BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pikabea A, Villar-álvarez E, Forcada J, Taboada P. pH-controlled doxorubicin delivery from PDEAEMA-based nanogels. Journal of Molecular Liquids 2018;266:321-9. [DOI: 10.1016/j.molliq.2018.06.068] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
Number Citing Articles
1 Wang D, Liu M, Wu Y, Weng T, Wang L, Zhang Y, Zhao Y, Han J. Idarubicin/mithramycin-acridine orange combination drugs co-loaded by DNA nanostructures: Different effects of intercalation and groove binding on drug release and cytotoxicity. Journal of Molecular Liquids 2022;355:118947. [DOI: 10.1016/j.molliq.2022.118947] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
2 Wang D, Liu M, Wu Y, Zhao Y, Wang Q, Weng T, Wang L, Liu H, Ren Y, Han J. Self-assembled DNA nanotrains for targeted delivery of mithramycin dimers coordinated by different metal ions: Effect of binding affinity on drug loading, release and cytotoxicity. Journal of Molecular Liquids 2021;339:116722. [DOI: 10.1016/j.molliq.2021.116722] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
3 Monteiro GAA, de Sousa RG, da Silva WM, Gastelois PL, Macedo WADA, de Sousa EMB. Microwave radiation-assisted covalent functionalization of boron nitride nanotubes and their grafting with cationic thermo and pH-sensitive hydrogel. Appl Nanosci 2021;11:505-20. [DOI: 10.1007/s13204-020-01610-9] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Xiong Y, Qi L, Niu Y, Lin Y, Xue Q, Zhao Y. Autonomous Drug Release Systems with Disease Symptom‐Associated Triggers. Advanced Intelligent Systems 2020;2:1900124. [DOI: 10.1002/aisy.201900124] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
5 Ghaeini-hesaroeiye S, Boddohi S, Vasheghani-farahani E. Dual responsive chondroitin sulfate based nanogel for antimicrobial peptide delivery. International Journal of Biological Macromolecules 2020;143:297-304. [DOI: 10.1016/j.ijbiomac.2019.12.026] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
6 Kopytynski M, Chen S, Legg S, Minter R, Chen R. A Versatile Polymer‐Based Platform for Intracellular Delivery of Macromolecules. Adv Therap 2020;3:1900169. [DOI: 10.1002/adtp.201900169] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
7 Bai F, Wang Y, Han Q, Wu M, Luo Q, Zhang H, Wang Y. Cross-linking of hyaluronic acid by curcumin analogue to construct nanomicelles for delivering anticancer drug. Journal of Molecular Liquids 2019;288:111079. [DOI: 10.1016/j.molliq.2019.111079] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
8 Bruneau M, Bennici S, Brendle J, Dutournie P, Limousy L, Pluchon S. Systems for stimuli-controlled release: Materials and applications. Journal of Controlled Release 2019;294:355-71. [DOI: 10.1016/j.jconrel.2018.12.038] [Cited by in Crossref: 50] [Cited by in F6Publishing: 33] [Article Influence: 16.7] [Reference Citation Analysis]
9 Mauri E, Perale G, Rossi F. Nanogel Functionalization: A Versatile Approach To Meet the Challenges of Drug and Gene Delivery. ACS Appl Nano Mater 2018;1:6525-41. [DOI: 10.1021/acsanm.8b01686] [Cited by in Crossref: 43] [Cited by in F6Publishing: 24] [Article Influence: 10.8] [Reference Citation Analysis]