BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sun JL, Li JY, Wang MJ, Song ZT, Liu JX. Protein Quality Control in Plant Organelles: Current Progress and Future Perspectives. Mol Plant 2021;14:95-114. [PMID: 33137518 DOI: 10.1016/j.molp.2020.10.011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Peng LH, Gu TW, Xu Y, Dad HA, Liu JX, Lian JZ, Huang LQ. Gene delivery strategies for therapeutic proteins production in plants: Emerging opportunities and challenges. Biotechnol Adv 2021;:107845. [PMID: 34627952 DOI: 10.1016/j.biotechadv.2021.107845] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 He J, Zhuang Y, Li C, Sun X, Zhao S, Ma C, Lin H, Zhou H. SIMP1 modulates salt tolerance by elevating ERAD efficiency through UMP1A-mediated proteasome maturation in plants. New Phytol 2021. [PMID: 34273177 DOI: 10.1111/nph.17628] [Reference Citation Analysis]
3 Fan F, Zhang Q, Zhang Y, Huang G, Liang X, Wang CC, Wang L, Lu D. Two protein disulfide isomerase subgroups work synergistically in catalyzing oxidative protein folding. Plant Physiol 2021:kiab457. [PMID: 34609517 DOI: 10.1093/plphys/kiab457] [Reference Citation Analysis]
4 Lyu YS, Shao YJ, Yang ZT, Liu JX. Quantitative Proteomic Analysis of ER Stress Response Reveals both Common and Specific Features in Two Contrasting Ecotypes of Arabidopsis thaliana. Int J Mol Sci 2020;21:E9741. [PMID: 33371194 DOI: 10.3390/ijms21249741] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Yang W, Xu P, Zhang J, Zhang S, Li Z, Yang K, Chang X, Li Y. OsbZIP60-mediated unfolded protein response regulates grain chalkiness in rice. Journal of Genetics and Genomics 2022. [DOI: 10.1016/j.jgg.2022.02.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
6 Llamas E, Pulido P. A proteostasis network safeguards the chloroplast proteome. Essays in Biochemistry 2022. [DOI: 10.1042/ebc20210058] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Li J, Sun J, Tian Y, Liu J. The FtsH-Inactive Protein FtsHi5 Is Required for Chloroplast Development and Protein Accumulation in Chloroplasts at Low Ambient Temperature in Arabidopsis. Front Plant Sci 2022;12:830390. [DOI: 10.3389/fpls.2021.830390] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Li J, Yuan J, Li Y, Sun H, Ma T, Huai J, Yang W, Zhang W, Lin R. The CDC48 complex mediates ubiquitin-dependent degradation of intra-chloroplast proteins in plants. Cell Rep 2022;39:110664. [PMID: 35417702 DOI: 10.1016/j.celrep.2022.110664] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Herath V, Connolly K, Roach A, Ausekar A, Persky T, Verchot J. The plant endoplasmic reticulum UPRome: A repository and pathway browser for genes involved in signaling networks linked to the endoplasmic reticulum. Plant Direct 2022;6:e431. [PMID: 35875835 DOI: 10.1002/pld3.431] [Reference Citation Analysis]
10 Liu R, Xia R, Xie Q, Wu Y. Endoplasmic reticulum-related E3 ubiquitin ligases: Key regulators of plant growth and stress responses. Plant Commun 2021;2:100186. [PMID: 34027397 DOI: 10.1016/j.xplc.2021.100186] [Reference Citation Analysis]
11 Sun J, Wang W, Zheng H. ROOT HAIR DEFECTIVE3 Is a Receptor for Selective Autophagy of the Endoplasmic Reticulum in Arabidopsis. Front Plant Sci 2022;13:817251. [PMID: 35283874 DOI: 10.3389/fpls.2022.817251] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Jeran N, Rotasperti L, Frabetti G, Calabritto A, Pesaresi P, Tadini L. The PUB4 E3 Ubiquitin Ligase Is Responsible for the Variegated Phenotype Observed upon Alteration of Chloroplast Protein Homeostasis in Arabidopsis Cotyledons. Genes (Basel) 2021;12:1387. [PMID: 34573369 DOI: 10.3390/genes12091387] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Xiao Y, Li Y, Shi Y, Li Z, Zhang X, Liu T, Farooq TH, Pan Y, Chen X, Yan W. Combined toxicity of zinc oxide nanoparticles and cadmium inducing root damage in Phytolacca americana L. Sci Total Environ 2022;806:151211. [PMID: 34715219 DOI: 10.1016/j.scitotenv.2021.151211] [Reference Citation Analysis]
14 Chen H, Dong J, Wang T. Autophagy in Plant Abiotic Stress Management. Int J Mol Sci 2021;22:4075. [PMID: 33920817 DOI: 10.3390/ijms22084075] [Reference Citation Analysis]
15 Zhang Y, Xia G, Zhu Q. Conserved and Unique Roles of Chaperone-Dependent E3 Ubiquitin Ligase CHIP in Plants. Front Plant Sci 2021;12:699756. [PMID: 34305988 DOI: 10.3389/fpls.2021.699756] [Reference Citation Analysis]
16 Gao J, Wang M, Wang J, Lu H, Liu J. bZIP17 regulates heat stress tolerance at reproductive stage in Arabidopsis. aBIOTECH 2022;3:1-11. [DOI: 10.1007/s42994-021-00062-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
17 Nouraei S, Mia MS, Liu H, Turner NC, Yan G. Transcriptome Analyses of Near Isogenic Lines Reveal Putative Drought Tolerance Controlling Genes in Wheat. Front Plant Sci 2022;13:857829. [PMID: 35422827 DOI: 10.3389/fpls.2022.857829] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Xue Y, Meng J, Jia P, Zhang Z, Li H, Yang W. POD1-SUN-CRT3 chaperone complex guards the ER sorting of LRR receptor kinases in Arabidopsis. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-30179-w] [Reference Citation Analysis]
19 Lee HY, Hwang OJ, Back K. Phytomelatonin as a signaling molecule for protein quality control via chaperone, autophagy, and ubiquitin-proteasome systems in plants. J Exp Bot 2022:erac002. [PMID: 35246975 DOI: 10.1093/jxb/erac002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
20 Fan F, Zhang H, Wei Q, Wei Y. Expression Characterization of AtPDI11 and Functional Analysis of AtPDI11 D Domain in Oxidative Protein Folding. Int J Mol Sci 2022;23:1409. [PMID: 35163331 DOI: 10.3390/ijms23031409] [Reference Citation Analysis]
21 Tao Y, Zou T, Zhang X, Liu R, Chen H, Yuan G, Zhou D, Xiong P, He Z, Li G, Zhou M, Liu S, Deng Q, Wang S, Zhu J, Liang Y, Yu X, Zheng A, Wang A, Liu H, Wang L, Li P, Li S. Secretory lipid transfer protein OsLTPL94 acts as a target of EAT1 and is required for rice pollen wall development. Plant J 2021. [PMID: 34314535 DOI: 10.1111/tpj.15443] [Reference Citation Analysis]