BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Verma C, Ebenso EE, Quraishi M. Ionic liquids as green and sustainable corrosion inhibitors for metals and alloys: An overview. Journal of Molecular Liquids 2017;233:403-14. [DOI: 10.1016/j.molliq.2017.02.111] [Cited by in Crossref: 209] [Cited by in F6Publishing: 87] [Article Influence: 41.8] [Reference Citation Analysis]
Number Citing Articles
1 Berdimurodov E, Kholikov A, Akbarov K, Guo L, Kaya S, Verma DK, Rbaa M, Dagdag O. Novel glycoluril pharmaceutically active compound as a green corrosion inhibitor for the oil and gas industry. Journal of Electroanalytical Chemistry 2022;907:116055. [DOI: 10.1016/j.jelechem.2022.116055] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Oguntade TI, Ita CS, Sanmi O, Oyekunle DT. A Binary Mixture of Sesame And Castor Oil as an Ecofriendly Corrosion Inhibitor of Mild Steel In Crude Oil. TOCENGJ 2020;14:25-35. [DOI: 10.2174/1874123102014010025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Assenine MA, Haddad B, Paolone A, Brandán SA, Goussem M, Villemin D, Boumediene M, Rahmouni M, Bresson S. Synthesis, thermal properties, vibrational spectra and computational studies of Trioctylmethylammonium bis(trifluoromethylsulfonyl)imide ionic liquid. Journal of Molecular Structure 2021;1232:130085. [DOI: 10.1016/j.molstruc.2021.130085] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Ayati A, Ranjbari S, Tanhaei B, Sillanpää M. Ionic liquid-modified composites for the adsorptive removal of emerging water contaminants: A review. Journal of Molecular Liquids 2019;275:71-83. [DOI: 10.1016/j.molliq.2018.11.016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 17] [Article Influence: 10.3] [Reference Citation Analysis]
5 Rozuli NA, Hamidon TS, Hussin MH. Evaluation of Piper sarmentosum extract’s corrosion inhibitive effects and adsorption characteristics for the corrosion protection of mild steel in 0.5 M HCl. Mater Res Express 2019;6:106524. [DOI: 10.1088/2053-1591/ab3677] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
6 El Ibrahimi B, Jmiai A, Bazzi L, El Issami S. Amino acids and their derivatives as corrosion inhibitors for metals and alloys. Arabian Journal of Chemistry 2020;13:740-71. [DOI: 10.1016/j.arabjc.2017.07.013] [Cited by in Crossref: 78] [Cited by in F6Publishing: 16] [Article Influence: 39.0] [Reference Citation Analysis]
7 Petronijević J, Joksimović N, Bugarčić Z, Đurđić E, Janković N. Experimental and computational analysis (DFT method) of some quinoxalinones and benzoxazinones: spectroscopic investigation (FT-IR, FT-Raman, UV-Vis, NMR). J Chem Sci 2019;131. [DOI: 10.1007/s12039-019-1681-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Shang Z, Zhu J. Overview on plant extracts as green corrosion inhibitors in the oil and gas fields. Journal of Materials Research and Technology 2021;15:5078-94. [DOI: 10.1016/j.jmrt.2021.10.095] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
9 Quraishi MA, Chauhan DS, Saji VS. Heterocyclic biomolecules as green corrosion inhibitors. Journal of Molecular Liquids 2021;341:117265. [DOI: 10.1016/j.molliq.2021.117265] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
10 Assad H, Kumar A. Understanding functional group effect on corrosion inhibition efficiency of selected organic compounds. Journal of Molecular Liquids 2021;344:117755. [DOI: 10.1016/j.molliq.2021.117755] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
11 Wang Z, Hu B, Chen GZ. The role of 1-octyl-3-methylimidazolium hexafluorophosphate in anticorrosion coating formula development. Journal of Saudi Chemical Society 2022. [DOI: 10.1016/j.jscs.2022.101446] [Reference Citation Analysis]
12 Liu C, Qiu S, Du P, Zhao H, Wang L. An ionic liquid-graphene oxide hybrid nanomaterial: synthesis and anticorrosive applications. Nanoscale 2018;10:8115-24. [PMID: 29671452 DOI: 10.1039/c8nr01890a] [Cited by in Crossref: 94] [Cited by in F6Publishing: 5] [Article Influence: 23.5] [Reference Citation Analysis]
13 Quadri TW, Olasunkanmi LO, Akpan ED, Alfantazi A, Obot IB, Verma C, Al-mohaimeed AM, Ebenso EE, Quraishi MA. Chromeno-carbonitriles as corrosion inhibitors for mild steel in acidic solution: electrochemical, surface and computational studies. RSC Adv 2021;11:2462-75. [DOI: 10.1039/d0ra07595g] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
14 Hagiwara R, Matsumoto K, Hwang J, Nohira T. Sodium Ion Batteries using Ionic Liquids as Electrolytes. Chem Rec 2018;19:758-70. [DOI: 10.1002/tcr.201800119] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 3.8] [Reference Citation Analysis]
15 Wei H, Heidarshenas B, Zhou L, Hussain G, Li Q, Ostrikov K(. Green inhibitors for steel corrosion in acidic environment: state of art. Materials Today Sustainability 2020;10:100044. [DOI: 10.1016/j.mtsust.2020.100044] [Cited by in Crossref: 19] [Cited by in F6Publishing: 2] [Article Influence: 9.5] [Reference Citation Analysis]
16 Ghorbani M, Soto Puelles J, Forsyth M, Catubig RA, Ackland L, Machuca L, Terryn H, Somers AE. Corrosion Inhibition of Mild Steel by Cetrimonium trans-4-Hydroxy Cinnamate: Entrapment and Delivery of the Anion Inhibitor through Speciation and Micellar Formation. J Phys Chem Lett 2020;11:9886-92. [PMID: 33170703 DOI: 10.1021/acs.jpclett.0c02389] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
17 Qiao K, Zeng Y. Comparative study on two imidazolium‐based ionic liquid surfactants as corrosion inhibitors for N80 steel in 15% hydrochloric acid solution. Materials and Corrosion 2020;71:1913-26. [DOI: 10.1002/maco.202011775] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
18 Ouakki M, Galai M, Cherkaoui M. Imidazole derivatives as efficient and potential class of corrosion inhibitors for metals and alloys in aqueous electrolytes: A review. Journal of Molecular Liquids 2022;345:117815. [DOI: 10.1016/j.molliq.2021.117815] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
19 Berisha A. Ab inito exploration of nanocars as potential corrosion inhibitors. Computational and Theoretical Chemistry 2021;1201:113258. [DOI: 10.1016/j.comptc.2021.113258] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
20 Ardakani EK, Kowsari E, Ehsani A, Ramakrishna S. Performance of all ionic liquids as the eco-friendly and sustainable compounds in inhibiting corrosion in various media: A comprehensive review. Microchemical Journal 2021;165:106049. [DOI: 10.1016/j.microc.2021.106049] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
21 Kosiński S, Rykowska I, Gonsior M, Krzyżanowski P. Ionic liquids as antistatic additives for polymer composites – A review. Polymer Testing 2022. [DOI: 10.1016/j.polymertesting.2022.107649] [Reference Citation Analysis]
22 Kopczyński K, Gabryelczyk A, Baraniak M, Łęgosz B, Pernak J, Jankowska E, Rzeszutek W, Kędzior P, Lota G. Positive electrode material in lead-acid car battery modified by protic ammonium ionic liquid. Journal of Energy Storage 2019;26:100996. [DOI: 10.1016/j.est.2019.100996] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
23 Shahini M, Ramezanzadeh B, Mohammadloo HE. Recent advances in biopolymers/carbohydrate polymers as effective corrosion inhibitive macro-molecules: A review study from experimental and theoretical views. Journal of Molecular Liquids 2021;325:115110. [DOI: 10.1016/j.molliq.2020.115110] [Cited by in Crossref: 9] [Article Influence: 9.0] [Reference Citation Analysis]
24 Corrales Luna M, Le Manh T, Cabrera Sierra R, Medina Flores J, Lartundo Rojas L, Arce Estrada E. Study of corrosion behavior of API 5L X52 steel in sulfuric acid in the presence of ionic liquid 1-ethyl 3-methylimidazolium thiocyanate as corrosion inhibitor. Journal of Molecular Liquids 2019;289:111106. [DOI: 10.1016/j.molliq.2019.111106] [Cited by in Crossref: 21] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
25 Olea-amezcua M, Castellanos-águila J, Hernández-cocoletzi H, Ferreira E, Trejo-durán M, Olivares-xometl O, Likhanova NV. Effect of the side-chain length and NLO properties of the N-ethyl-N,N,N-trialkylammonium ionic liquids – A DFT study. Journal of Molecular Liquids 2021;337:116251. [DOI: 10.1016/j.molliq.2021.116251] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Yu, Zuo, Zhang, Wu, Ning, Zuo. Al2O3 Coatings on Zinc for Anti-Corrosion in Alkaline Solution by Electrospinning. Coatings 2019;9:692. [DOI: 10.3390/coatings9110692] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 2.7] [Reference Citation Analysis]
27 Soares BG. Ionic liquid: A smart approach for developing conducting polymer composites. Journal of Molecular Liquids 2018;262:8-18. [DOI: 10.1016/j.molliq.2018.04.049] [Cited by in Crossref: 31] [Cited by in F6Publishing: 5] [Article Influence: 7.8] [Reference Citation Analysis]
28 Verma C, Ebenso EE, Quraishi M. Molecular structural aspects of organic corrosion inhibitors: Influence of –CN and –NO2 substituents on designing of potential corrosion inhibitors for aqueous media. Journal of Molecular Liquids 2020;316:113874. [DOI: 10.1016/j.molliq.2020.113874] [Cited by in Crossref: 20] [Cited by in F6Publishing: 1] [Article Influence: 10.0] [Reference Citation Analysis]
29 Verma C, Olasunkanmi L, Ebenso EE, Quraishi M. Substituents effect on corrosion inhibition performance of organic compounds in aggressive ionic solutions: A review. Journal of Molecular Liquids 2018;251:100-18. [DOI: 10.1016/j.molliq.2017.12.055] [Cited by in Crossref: 119] [Cited by in F6Publishing: 42] [Article Influence: 29.8] [Reference Citation Analysis]
30 Chauhan DS, Quraishi M, Nik WW, Srivastava V. Triazines as a potential class of corrosion inhibitors: Present scenario, challenges and future perspectives. Journal of Molecular Liquids 2021;321:114747. [DOI: 10.1016/j.molliq.2020.114747] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
31 Gurjar S, Sharma SK, Sharma A, Ratnani S. Performance of imidazolium based ionic liquids as corrosion inhibitors in acidic medium: A review. Applied Surface Science Advances 2021;6:100170. [DOI: 10.1016/j.apsadv.2021.100170] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
32 Sajid HU, Kiran R, Qi X, Bajwa DS, Battocchi D. Employing corn derived products to reduce the corrosivity of pavement deicing materials. Construction and Building Materials 2020;263:120662. [DOI: 10.1016/j.conbuildmat.2020.120662] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
33 Bucko M, Bastos AC, Yasakau KA, Ferreira MG, Bajat JB. Corrosion behavior of AA2024-T6 and AA6065-T6 alloys in reline. Electrochimica Acta 2020;357:136861. [DOI: 10.1016/j.electacta.2020.136861] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
34 Ul Haq I, Lal B, Zaini DB. Experimental and modelling study of ammonium based ionic liquids in the absence and presence of methanol for CO2 hydrates. Journal of Molecular Liquids 2022;349:118214. [DOI: 10.1016/j.molliq.2021.118214] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Zafari S, Sarabi AA, Movassagh B. A novel green corrosion inhibitor based on task-specific benzimidazolium ionic liquid for carbon steel in HCl. Corrosion Engineering, Science and Technology 2020;55:589-601. [DOI: 10.1080/1478422x.2020.1766863] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
36 Verma DK, Aslam R, Aslam J, Quraishi M, Ebenso EE, Verma C. Computational Modeling: Theoretical Predictive Tools for Designing of Potential Organic Corrosion Inhibitors. Journal of Molecular Structure 2021;1236:130294. [DOI: 10.1016/j.molstruc.2021.130294] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 18.0] [Reference Citation Analysis]
37 Kong M, Meng Y, Fan L, Yin C, Chen Q, Liu H. Experimental Study of Poly(1‐Acetamide‐3‐vinylimidazolium Bromide) as a Corrosion Inhibitor for N80 Carbon Steel in HCl. ChemistrySelect 2021;6:5203-10. [DOI: 10.1002/slct.202100878] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
38 Asadikiya M, Zhong Y, Ghorbani M. Corrosion Study of Aluminum Alloy 3303 in Water-Ethylene Glycol Mixture: Effect of Inhibitors and Thermal Shocking. International Journal of Corrosion 2019;2019:1-6. [DOI: 10.1155/2019/9020489] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
39 Gouda M, Khalaf MM, Al-shuaibi MAA, Mohamed IMA, Shalabi K, El-shishtawy RM, El-lateef HMA. Facile Synthesis and Characterization of CeO2-Nanoparticle-Loaded Carboxymethyl Cellulose as Efficient Protective Films for Mild Steel: A Comparative Study of Experiential and Computational Findings. Polymers 2022;14:3078. [DOI: 10.3390/polym14153078] [Reference Citation Analysis]
40 Tang M, Li X, Deng S, Lei R. Synergistic inhibition effect of Mikania micrantha extract with KI on steel corrosion in H2SO4 solution. Journal of Molecular Liquids 2021;344:117926. [DOI: 10.1016/j.molliq.2021.117926] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Schmitzhaus TE, Vega MRO, Schroeder R, Muller IL, Mattedi S, Taryba M, Fernandes JCS, Malfatti CDF. Localized corrosion behavior studies by SVET of 1010 steel in different concentrations of sodium chloride containing [m-2HEA][Ol] ionic liquid as corrosion inhibitor. Electrochimica Acta 2022;419:140385. [DOI: 10.1016/j.electacta.2022.140385] [Reference Citation Analysis]
42 Quraishi M, Chauhan DS, Ansari FA. Development of environmentally benign corrosion inhibitors for organic acid environments for oil-gas industry. Journal of Molecular Liquids 2021;329:115514. [DOI: 10.1016/j.molliq.2021.115514] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 18.0] [Reference Citation Analysis]
43 Chauhan DS, Verma C, Quraishi M. Molecular structural aspects of organic corrosion inhibitors: Experimental and computational insights. Journal of Molecular Structure 2021;1227:129374. [DOI: 10.1016/j.molstruc.2020.129374] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 12.0] [Reference Citation Analysis]
44 Keramatinia M, Ramezanzadeh B, Mahdavian M. Green production of bioactive components from herbal origins through one-pot oxidation/polymerization reactions and application as a corrosion inhibitor for mild steel in HCl solution. Journal of the Taiwan Institute of Chemical Engineers 2019;105:134-49. [DOI: 10.1016/j.jtice.2019.10.005] [Cited by in Crossref: 43] [Cited by in F6Publishing: 7] [Article Influence: 14.3] [Reference Citation Analysis]
45 Kannan P, Varghese A, Palanisamy K, Abousalem AS. Probing the effect of newly synthesized phenyltrimethylammonium tetrachloroaluminate ionic liquid as an inhibitor for carbon steel corrosion. Applied Surface Science Advances 2021;6:100150. [DOI: 10.1016/j.apsadv.2021.100150] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
46 Aslam R, Mobin M, Aslam J, Aslam A, Zehra S, Masroor S. Application of surfactants as anticorrosive materials: A comprehensive review. Adv Colloid Interface Sci 2021;295:102481. [PMID: 34390883 DOI: 10.1016/j.cis.2021.102481] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 13.0] [Reference Citation Analysis]
47 Haque J, Srivastava V, Verma C, Lgaz H, Salghi R, Quraishi MA. N-Methyl-N,N,N-trioctylammonium chloride as a novel and green corrosion inhibitor for mild steel in an acid chloride medium: electrochemical, DFT and MD studies. New J Chem 2017;41:13647-62. [DOI: 10.1039/c7nj02254a] [Cited by in Crossref: 46] [Article Influence: 9.2] [Reference Citation Analysis]
48 Ma IAW, Ammar S, Kumar SSA, Ramesh K, Ramesh S. A concise review on corrosion inhibitors: types, mechanisms and electrochemical evaluation studies. J Coat Technol Res 2022;19:241-68. [DOI: 10.1007/s11998-021-00547-0] [Reference Citation Analysis]
49 Khan A, Yasa SR, Gusain R, Khatri OP. Oil-miscible, halogen-free, and surface-active lauryl sulphate-derived ionic liquids for enhancement of tribological properties. Journal of Molecular Liquids 2020;318:114005. [DOI: 10.1016/j.molliq.2020.114005] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
50 Verma C, Quraishi M, Ebenso EE. Quinoline and its derivatives as corrosion inhibitors: A review. Surfaces and Interfaces 2020;21:100634. [DOI: 10.1016/j.surfin.2020.100634] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
51 El Hamdouni Y, Bouhlal F, Kouri H, Chellouli M, Benmessaoud M, Dahrouch A, Labjar N, El Hajjaji S. Use of Omeprazole as Inhibitor for C38 Steel Corrosion in 1.0 M H3PO4 Medium. J Fail Anal and Preven 2020;20:563-71. [DOI: 10.1007/s11668-020-00862-5] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
52 Nahlé A, Salim R, El Hajjaji F, Ech-chihbi E, Titi A, Messali M, Kaya S, El Ibrahimi B, Taleb M. Experimental and theoretical approach for novel imidazolium ionic liquids as Smart Corrosion inhibitors for mild steel in 1.0 M hydrochloric acid. Arabian Journal of Chemistry 2022;15:103967. [DOI: 10.1016/j.arabjc.2022.103967] [Reference Citation Analysis]
53 Zheng Y, Luo B, He C, Ren Z, Wang S, Yin Y. Corrosion behaviour of the Al-2.1–Mg-1.8–Si alloy in chloride solution. Bull Mater Sci 2019;42. [DOI: 10.1007/s12034-019-1923-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
54 Jiang Y, Liu Y, Gao S, Guo X, Zhang J. Experimental and theoretical studies on corrosion inhibition behavior of three imidazolium-based ionic liquids for magnesium alloys in sodium chloride solution. Journal of Molecular Liquids 2022;345:116998. [DOI: 10.1016/j.molliq.2021.116998] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
55 Verma C, Ebenso EE, Quraishi MA, Hussain CM. Recent developments in sustainable corrosion inhibitors: design, performance and industrial scale applications. Mater Adv 2021;2:3806-50. [DOI: 10.1039/d0ma00681e] [Cited by in Crossref: 24] [Cited by in F6Publishing: 11] [Article Influence: 24.0] [Reference Citation Analysis]
56 Miralrio A, Espinoza Vázquez A. Plant Extracts as Green Corrosion Inhibitors for Different Metal Surfaces and Corrosive Media: A Review. Processes 2020;8:942. [DOI: 10.3390/pr8080942] [Cited by in Crossref: 23] [Cited by in F6Publishing: 7] [Article Influence: 11.5] [Reference Citation Analysis]
57 Ali SM, Emran KM, Messali M. Improved protection performance of modified sol-gel coatings with pyridinium-based ionic liquid for cast iron corrosion in 0.5 M HCl solution. Progress in Organic Coatings 2019;130:226-34. [DOI: 10.1016/j.porgcoat.2019.02.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
58 Mahmood H, Moniruzzaman M, Iqbal T, Yusup S. Effect of ionic liquids pretreatment on thermal degradation kinetics of agro-industrial waste reinforced thermoplastic starch composites. Journal of Molecular Liquids 2017;247:164-70. [DOI: 10.1016/j.molliq.2017.09.106] [Cited by in Crossref: 15] [Article Influence: 3.0] [Reference Citation Analysis]
59 Murat Farsak. An Acid Inhibitor Research: 5-Phenyl-1H-1,2,4-triazole-3-thiol. Prot Met Phys Chem Surf 2019;55:566-71. [DOI: 10.1134/s2070205119030122] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
60 Abdel-karim AM, El-shamy AM. A Review on Green Corrosion Inhibitors for Protection of Archeological Metal Artifacts. J Bio Tribo Corros 2022;8. [DOI: 10.1007/s40735-022-00636-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
61 Dedzo GK, Detellier C. Clay Minerals-Ionic Liquids, Nanoarchitectures, and Applications. Adv Funct Mater 2018;28:1703845. [DOI: 10.1002/adfm.201703845] [Cited by in Crossref: 45] [Cited by in F6Publishing: 31] [Article Influence: 9.0] [Reference Citation Analysis]
62 Goyal M, Vashisht H, Kumar A, Kumar S, Bahadur I, Benhiba F, Zarrouk A. Isopentyltriphenylphosphonium bromideionic liquid as a newly effective corrosion inhibitor on metal-electrolyte interface in acidic medium: Experimental, surface morphological (SEM-EDX & AFM) and computational analysis. Journal of Molecular Liquids 2020;316:113838. [DOI: 10.1016/j.molliq.2020.113838] [Cited by in Crossref: 11] [Article Influence: 5.5] [Reference Citation Analysis]
63 Verma C, Olasunkanmi LO, Bahadur I, Lgaz H, Quraishi M, Haque J, Sherif EM, Ebenso EE. Experimental, density functional theory and molecular dynamics supported adsorption behavior of environmental benign imidazolium based ionic liquids on mild steel surface in acidic medium. Journal of Molecular Liquids 2019;273:1-15. [DOI: 10.1016/j.molliq.2018.09.139] [Cited by in Crossref: 39] [Cited by in F6Publishing: 10] [Article Influence: 13.0] [Reference Citation Analysis]
64 Alrefaee SH. Effect of alkyl chain length and halide ions on the corrosion inhibition potential of imidazolium and pyridinium based ionic liquids: Computational studies. Journal of Molecular Liquids 2021;344:117848. [DOI: 10.1016/j.molliq.2021.117848] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
65 Shi B, Wang Z, Wen H. Research on the strengths of electrostatic and van der Waals interactions in ionic liquids. Journal of Molecular Liquids 2017;241:486-8. [DOI: 10.1016/j.molliq.2017.06.057] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 3.4] [Reference Citation Analysis]
66 Sudha P, Tun KS, Gupta M, Mourad AI, Vincent S. Electrochemical characterization of a novel multicomponent Al 75 Mg 5 Li 10 Zn 5 Cu 5 low entropy alloy in different pH environments. Materials & Corrosion. [DOI: 10.1002/maco.202213103] [Reference Citation Analysis]
67 Rbaa M, Ouakki M, Galai M, Berisha A, Lakhrissi B, Jama C, Warad I, Zarrouk A. Simple preparation and characterization of novel 8-Hydroxyquinoline derivatives as effective acid corrosion inhibitor for mild steel: Experimental and theoretical studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;602:125094. [DOI: 10.1016/j.colsurfa.2020.125094] [Cited by in Crossref: 19] [Cited by in F6Publishing: 2] [Article Influence: 9.5] [Reference Citation Analysis]
68 Verma C, Alrefaee SH, Rhee KY, Quraishi M, Ebenso EE. Thiol (-SH) substituent as functional motif for effective corrosion protection: A review on current advancements and future directions. Journal of Molecular Liquids 2021;324:115111. [DOI: 10.1016/j.molliq.2020.115111] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
69 Chang H, Wu B, Chandra Sil M, Yang Z, Chen C. Study of synergy of monoethanolamine and urea on copper corrosion inhibition in alkaline solution. Journal of Molecular Liquids 2022;359:119344. [DOI: 10.1016/j.molliq.2022.119344] [Reference Citation Analysis]
70 El Hajjaji F, Salim R, Messali M, Hammouti B, Chauhan DS, Almutairi SM, Quraishi MA. Electrochemical Studies on New Pyridazinium Derivatives as Corrosion Inhibitors of Carbon Steel in Acidic Medium. J Bio Tribo Corros 2019;5. [DOI: 10.1007/s40735-018-0195-3] [Cited by in Crossref: 19] [Cited by in F6Publishing: 4] [Article Influence: 4.8] [Reference Citation Analysis]
71 Verma C, Mishra A, Chauhan S, Verma P, Srivastava V, Quraishi M, Ebenso EE. Dissolution of cellulose in ionic liquids and their mixed cosolvents: A review. Sustainable Chemistry and Pharmacy 2019;13:100162. [DOI: 10.1016/j.scp.2019.100162] [Cited by in Crossref: 34] [Cited by in F6Publishing: 10] [Article Influence: 11.3] [Reference Citation Analysis]
72 Ding Y, Gao N, Li N, Chen G, Xuan Y. Experimental and modelling of vapour–liquid equilibria of ternary systems {HCOOK + [Emim]Ac + H2O}, {HCOOK + [Emim]Br + H2O}, {HCOOK + [Emim]Cl + H2O}, and {HCOOK + [Emim]NO3 + H2O}. The Journal of Chemical Thermodynamics 2021;161:106503. [DOI: 10.1016/j.jct.2021.106503] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
73 Verma C, Haque J, Quraishi M, Ebenso EE. Aqueous phase environmental friendly organic corrosion inhibitors derived from one step multicomponent reactions: A review. Journal of Molecular Liquids 2019;275:18-40. [DOI: 10.1016/j.molliq.2018.11.040] [Cited by in Crossref: 62] [Cited by in F6Publishing: 15] [Article Influence: 20.7] [Reference Citation Analysis]
74 El-taib Heakal F, Deyab M, Osman M, Elkholy A. Performance of Centaurea cyanus aqueous extract towards corrosion mitigation of carbon steel in saline formation water. Desalination 2018;425:111-22. [DOI: 10.1016/j.desal.2017.10.019] [Cited by in Crossref: 49] [Cited by in F6Publishing: 16] [Article Influence: 12.3] [Reference Citation Analysis]
75 Sukul D, Pal A, Mukhopadhyay S, Saha SK, Banerjee P. Electrochemical behaviour of uncoated and phosphatidylcholine coated copper in hydrochloric acid medium. Journal of Molecular Liquids 2018;249:930-40. [DOI: 10.1016/j.molliq.2017.11.129] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
76 Sharma S, Kumar A. Recent advances in metallic corrosion inhibition: A review. Journal of Molecular Liquids 2021;322:114862. [DOI: 10.1016/j.molliq.2020.114862] [Cited by in Crossref: 26] [Cited by in F6Publishing: 13] [Article Influence: 26.0] [Reference Citation Analysis]
77 Verma C, Quraishi M, Lgaz H, Olasunkanmi L, Sherif EM, Salghi R, Ebenso EE. Adsorption and anticorrosion behaviour of mild steel treated with 2-((1H-indol-2-yl)thio)-6-amino-4-phenylpyridine-3,5-dicarbonitriles in a hydrochloric acid solution: Experimental and computational studies. Journal of Molecular Liquids 2019;283:491-506. [DOI: 10.1016/j.molliq.2019.03.105] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
78 Salim R, Ech-chihbi E, Oudda H, El Hajjaji F, Taleb M, Jodeh S. A Review on the Assessment of Imidazo[1,2-a]pyridines As Corrosion Inhibitor of Metals. J Bio Tribo Corros 2019;5. [DOI: 10.1007/s40735-018-0207-3] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
79 Cui F, Ni Y, Jiang J, Ni L, Wang Z. Experimental and theoretical studies of five imidazolium-based ionic liquids as corrosion inhibitors for mild steel in H 2 S and HCl solutions. Chemical Engineering Communications 2021;208:1580-93. [DOI: 10.1080/00986445.2020.1802257] [Reference Citation Analysis]
80 Chauhan DS, Singh P, Quraishi M. Quinoxaline derivatives as efficient corrosion inhibitors: Current status, challenges and future perspectives. Journal of Molecular Liquids 2020;320:114387. [DOI: 10.1016/j.molliq.2020.114387] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 7.5] [Reference Citation Analysis]
81 Yap JY, Mat Yaakob S, Rabat NE, Shamsuddin MR, Man Z. Release kinetics study and anti-corrosion behaviour of a pH-responsive ionic liquid-loaded halloysite nanotube-doped epoxy coating. RSC Adv 2020;10:13174-84. [DOI: 10.1039/d0ra01215g] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
82 Schmitzhaus TE, Ortega Vega MR, Schroeder R, Muller IL, Mattedi S, Malfatti CDF. N ‐methyl‐2‐hydroxyethylammonium oleate ionic liquid performance as corrosion inhibitor for mild steel in hydrochloric acid medium. Materials and Corrosion 2020;71:1885-902. [DOI: 10.1002/maco.202011709] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
83 Somoghi R, Purcar V, Alexandrescu E, Gifu IC, Ninciuleanu CM, Cotrut CM, Oancea F, Stroescu H. Synthesis of Zinc Oxide Nanomaterials via Sol-Gel Process with Anti-Corrosive Effect for Cu, Al and Zn Metallic Substrates. Coatings 2021;11:444. [DOI: 10.3390/coatings11040444] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
84 El Basiony N, Tawfik E, El-raouf M, Fadda A, Waly M. Synthesis, characterization, theoretical calculations (DFT and MC), and experimental of different substituted pyridine derivatives as corrosion mitigation for X-65 steel corrosion in 1M HCl. Journal of Molecular Structure 2021;1231:129999. [DOI: 10.1016/j.molstruc.2021.129999] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
85 El-hajjaji F, Ech-chihbi E, Rezki N, Benhiba F, Taleb M, Chauhan DS, Quraishi M. Electrochemical and theoretical insights on the adsorption and corrosion inhibition of novel pyridinium-derived ionic liquids for mild steel in 1 M HCl. Journal of Molecular Liquids 2020;314:113737. [DOI: 10.1016/j.molliq.2020.113737] [Cited by in Crossref: 31] [Article Influence: 15.5] [Reference Citation Analysis]
86 Shalabi K, El-gammal OA, Abdallah Y. Adsorption and inhibition effect of tetraaza-tetradentate macrocycle ligand and its Ni (II), Cu (II) complexes on the corrosion of Cu10Ni alloy in 3.5% NaCl solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;609:125653. [DOI: 10.1016/j.colsurfa.2020.125653] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 14.0] [Reference Citation Analysis]
87 Haque J, Srivastava V, Chauhan DS, Quraishi M, Madhan Kumar A, Lgaz H. Electrochemical and surface studies on chemically modified glucose derivatives as environmentally benign corrosion inhibitors. Sustainable Chemistry and Pharmacy 2020;16:100260. [DOI: 10.1016/j.scp.2020.100260] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
88 Nan Q, Song L, Zhou Y, Yao Q, Sheng X, Xi X, Chen Y, Lin S, Guan G, Sun W. Preparation and Application of Modified Imidazole with MPEG (Polyethylene Glycol Monomethyl Ether) as Carbon Steel Inhibitor. Tenside Surfactants Detergents 2020;57:57-73. [DOI: 10.3139/113.110647] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
89 Fouda AS, Ismail MA, Temraz AM, Abousalem AS. Comprehensive investigations on the action of cationic terthiophene and bithiophene as corrosion inhibitors: experimental and theoretical studies. New J Chem 2019;43:768-89. [DOI: 10.1039/c8nj04330b] [Cited by in Crossref: 34] [Article Influence: 11.3] [Reference Citation Analysis]
90 Hwang J, Matsumoto K, Hagiwara R. Na 3 V 2 (PO 4 ) 3 /C Positive Electrodes with High Energy and Power Densities for Sodium Secondary Batteries with Ionic Liquid Electrolytes That Operate across Wide Temperature Ranges. Adv Sustainable Syst 2018;2:1700171. [DOI: 10.1002/adsu.201700171] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 5.8] [Reference Citation Analysis]
91 Sadik K, Hamdani NE, Hachim ME, Byadi S, Bahadur I, Aboulmouhajir A. Towards a theoretical understanding of alkaloid-extract Cytisine derivatives of Retama monosperma (L.) Boiss. Seeds , as eco-friendly inhibitor for carbon steel corrosion in acidic 1M HCl solution. J Theor Comput Chem 2020;19:2050013. [DOI: 10.1142/s0219633620500133] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
92 Dong R, Yu Q, Bai Y, Wu Y, Ma Z, Zhang J, Zhang C, Yu B, Zhou F, Liu W, Cai M. Towards superior lubricity and anticorrosion performances of proton-type ionic liquids additives for water-based lubricating fluids. Chemical Engineering Journal 2020;383:123201. [DOI: 10.1016/j.cej.2019.123201] [Cited by in Crossref: 31] [Cited by in F6Publishing: 5] [Article Influence: 15.5] [Reference Citation Analysis]
93 Parveen G, Bashir S, Thakur A, Saha SK, Banerjee P, Kumar A. Experimental and computational studies of imidazolium based ionic liquid 1-methyl- 3-propylimidazolium iodide on mild steel corrosion in acidic solution. Mater Res Express 2020;7:016510. [DOI: 10.1088/2053-1591/ab5c6a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
94 Olivares-xometl O, Álvarez-álvarez E, Likhanova NV, Lijanova IV, Hernández-ramírez RE, Arellanes-lozada P, Varela-caselis JL. Synthesis and corrosion inhibition mechanism of ammonium-based ionic liquids on API 5L X60 steel in sulfuric acid solution. Journal of Adhesion Science and Technology 2017;32:1092-113. [DOI: 10.1080/01694243.2017.1397422] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 3.4] [Reference Citation Analysis]
95 Gao H, Xie N, Wang H, Chen M, Zhang J, Sun J, Jin Z. Evaluation of corrosion inhibition performance of a novel ionic liquid based on synergism between cation and anion. New J Chem 2020;44:7802-10. [DOI: 10.1039/d0nj00745e] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
96 Wang J, Liu D, Cao S, Pan S, Luo H, Wang T, Ding H, Mamba BB, Gui J. Inhibition effect of monomeric/polymerized imidazole zwitterions as corrosion inhibitors for carbon steel in acid medium. Journal of Molecular Liquids 2020;312:113436. [DOI: 10.1016/j.molliq.2020.113436] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
97 Venkatraman V, Raj JJ, Evjen S, Lethesh KC, Fiksdahl A. In silico prediction and experimental verification of ionic liquid refractive indices. Journal of Molecular Liquids 2018;264:563-70. [DOI: 10.1016/j.molliq.2018.05.067] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
98 Goyal M, Vashisht H, Hamed Alrefaee S, Jain R, Kumar S, Kaya S, Guo L, Verma C. Decyltriphenylphosphonium bromide containing hydrophobic alkyl-chain as a potential corrosion inhibitor for mild steel in sulfuric acid: Theoretical and experimental studies. Journal of Molecular Liquids 2021;336:116166. [DOI: 10.1016/j.molliq.2021.116166] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
99 Benhiba F, Serrar H, Hsissou R, Guenbour A, Bellaouchou A, Tabyaoui M, Boukhris S, Oudda H, Warad I, Zarrouk A. Tetrahydropyrimido-Triazepine derivatives as anti-corrosion additives for acid corrosion: Chemical, electrochemical, surface and theoretical studies. Chemical Physics Letters 2020;743:137181. [DOI: 10.1016/j.cplett.2020.137181] [Cited by in Crossref: 42] [Cited by in F6Publishing: 3] [Article Influence: 21.0] [Reference Citation Analysis]
100 Huang L, Chen W, Wang S, Zhao Q, Li H, Wu Y. Starch, cellulose and plant extracts as green inhibitors of metal corrosion: a review. Environ Chem Lett. [DOI: 10.1007/s10311-022-01400-5] [Reference Citation Analysis]
101 Chauhan DS, Quraishi M, Qurashi A. Recent trends in environmentally sustainable Sweet corrosion inhibitors. Journal of Molecular Liquids 2021;326:115117. [DOI: 10.1016/j.molliq.2020.115117] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 10.0] [Reference Citation Analysis]
102 Zunita M, Wahyuningrum D, Buchari, Bundjali B, Wenten IG, Boopathy R. Corrosion Inhibition Performances of Imidazole Derivatives-Based New Ionic Liquids on Carbon Steel in Brackish Water. Applied Sciences 2020;10:7069. [DOI: 10.3390/app10207069] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
103 Corrales-luna M, Le Manh T, Romero-romo M, Palomar-pardavé M, Arce-estrada EM. 1-Ethyl 3-methylimidazolium thiocyanate ionic liquid as corrosion inhibitor of API 5L X52 steel in H2SO4 and HCl media. Corrosion Science 2019;153:85-99. [DOI: 10.1016/j.corsci.2019.03.041] [Cited by in Crossref: 48] [Cited by in F6Publishing: 15] [Article Influence: 16.0] [Reference Citation Analysis]
104 Cui F, Ni Y, Jiang J, Ni L, Wang Z. Inhibiting Effect of Ionic Liquids on the Corrosion of Mild Steel in H 2 S and HCl Solution. Chem Eng Technol 2020;43:2041-52. [DOI: 10.1002/ceat.201900320] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
105 Fan Z, Guan C, Yu H. Analysis of Morpholinium Ionic Liquid Cations by Hydrophilic Interaction Columns Coupled with Indirect UV Detection: Analysis of Morpholinium Ionic Liquids. Journal of the Chinese Chemical Society 2018;65:726-34. [DOI: 10.1002/jccs.201700280] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
106 Hajjaji FE, Salim R, Ech-chihbi E, Titi A, Messali M, Kaya S, Ibrahimi BE, Taleb M. New imidazolium ionic liquids as ecofriendly corrosion inhibitors for mild steel in hydrochloric acid (1 M): Experimental and theoretical approach. Journal of the Taiwan Institute of Chemical Engineers 2021;123:346-62. [DOI: 10.1016/j.jtice.2021.05.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
107 Ramírez-estrada A, Mena-cervantes VY, Elizalde I, Manzo-robledo A, Zamudio-rivera LS, Nieto-álvarez DA, Farelas F, Hernández-altamirano R. Development of a Zwitterionic Compound Derived from β-Amino Acid as a Green Inhibitor for CO 2 Corrosive Environments. ACS Sustainable Chem Eng 2017;5:10396-406. [DOI: 10.1021/acssuschemeng.7b02434] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 2.8] [Reference Citation Analysis]
108 Goyal M, Kumar S, Bahadur I, Verma C, Ebenso EE. Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: A review. Journal of Molecular Liquids 2018;256:565-73. [DOI: 10.1016/j.molliq.2018.02.045] [Cited by in Crossref: 134] [Cited by in F6Publishing: 33] [Article Influence: 33.5] [Reference Citation Analysis]
109 Ammouchi N, Allal H, Belhocine Y, Bettaz S, Zouaoui E. DFT computations and molecular dynamics investigations on conformers of some pyrazinamide derivatives as corrosion inhibitors for aluminum. Journal of Molecular Liquids 2020;300:112309. [DOI: 10.1016/j.molliq.2019.112309] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
110 Verma C, Quraishi M, Obot I, Ebenso EE. Effect of substituent dependent molecular structure on anti-corrosive behavior of one-pot multicomponent synthesized pyrimido [2,1-B] benzothiazoles: Computer modelling supported experimental studies. Journal of Molecular Liquids 2019;287:110972. [DOI: 10.1016/j.molliq.2019.110972] [Cited by in Crossref: 19] [Cited by in F6Publishing: 5] [Article Influence: 6.3] [Reference Citation Analysis]
111 Chauhan DS, Mazumder MJ, Quraishi M, Ansari K. Chitosan-cinnamaldehyde Schiff base: A bioinspired macromolecule as corrosion inhibitor for oil and gas industry. International Journal of Biological Macromolecules 2020;158:127-38. [DOI: 10.1016/j.ijbiomac.2020.04.200] [Cited by in Crossref: 20] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
112 Shetty SK, Upadhya HS. An overview of anti-corrosion properties of ionic liquids for corrosion of carbon steel in acidic media. Corrosion Reviews 2022;0. [DOI: 10.1515/corrrev-2021-0065] [Reference Citation Analysis]
113 Krishnan A, Gopinath KP, Vo DN, Malolan R, Nagarajan VM, Arun J. Ionic liquids, deep eutectic solvents and liquid polymers as green solvents in carbon capture technologies: a review. Environ Chem Lett 2020;18:2031-54. [DOI: 10.1007/s10311-020-01057-y] [Cited by in Crossref: 23] [Cited by in F6Publishing: 4] [Article Influence: 11.5] [Reference Citation Analysis]
114 Franco M, Herrera-hernández H, García-orozco I, Herrasti P. Extracto acuoso natural de <em>Morinda Citrifolia</em> como inhibidor de corrosión del acero AISI-1045 en ambientes ácidos de HCl. REVMETAL 2018;54:128. [DOI: 10.3989/revmetalm.128] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
115 Saranya J, Lavanya K, Haritha Kiranmai M, Subbiah R, Zarrouk A, Chitra S. Quinoxaline derivatives as anticorrosion additives for metals. Corrosion Reviews 2021;39:79-92. [DOI: 10.1515/corrrev-2020-0033] [Cited by in Crossref: 6] [Article Influence: 6.0] [Reference Citation Analysis]
116 Qasim A, Khan MS, Lal B, Shariff AM. A perspective on dual purpose gas hydrate and corrosion inhibitors for flow assurance. Journal of Petroleum Science and Engineering 2019;183:106418. [DOI: 10.1016/j.petrol.2019.106418] [Cited by in Crossref: 26] [Cited by in F6Publishing: 2] [Article Influence: 8.7] [Reference Citation Analysis]
117 Tatsumi T, Tahara Y, Matsumoto M. Adsorption of Metallic Ions on Amidoxime-Chitosan/Cellulose Hydrogels. Separations 2021;8:202. [DOI: 10.3390/separations8110202] [Reference Citation Analysis]
118 Faiz M, Zahari A, Awang K, Hussin H. Corrosion inhibition on mild steel in 1 M HCl solution by Cryptocarya nigra extracts and three of its constituents (alkaloids). RSC Adv 2020;10:6547-62. [DOI: 10.1039/c9ra05654h] [Cited by in Crossref: 29] [Article Influence: 14.5] [Reference Citation Analysis]
119 Likhanova NV, Arellanes-lozada P, Olivares-xometl O, Hernández-cocoletzi H, Lijanova IV, Arriola-morales J, Castellanos-aguila J. Effect of organic anions on ionic liquids as corrosion inhibitors of steel in sulfuric acid solution. Journal of Molecular Liquids 2019;279:267-78. [DOI: 10.1016/j.molliq.2019.01.126] [Cited by in Crossref: 29] [Cited by in F6Publishing: 9] [Article Influence: 9.7] [Reference Citation Analysis]
120 Pourzarghan V, Fazeli-nasab B. The use of Robinia pseudoacacia L fruit extract as a green corrosion inhibitor in the protection of copper-based objects. Herit Sci 2021;9. [DOI: 10.1186/s40494-021-00545-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
121 Chaouiki A, Al Zoubi W, Ko YG. Advanced prediction of organic–metal interactions through DFT study and electrochemical displacement approach. Journal of Magnesium and Alloys 2022. [DOI: 10.1016/j.jma.2022.04.005] [Reference Citation Analysis]
122 Znaniecki S, Szwabińska K, Wojciechowski J, Skrzypczak A, Baraniak M, Lota G. Capacitor lifetime prolonged by addition of organic ammonium salt with cyclohexyl substituent and 2,5-dihydroxybenzenesulfonic anion. Electrochemistry Communications 2022;140:107326. [DOI: 10.1016/j.elecom.2022.107326] [Reference Citation Analysis]
123 Ansari K, Chauhan DS, Quraishi M, Mazumder MA, Singh A. Chitosan Schiff base: an environmentally benign biological macromolecule as a new corrosion inhibitor for oil & gas industries. International Journal of Biological Macromolecules 2020;144:305-15. [DOI: 10.1016/j.ijbiomac.2019.12.106] [Cited by in Crossref: 31] [Cited by in F6Publishing: 8] [Article Influence: 15.5] [Reference Citation Analysis]
124 Itoh T, Hiramatsu M, Kamada K, Nokami T, Nakayama H, Yagi K, Yan F, Kim HJ. Dicationic-Type Quaternary Ammonium Salts as Candidates of Desiccants for an Air-Conditioning System. ACS Sustainable Chem Eng 2021;9:14502-14. [DOI: 10.1021/acssuschemeng.1c04971] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
125 Fouda AS, El-mekabaty A, Shaaban IEI, El-hossiany A. Synthesis and Biological Evaluation of Novel Thiophene Derivatives as Green Inhibitors for Aluminum Corrosion in Acidic Media. Prot Met Phys Chem Surf 2021;57:1060-75. [DOI: 10.1134/s2070205121050075] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
126 Berdimurodov E, Kholikov A, Akbarov K, Guo L, Kaya S, Verma DK, Rbaa M, Dagdag O. New and Green Corrosion Inhibitor Based on New Imidazole Derivate for Carbon Steel in 1 M Hcl Medium: Experimental and Theoretical Analyses. JERA 2022;58:11-44. [DOI: 10.4028/www.scientific.net/jera.58.11] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
127 Dong R, Bao L, Yu Q, Wu Y, Ma Z, Zhang J, Cai M, Zhou F, Liu W. Effect of Electric Potential and Chain Length on Tribological Performances of Ionic Liquids as Additives for Aqueous Systems and Molecular Dynamics Simulations. ACS Appl Mater Interfaces 2020;12:39910-9. [PMID: 32804469 DOI: 10.1021/acsami.0c11016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
128 Kyei SK, Darko G, Akaranta O. Chemistry and application of emerging ecofriendly antifouling paints: a review. J Coat Technol Res 2020;17:315-32. [DOI: 10.1007/s11998-019-00294-3] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
129 Qasim A, Khan MS, Lal B, Shariff AM. Phase equilibrium measurement and modeling approach to quaternary ammonium salts with and without monoethylene glycol for carbon dioxide hydrates. Journal of Molecular Liquids 2019;282:106-14. [DOI: 10.1016/j.molliq.2019.02.115] [Cited by in Crossref: 24] [Cited by in F6Publishing: 2] [Article Influence: 8.0] [Reference Citation Analysis]
130 Murmu M, Saha SK, Murmu NC, Banerjee P. Amine cured double Schiff base epoxy as efficient anticorrosive coating materials for protection of mild steel in 3.5% NaCl medium. Journal of Molecular Liquids 2019;278:521-35. [DOI: 10.1016/j.molliq.2019.01.066] [Cited by in Crossref: 29] [Article Influence: 9.7] [Reference Citation Analysis]
131 Goyal M, Vashisht H, Kumar S, Bahadur I. Anti-corrosion performance of eco-friendly inhibitor (2-aminobenzyl) triphenylphosphonium bromide ionic liquid on mild steel in 0.5 M sulfuric acid. Journal of Molecular Liquids 2018;261:162-73. [DOI: 10.1016/j.molliq.2018.04.043] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
132 Ba Z, Huang G, Qiao D, Feng D. Experimental and calculation studies on the relationship between the hygroscopic behavior and lubrication properties of ionic liquids. Applied Surface Science 2020;529:147031. [DOI: 10.1016/j.apsusc.2020.147031] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
133 Feng L, Zhang S, Lu Y, Tan B, Chen S, Guo L. Synergistic corrosion inhibition effect of thiazolyl-based ionic liquids between anions and cations for copper in HCl solution. Applied Surface Science 2019;483:901-11. [DOI: 10.1016/j.apsusc.2019.03.299] [Cited by in Crossref: 38] [Cited by in F6Publishing: 12] [Article Influence: 12.7] [Reference Citation Analysis]
134 Ganjoo R, Kumar A. Current Trends in Anti-corrosion Studies of Surfactants on Metals and Alloys. J Bio Tribo Corros 2022;8. [DOI: 10.1007/s40735-021-00597-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
135 Pais M, George SD, Rao P. Glycogen nanoparticles as a potential corrosion inhibitor. Int J Biol Macromol 2021;182:2117-29. [PMID: 34087305 DOI: 10.1016/j.ijbiomac.2021.05.185] [Reference Citation Analysis]
136 Verma C, Ebenso EE, Bahadur I, Quraishi M. An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media. Journal of Molecular Liquids 2018;266:577-90. [DOI: 10.1016/j.molliq.2018.06.110] [Cited by in Crossref: 141] [Cited by in F6Publishing: 37] [Article Influence: 35.3] [Reference Citation Analysis]
137 Verma C, Obot I, Bahadur I, Sherif EM, Ebenso EE. Choline based ionic liquids as sustainable corrosion inhibitors on mild steel surface in acidic medium: Gravimetric, electrochemical, surface morphology, DFT and Monte Carlo simulation studies. Applied Surface Science 2018;457:134-49. [DOI: 10.1016/j.apsusc.2018.06.035] [Cited by in Crossref: 83] [Cited by in F6Publishing: 29] [Article Influence: 20.8] [Reference Citation Analysis]
138 Dehghani A, Bahlakeh G, Ramezanzadeh B. A detailed electrochemical/theoretical exploration of the aqueous Chinese gooseberry fruit shell extract as a green and cheap corrosion inhibitor for mild steel in acidic solution. Journal of Molecular Liquids 2019;282:366-84. [DOI: 10.1016/j.molliq.2019.03.011] [Cited by in Crossref: 80] [Cited by in F6Publishing: 26] [Article Influence: 26.7] [Reference Citation Analysis]
139 Huang H, Fu Y, Mu X, Luo Z, Zhang S, Wang Z, Li H, Gao F. Molecular self-assembly of novel amphiphilic topological hyperbranched polymers for super protection of copper in extremely aggressive acid solution. Applied Surface Science 2020;529:147076. [DOI: 10.1016/j.apsusc.2020.147076] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
140 Himani, Pratap Singh Raman A, Babu Singh M, Jain P, Chaudhary P, Bahadur I, Lal K, Kumar V, Singh P. An Update on Synthesis, Properties, Applications and Toxicity of the ILs. Journal of Molecular Liquids 2022. [DOI: 10.1016/j.molliq.2022.119989] [Reference Citation Analysis]
141 Ofei TN, Bavoh CB, Rashidi AB. Insight into ionic liquid as potential drilling mud additive for high temperature wells. Journal of Molecular Liquids 2017;242:931-9. [DOI: 10.1016/j.molliq.2017.07.113] [Cited by in Crossref: 29] [Cited by in F6Publishing: 7] [Article Influence: 5.8] [Reference Citation Analysis]
142 Goyal M, Vashist H, Kumar S, Bahadur I, Benhiba F, Zarrouk A. Acid corrosion inhibition of ferrous and non-ferrous metal by nature friendly Ethoxycarbonylmethyltriphenylphosphonium Bromide (ECMTPB): Experimental and MD simulation evaluation. Journal of Molecular Liquids 2020;315:113705. [DOI: 10.1016/j.molliq.2020.113705] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
143 Elsayed AE, Shilkamy HAE, Elrouby M. The impact of indium metal as a minor bimetal on the anodic dissolution and passivation performance of zinc for alkaline batteries: part I—potentiodynamic, potentiostatic, XRD, SEM, and EDAX studies. J Solid State Electrochem 2021;25:2161-74. [DOI: 10.1007/s10008-021-04998-8] [Reference Citation Analysis]
144 Znaniecki S, Szwabińska K, Wojciechowski J, Skrzypczak A, Lota G. Ionic Liquid Modified Electrochemical Capacitor with Long‐Term Performance. ChemElectroChem 2021;8:3685-94. [DOI: 10.1002/celc.202100573] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
145 Alrefaee SH, Rhee KY, Verma C, Quraishi M, Ebenso EE. Challenges and advantages of using plant extract as inhibitors in modern corrosion inhibition systems: Recent advancements. Journal of Molecular Liquids 2021;321:114666. [DOI: 10.1016/j.molliq.2020.114666] [Cited by in Crossref: 23] [Cited by in F6Publishing: 7] [Article Influence: 23.0] [Reference Citation Analysis]
146 Tan J, Guo L, Yang H, Zhang F, El Bakri Y. Synergistic effect of potassium iodide and sodium dodecyl sulfonate on the corrosion inhibition of carbon steel in HCl medium: a combined experimental and theoretical investigation. RSC Adv 2020;10:15163-70. [DOI: 10.1039/d0ra02011g] [Cited by in Crossref: 33] [Article Influence: 16.5] [Reference Citation Analysis]
147 Jiang Z, Li Y, Zhang Q, Hou B, Xiong W, Liu H, Zhang G. Purine derivatives as high efficient eco-friendly inhibitors for the corrosion of mild steel in acidic medium: Experimental and theoretical calculations. Journal of Molecular Liquids 2021;323:114809. [DOI: 10.1016/j.molliq.2020.114809] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
148 Arrousse N, Salim R, Houari GA, Hajjaji FE, Zarrouk A, Rais Z, Taleb M, Chauhan DS, Quraishi MA. Experimental and theoretical insights on the adsorption and inhibition mechanism of (2E)-2-(acetylamino)-3-(4-nitrophenyl) prop-2-enoic acid and 4-nitrobenzaldehyde on mild steel corrosion. J Chem Sci 2020;132. [DOI: 10.1007/s12039-020-01818-w] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
149 Verma C, Quraishi M, Ebenso EE. Microwave and ultrasound irradiations for the synthesis of environmentally sustainable corrosion inhibitors: An overview. Sustainable Chemistry and Pharmacy 2018;10:134-47. [DOI: 10.1016/j.scp.2018.11.001] [Cited by in Crossref: 37] [Cited by in F6Publishing: 12] [Article Influence: 9.3] [Reference Citation Analysis]
150 Silva da Conceição DK, Nunes de Almeida K, Nhuch E, Raucci MG, Santillo C, Salzano de Luna M, Ambrosio L, Lavorgna M, Giuliani C, Di Carlo G, Staccioli MP, Falcade T, Schrekker HS. The synergistic effect of an imidazolium salt and benzotriazole on the protection of bronze surfaces with chitosan-based coatings. Herit Sci 2020;8. [DOI: 10.1186/s40494-020-00381-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
151 Messias S, Sousa MM, Nunes da Ponte M, Rangel CM, Pardal T, Reis Machado AS. Electrochemical production of syngas from CO 2 at pressures up to 30 bar in electrolytes containing ionic liquid. React Chem Eng 2019;4:1982-90. [DOI: 10.1039/c9re00271e] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
152 Goel K, Bera S, Singh M, Mondal D. Synthesis, Photophysical Properties, and Biological Importance of Pyrimidinium Ionic Liquids. ChemistrySelect 2019;4:6888-95. [DOI: 10.1002/slct.201900868] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
153 Srivastava V, Salman M, Chauhan DS, Abdel-azeim S, Quraishi M. (E)-2-styryl-1H-benzo[d]imidazole as novel green corrosion inhibitor for carbon steel: Experimental and computational approach. Journal of Molecular Liquids 2021;324:115010. [DOI: 10.1016/j.molliq.2020.115010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 17.0] [Reference Citation Analysis]
154 Mahajan PG, Dige NC, Vanjare BD, Raza H, Hassan M, Seo SY, Kim CH, Lee KH. Synthesis and biological evaluation of 1,2,4-triazolidine-3-thiones as potent acetylcholinesterase inhibitors: in vitro and in silico analysis through kinetics, chemoinformatics and computational approaches. Mol Divers 2020;24:1185-203. [PMID: 31396774 DOI: 10.1007/s11030-019-09983-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
155 Atitaya Samontha, Kiattisak Lugsanangarm. Corrosion Inhibition and Adsorption Mechanism of Eugenol on Copper in HCl Medium. Prot Met Phys Chem Surf 2019;55:187-94. [DOI: 10.1134/s2070205119010192] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
156 Kasprzhitskii A, Lazorenko G. Corrosion inhibition properties of small peptides: DFT and Monte Carlo simulation studies. Journal of Molecular Liquids 2021;331:115782. [DOI: 10.1016/j.molliq.2021.115782] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
157 Sadanandan AM, Khatri PK, Saxena R, Jain SL. Guanidine based amino acid derived task specific ionic liquids as noncorrosive lubricant additives for tribological performance. Journal of Molecular Liquids 2020;313:113527. [DOI: 10.1016/j.molliq.2020.113527] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
158 Zhou T, Yuan J, Zhang Z, Xin X, Xu G. The comparison of imidazolium Gemini surfactant [C14-4-C14im]Br2 and its corresponding monomer as corrosion inhibitors for A3 carbon steel in hydrochloric acid solutions: Experimental and quantum chemical studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019;575:57-65. [DOI: 10.1016/j.colsurfa.2019.05.004] [Cited by in Crossref: 28] [Cited by in F6Publishing: 5] [Article Influence: 9.3] [Reference Citation Analysis]
159 Dehghani A, Bahlakeh G, Ramezanzadeh B, Ramezanzadeh M. Electronic/atomic level fundamental theoretical evaluations combined with electrochemical/surface examinations of Tamarindus indiaca aqueous extract as a new green inhibitor for mild steel in acidic solution (HCl 1 M). Journal of the Taiwan Institute of Chemical Engineers 2019;102:349-77. [DOI: 10.1016/j.jtice.2019.05.006] [Cited by in Crossref: 53] [Cited by in F6Publishing: 14] [Article Influence: 17.7] [Reference Citation Analysis]
160 Farahati R, Mousavi-khoshdel SM, Ghaffarinejad A, Behzadi H. Experimental and computational study of penicillamine drug and cysteine as water-soluble green corrosion inhibitors of mild steel. Progress in Organic Coatings 2020;142:105567. [DOI: 10.1016/j.porgcoat.2020.105567] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Article Influence: 7.5] [Reference Citation Analysis]
161 Verma C, Quraishi M, Rhee KY. Present and emerging trends in using pharmaceutically active compounds as aqueous phase corrosion inhibitors. Journal of Molecular Liquids 2021;328:115395. [DOI: 10.1016/j.molliq.2021.115395] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
162 Aslam R, Mobin M, Huda, Shoeb M, Murmu M, Banerjee P. Proline nitrate ionic liquid as high temperature acid corrosion inhibitor for mild steel: Experimental and molecular-level insights. Journal of Industrial and Engineering Chemistry 2021;100:333-50. [DOI: 10.1016/j.jiec.2021.05.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
163 Verma C, Alrefaee SH, Quraishi M, Ebenso EE, Hussain CM. Recent developments in sustainable corrosion inhibition using ionic liquids: A review. Journal of Molecular Liquids 2021;321:114484. [DOI: 10.1016/j.molliq.2020.114484] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
164 Patel D, Makwana K, Shirdhonkar MB, Kuperkar KC. Electrochemical response and computational approach on surface-active ionic liquid (SAIL) in metal corrosion inhibition. emergent mater 2020;3:161-8. [DOI: 10.1007/s42247-020-00099-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
165 Al-rashed OA, Nazeer AA. Ionic liquids with superior protection for mild steel in acidic media: Effects of anion, cation, and alkyl chain length. Journal of Molecular Liquids 2019;288:111015. [DOI: 10.1016/j.molliq.2019.111015] [Cited by in Crossref: 16] [Article Influence: 5.3] [Reference Citation Analysis]
166 Wang X, Xu W, Liu Q, Li S, Wang C, Wang Z, Zhang H. Microwave-assisted ionic liquid microextraction combined with high performance liquid chromatography for the determination of naphthoquinones from Arnebia euchroma (Royle) Johnst. Journal of Liquid Chromatography & Related Technologies 2019;42:638-47. [DOI: 10.1080/10826076.2019.1647542] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
167 Singh P, Singh Chauhan D, Singh Chauhan S, Ahmad Quraishi M, Swarupa Tripathy S. Synergistic Effect of Iodide Ion and N ‐methyl‐ N,N,N ‐trioctylammonium Chloride on Corrosion Inhibition of Carbon Steel in 0.5 M H 2 SO 4 : Experimental and Computational Approach. ChemistrySelect 2021;6:11417-30. [DOI: 10.1002/slct.202102837] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
168 Tasić ŽZ, Petrović Mihajlović MB, Radovanović MB, Antonijević MM. New trends in corrosion protection of copper. Chem Pap 2019;73:2103-32. [DOI: 10.1007/s11696-019-00774-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
169 Forsyth M, Howlett PC, Somers AE, Macfarlane DR, Basile A. Interphase engineering of reactive metal surfaces using ionic liquids and deep eutectic solvents—from corrosion control to next-generation batteries. npj Mater Degrad 2017;1. [DOI: 10.1038/s41529-017-0016-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.4] [Reference Citation Analysis]
170 Guo L, Gu C, Zhang J, Wang X, Wang K, Jin Y, Tu J. A black conversion coating produced by hot corrosion of magnesium with deep eutectic solvent membrane. Surface and Coatings Technology 2019;357:833-40. [DOI: 10.1016/j.surfcoat.2018.10.062] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
171 Bhardwaj N, Sharma P, Guo L, Dagdag O, Kumar V. Molecular dynamic simulation and Quantum chemical calculation of phytochemicals present in Beta vulgaris and electrochemical behaviour of Beta vulgaris peel extract as green corrosion inhibitor for stainless steel (SS-410) in acidic medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022;632:127707. [DOI: 10.1016/j.colsurfa.2021.127707] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
172 Rbaa M, Fardioui M, Verma C, Abousalem AS, Galai M, Ebenso E, Guedira T, Lakhrissi B, Warad I, Zarrouk A. 8-Hydroxyquinoline based chitosan derived carbohydrate polymer as biodegradable and sustainable acid corrosion inhibitor for mild steel: Experimental and computational analyses. International Journal of Biological Macromolecules 2020;155:645-55. [DOI: 10.1016/j.ijbiomac.2020.03.200] [Cited by in Crossref: 40] [Cited by in F6Publishing: 11] [Article Influence: 20.0] [Reference Citation Analysis]
173 Mohamed KEM, Ibrahim OH, El-bedawy ME, Ali AH. Synergistic effect of different Zn salts with sodium octanoate on the corrosion inhibition of carbon steel in cooling water. Journal of Radiation Research and Applied Sciences 2020;13:276-87. [DOI: 10.1080/16878507.2020.1730603] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
174 Pająk M, Hubkowska K, Czerwiński A. Improved hydrogen sorption properties of Pd in protic and aprotic ionic liquids effected by superacid addition. Journal of Alloys and Compounds 2022;903:163853. [DOI: 10.1016/j.jallcom.2022.163853] [Reference Citation Analysis]
175 Wang Y, Yang Z, Hu H, Wu J, Finšgar M. Indolizine quaternary ammonium salt inhibitors: The inhibition and anti-corrosion mechanism of new dimer derivatives from ethyl acetate quinolinium bromide and n-butyl quinolinium bromide. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022;651:129649. [DOI: 10.1016/j.colsurfa.2022.129649] [Reference Citation Analysis]
176 Abdelshafi NS. Electrochemical and Molecular Dynamic Investigation of Some New Pyrimidine Derivatives as Corrosion Inhibitors for Aluminium in Acid Medium. Prot Met Phys Chem Surf 2020;56:1066-80. [DOI: 10.1134/s2070205120050044] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
177 Verma C, Lgaz H, Verma D, Ebenso EE, Bahadur I, Quraishi M. Molecular dynamics and Monte Carlo simulations as powerful tools for study of interfacial adsorption behavior of corrosion inhibitors in aqueous phase: A review. Journal of Molecular Liquids 2018;260:99-120. [DOI: 10.1016/j.molliq.2018.03.045] [Cited by in Crossref: 98] [Cited by in F6Publishing: 27] [Article Influence: 24.5] [Reference Citation Analysis]
178 Mujtaba Abbasi N, Zeger VR, Biswas A, Anderson JL. Synthesis and characterization of magnetic ionic liquids containing multiple paramagnetic lanthanide and transition metal centers and functionalized diglycolamide ligands. Journal of Molecular Liquids 2022. [DOI: 10.1016/j.molliq.2022.119530] [Reference Citation Analysis]
179 Verma C, Olasunkanmi LO, Akpan ED, Quraishi M, Dagdag O, El Gouri M, Sherif EM, Ebenso EE. Epoxy resins as anticorrosive polymeric materials: A review. Reactive and Functional Polymers 2020;156:104741. [DOI: 10.1016/j.reactfunctpolym.2020.104741] [Cited by in Crossref: 36] [Cited by in F6Publishing: 8] [Article Influence: 18.0] [Reference Citation Analysis]
180 Nkuna AA, Akpan ED, Obot I, Verma C, Ebenso EE, Murulana LC. Impact of selected ionic liquids on corrosion protection of mild steel in acidic medium: Experimental and computational studies. Journal of Molecular Liquids 2020;314:113609. [DOI: 10.1016/j.molliq.2020.113609] [Cited by in Crossref: 13] [Article Influence: 6.5] [Reference Citation Analysis]
181 Verma C, Rhee KY, Quraishi M, Ebenso EE. Pyridine based N-heterocyclic compounds as aqueous phase corrosion inhibitors: A review. Journal of the Taiwan Institute of Chemical Engineers 2020;117:265-77. [DOI: 10.1016/j.jtice.2020.12.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]
182 Bhardwaj N, Sharma P, Singh K, Rana D, Kumar V. Phyllanthus emblica seed extract as corrosion inhibitor for stainless steel used in petroleum industry (SS-410) in acidic medium. Chemical Physics Impact 2021;3:100038. [DOI: 10.1016/j.chphi.2021.100038] [Reference Citation Analysis]
183 Murmu M, Saha SK, Bhaumick P, Murmu NC, Hirani H, Banerjee P. Corrosion inhibition property of azomethine functionalized triazole derivatives in 1 mol L−1 HCl medium for mild steel: Experimental and theoretical exploration. Journal of Molecular Liquids 2020;313:113508. [DOI: 10.1016/j.molliq.2020.113508] [Cited by in Crossref: 32] [Cited by in F6Publishing: 2] [Article Influence: 16.0] [Reference Citation Analysis]
184 Kobzar YL, Fatyeyeva K. Ionic liquids as green and sustainable steel corrosion inhibitors: Recent developments. Chemical Engineering Journal 2021;425:131480. [DOI: 10.1016/j.cej.2021.131480] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 15.0] [Reference Citation Analysis]
185 Fan Z, Yu H, Cai Y. Determination of alkyl ammonium ionic liquid cations by hydrophilic interaction liquid chromatography and its application in analysis of environmental water. Anal Methods 2018;10:2812-20. [DOI: 10.1039/c8ay00720a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
186 Tiwari S, Bhardwaj A, Nigam K, Pant K, Upadhyayula S. A strategy of development and selection of absorbent for efficient CO2 capture: An overview of properties and performance. Process Safety and Environmental Protection 2022;163:244-73. [DOI: 10.1016/j.psep.2022.05.025] [Reference Citation Analysis]
187 Nahlé A, Salim R, El Hajjaji F, Aouad MR, Messali M, Ech-chihbi E, Hammouti B, Taleb M. Novel triazole derivatives as ecological corrosion inhibitors for mild steel in 1.0 M HCl: experimental & theoretical approach. RSC Adv 2021;11:4147-62. [DOI: 10.1039/d0ra09679b] [Cited by in Crossref: 11] [Article Influence: 11.0] [Reference Citation Analysis]
188 Fathima H, Pais M, Rao P. Anticorrosion performance of biopolymer pectin on 6061 aluminium alloy: Electrochemical, spectral and theoretical approach. Journal of Molecular Structure 2021;1243:130775. [DOI: 10.1016/j.molstruc.2021.130775] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
189 Mishra A, Aslam J, Verma C, Quraishi M, Ebenso EE. Imidazoles as highly effective heterocyclic corrosion inhibitors for metals and alloys in aqueous electrolytes: A review. Journal of the Taiwan Institute of Chemical Engineers 2020;114:341-58. [DOI: 10.1016/j.jtice.2020.08.034] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Article Influence: 7.5] [Reference Citation Analysis]
190 Mishra A, Verma C, Srivastava V, Lgaz H, Quraishi MA, Ebenso EE, Chung I. Chemical, Electrochemical and Computational Studies of Newly Synthesized Novel and Environmental Friendly Heterocyclic Compounds as Corrosion Inhibitors for Mild Steel in Acidic Medium. J Bio Tribo Corros 2018;4. [DOI: 10.1007/s40735-018-0147-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
191 Bhaskaran, Pancharatna PD, Lata S, Singh G. Imidazolium based ionic liquid as an efficient and green corrosion constraint for mild steel at acidic pH levels. Journal of Molecular Liquids 2019;278:467-76. [DOI: 10.1016/j.molliq.2019.01.068] [Cited by in Crossref: 20] [Cited by in F6Publishing: 4] [Article Influence: 6.7] [Reference Citation Analysis]
192 Gupta NK, Verma C, Salghi R, Lgaz H, Mukherjee AK, Quraishi MA. New phosphonate based corrosion inhibitors for mild steel in hydrochloric acid useful for industrial pickling processes: experimental and theoretical approach. New J Chem 2017;41:13114-29. [DOI: 10.1039/c7nj01431g] [Cited by in Crossref: 41] [Cited by in F6Publishing: 1] [Article Influence: 8.2] [Reference Citation Analysis]
193 Oyekunle DT, Oguntade TI, Ita CS, Ojo T, Orodu OD. Corrosion inhibition of mild steel using binary mixture of sesame and castor oil in brine solution. Materials Today Communications 2019;21:100691. [DOI: 10.1016/j.mtcomm.2019.100691] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
194 Sanni O, Ren J, Jen T. Understanding the divergence of agro waste extracts on the microstructure, mechanical, and corrosion performance of steel alloy. South African Journal of Chemical Engineering 2022;40:57-69. [DOI: 10.1016/j.sajce.2021.10.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
195 Elgharbawy AA, Riyadi FA, Alam MZ, Moniruzzaman M. Ionic liquids as a potential solvent for lipase-catalysed reactions: A review. Journal of Molecular Liquids 2018;251:150-66. [DOI: 10.1016/j.molliq.2017.12.050] [Cited by in Crossref: 67] [Cited by in F6Publishing: 31] [Article Influence: 16.8] [Reference Citation Analysis]
196 Uğuz Ö, Gümüş M, Sert Y, Koca İ, Koca A. Utilization of pyrazole-perimidine hybrids bearing different substituents as corrosion inhibitors for 304 stainless steel in acidic media. Journal of Molecular Structure 2022;1262:133025. [DOI: 10.1016/j.molstruc.2022.133025] [Reference Citation Analysis]
197 Verma DK, Ebenso EE, Quraishi M, Verma C. Gravimetric, electrochemical surface and density functional theory study of acetohydroxamic and benzohydroxamic acids as corrosion inhibitors for copper in 1 M HCl. Results in Physics 2019;13:102194. [DOI: 10.1016/j.rinp.2019.102194] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 3.7] [Reference Citation Analysis]
198 Zeino A, Abdulazeez I, Khaled M, Jawish MW, Obot I, Alhooshani K. Mechanistic study of polyepoxy succinic acid (PESA) as green corrosion inhibitor on carbon steel in aerated NaCl Solution. Materials Today Communications 2021;29:102848. [DOI: 10.1016/j.mtcomm.2021.102848] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
199 Bouraoui MM, Chettouh S, Chouchane T, Khellaf N. Inhibition Efficiency of Cinnamon Oil as a Green Corrosion Inhibitor. J Bio Tribo Corros 2019;5. [DOI: 10.1007/s40735-019-0221-0] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
200 Rabizadeh T, Asl SK. Casein as a natural protein to inhibit the corrosion of mild steel in HCl solution. Journal of Molecular Liquids 2019;276:694-704. [DOI: 10.1016/j.molliq.2018.11.162] [Cited by in Crossref: 27] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
201 Goyal M, Kumar S, Chandrabhanverma, Bahadur I, Ebenso EE, Lgaz H, Chung I. Interfacial adsorption behavior of quaternary phosphonium based ionic liquids on metal-electrolyte interface: Electrochemical, surface characterization and computational approaches. Journal of Molecular Liquids 2020;298:111995. [DOI: 10.1016/j.molliq.2019.111995] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 5.5] [Reference Citation Analysis]
202 Verma C, Ebenso EE, Quraishi M. Corrosion inhibitors for ferrous and non-ferrous metals and alloys in ionic sodium chloride solutions: A review. Journal of Molecular Liquids 2017;248:927-42. [DOI: 10.1016/j.molliq.2017.10.094] [Cited by in Crossref: 64] [Cited by in F6Publishing: 19] [Article Influence: 12.8] [Reference Citation Analysis]
203 Sanes J, Avilés M, Saurín N, Espinosa T, Carrión F, Bermúdez M. Synergy between graphene and ionic liquid lubricant additives. Tribology International 2017;116:371-82. [DOI: 10.1016/j.triboint.2017.07.030] [Cited by in Crossref: 54] [Cited by in F6Publishing: 15] [Article Influence: 10.8] [Reference Citation Analysis]
204 Verma C, Quraishi M, Rhee KY. Aqueous phase polymeric corrosion inhibitors: Recent advancements and future opportunities. Journal of Molecular Liquids 2022;348:118387. [DOI: 10.1016/j.molliq.2021.118387] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
205 Singh AK, Sharma V. Thermo-physical and tribological characteristics of ionic liquid-based rice bran oil as green cutting fluid. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 2022;236:1091-112. [DOI: 10.1177/13506501211046154] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
206 Özkır D. The Electrochemical Variation of a Kind of Protein Staining and Food Dye as a New Corrosion Inhibitor on Mild Steel in Acidic Medium. International Journal of Electrochemistry 2019;2019:1-11. [DOI: 10.1155/2019/5743952] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
207 Ibrahim MM, Mersal GA, Fallatah AM, Saracoglu M, Kandemirli F, Alharthi S, Szunerits S, Boukherroub R, Ryl J, Amin MA. Electrochemical, theoretical and surface physicochemical studies of the alkaline copper corrosion inhibition by newly synthesized molecular complexes of benzenediamine and tetraamine with π acceptor. Journal of Molecular Liquids 2020;320:114386. [DOI: 10.1016/j.molliq.2020.114386] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
208 Verma C, Quraishi MA. Nanotechnology in the service of corrosion science: considering graphene and derivatives as examples. Corrosion Engineering, Science and Technology. [DOI: 10.1080/1478422x.2022.2093690] [Reference Citation Analysis]
209 Mandal S, Zamindar S, Sarkar S, Murmu M, Guo L, Kaya S, Hirani H, Banerjee P. Quantum chemical and molecular dynamics simulation approach to investigate adsorption behaviour of organic azo dyes on TiO 2 and ZnO surfaces. Journal of Adhesion Science and Technology. [DOI: 10.1080/01694243.2022.2086199] [Reference Citation Analysis]
210 Pandey A, Singh B, Verma C, Ebenso EE. Synthesis, characterization and corrosion inhibition potential of two novel Schiff bases on mild steel in acidic medium. RSC Adv 2017;7:47148-63. [DOI: 10.1039/c7ra08887f] [Cited by in Crossref: 27] [Article Influence: 5.4] [Reference Citation Analysis]