [Article Influence: 8.9] [Reference Citation Analysis]
84 Sampath H, McCullough AK, Lloyd RS. Regulation of DNA glycosylases and their role in limiting disease. Free Radic Res 2012;46:460-78. [PMID: 22300253 DOI: 10.3109/10715762.2012.655730] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 2.9] [Reference Citation Analysis]
85 Wallace SS, Murphy DL, Sweasy JB. Base excision repair and cancer. Cancer Lett 2012;327:73-89. [PMID: 22252118 DOI: 10.1016/j.canlet.2011.12.038] [Cited by in Crossref: 200] [Cited by in F6Publishing: 209] [Article Influence: 18.2] [Reference Citation Analysis]
86 Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327:48-60. [PMID: 22182453 DOI: 10.1016/j.canlet.2011.12.012] [Cited by in Crossref: 751] [Cited by in F6Publishing: 799] [Article Influence: 62.6] [Reference Citation Analysis]
87 Noren Hooten N, Kompaniez K, Barnes J, Lohani A, Evans MK. Poly(ADP-ribose) polymerase 1 (PARP-1) binds to 8-oxoguanine-DNA glycosylase (OGG1). J Biol Chem 2011;286:44679-90. [PMID: 22057269 DOI: 10.1074/jbc.M111.255869] [Cited by in Crossref: 81] [Cited by in F6Publishing: 85] [Article Influence: 6.8] [Reference Citation Analysis]
88 Lillenes MS, Espeseth T, Støen M, Lundervold AJ, Frye SA, Rootwelt H, Reinvang I, Tønjum T. DNA base excision repair gene polymorphisms modulate human cognitive performance and decline during normal life span. Mechanisms of Ageing and Development 2011;132:449-58. [DOI: 10.1016/j.mad.2011.08.002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.4] [Reference Citation Analysis]
89 McNeill DR, Lin PC, Miller MG, Pistell PJ, de Souza-Pinto NC, Fishbein KW, Spencer RG, Liu Y, Pettan-Brewer C, Ladiges WC, Wilson DM 3rd. XRCC1 haploinsufficiency in mice has little effect on aging, but adversely modifies exposure-dependent susceptibility. Nucleic Acids Res 2011;39:7992-8004. [PMID: 21737425 DOI: 10.1093/nar/gkr280] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 1.8] [Reference Citation Analysis]