BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Brinkman EK, Chen T, de Haas M, Holland HA, Akhtar W, van Steensel B. Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks. Mol Cell 2018;70:801-813.e6. [PMID: 29804829 DOI: 10.1016/j.molcel.2018.04.016] [Cited by in Crossref: 99] [Cited by in F6Publishing: 82] [Article Influence: 24.8] [Reference Citation Analysis]
Number Citing Articles
1 Leenay RT, Aghazadeh A, Hiatt J, Tse D, Roth TL, Apathy R, Shifrut E, Hultquist JF, Krogan N, Wu Z, Cirolia G, Canaj H, Leonetti MD, Marson A, May AP, Zou J. Large dataset enables prediction of repair after CRISPR-Cas9 editing in primary T cells. Nat Biotechnol 2019;37:1034-7. [PMID: 31359007 DOI: 10.1038/s41587-019-0203-2] [Cited by in Crossref: 45] [Cited by in F6Publishing: 31] [Article Influence: 15.0] [Reference Citation Analysis]
2 Nambiar TS, Baudrier L, Billon P, Ciccia A. CRISPR-based genome editing through the lens of DNA repair. Molecular Cell 2022;82:348-88. [DOI: 10.1016/j.molcel.2021.12.026] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 11.0] [Reference Citation Analysis]
3 Bouwman BAM, Crosetto N. Endogenous DNA Double-Strand Breaks during DNA Transactions: Emerging Insights and Methods for Genome-Wide Profiling. Genes (Basel) 2018;9:E632. [PMID: 30558210 DOI: 10.3390/genes9120632] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 7.3] [Reference Citation Analysis]
4 Owens DDG, Caulder A, Frontera V, Harman JR, Allan AJ, Bucakci A, Greder L, Codner GF, Hublitz P, McHugh PJ, Teboul L, de Bruijn MFTR. Microhomologies are prevalent at Cas9-induced larger deletions. Nucleic Acids Res 2019;47:7402-17. [PMID: 31127293 DOI: 10.1093/nar/gkz459] [Cited by in Crossref: 41] [Cited by in F6Publishing: 25] [Article Influence: 13.7] [Reference Citation Analysis]
5 Vítor AC, Huertas P, Legube G, de Almeida SF. Studying DNA Double-Strand Break Repair: An Ever-Growing Toolbox. Front Mol Biosci 2020;7:24. [PMID: 32154266 DOI: 10.3389/fmolb.2020.00024] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 13.0] [Reference Citation Analysis]
6 Kallimasioti-Pazi EM, Thelakkad Chathoth K, Taylor GC, Meynert A, Ballinger T, Kelder MJE, Lalevée S, Sanli I, Feil R, Wood AJ. Heterochromatin delays CRISPR-Cas9 mutagenesis but does not influence the outcome of mutagenic DNA repair. PLoS Biol 2018;16:e2005595. [PMID: 30540740 DOI: 10.1371/journal.pbio.2005595] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 7.3] [Reference Citation Analysis]
7 Aldag P, Welzel F, Jakob L, Schmidbauer A, Rutkauskas M, Fettes F, Grohmann D, Seidel R. Probing the stability of the SpCas9-DNA complex after cleavage. Nucleic Acids Res 2021;49:12411-21. [PMID: 34792162 DOI: 10.1093/nar/gkab1072] [Reference Citation Analysis]
8 Leibowitz ML, Papathanasiou S, Doerfler PA, Blaine LJ, Sun L, Yao Y, Zhang CZ, Weiss MJ, Pellman D. Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing. Nat Genet 2021;53:895-905. [PMID: 33846636 DOI: 10.1038/s41588-021-00838-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 19] [Article Influence: 14.0] [Reference Citation Analysis]
9 Kath J, Du W, Pruene A, Braun T, Thommandru B, Turk R, Sturgeon ML, Kurgan GL, Amini L, Stein M, Zittel T, Martini S, Ostendorf L, Wilhelm A, Akyüz L, Rehm A, Höpken UE, Pruß A, Künkele A, Jacobi AM, Volk HD, Schmueck-Henneresse M, Stripecke R, Reinke P, Wagner DL. Pharmacological interventions enhance virus-free generation of TRAC-replaced CAR T cells. Mol Ther Methods Clin Dev 2022;25:311-30. [PMID: 35573047 DOI: 10.1016/j.omtm.2022.03.018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Tesfaye E, Martinez-Terroba E, Bendor J, Winkler L, Olivero C, Chen K, Feldser DM, Zamudio JR, Dimitrova N. The p53 transcriptional response across tumor types reveals core and senescence-specific signatures modulated by long noncoding RNAs. Proc Natl Acad Sci U S A 2021;118:e2025539118. [PMID: 34326251 DOI: 10.1073/pnas.2025539118] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Caron P, van der Linden J, van Attikum H. Bon voyage: A transcriptional journey around DNA breaks. DNA Repair (Amst) 2019;82:102686. [PMID: 31476573 DOI: 10.1016/j.dnarep.2019.102686] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 10.7] [Reference Citation Analysis]
12 Bosch-Guiteras N, Uroda T, Guillen-Ramirez HA, Riedo R, Gazdhar A, Esposito R, Pulido-Quetglas C, Zimmer Y, Medová M, Johnson R. Enhancing CRISPR deletion via pharmacological delay of DNA-PKcs. Genome Res 2021;31:461-71. [PMID: 33574136 DOI: 10.1101/gr.265736.120] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Yin J, Lu R, Xin C, Wang Y, Ling X, Li D, Zhang W, Liu M, Xie W, Kong L, Si W, Wei P, Xiao B, Lee HY, Liu T, Hu J. Cas9 exo-endonuclease eliminates chromosomal translocations during genome editing. Nat Commun 2022;13:1204. [PMID: 35260581 DOI: 10.1038/s41467-022-28900-w] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
14 Kostyushev D, Kostyusheva A, Brezgin S, Zarifyan D, Utkina A, Goptar I, Chulanov V. Suppressing the NHEJ pathway by DNA-PKcs inhibitor NU7026 prevents degradation of HBV cccDNA cleaved by CRISPR/Cas9. Sci Rep 2019;9:1847. [PMID: 30755668 DOI: 10.1038/s41598-019-38526-6] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
15 Hussain SS, Majumdar R, Moore GM, Narang H, Buechelmaier ES, Bazil MJ, Ravindran PT, Leeman JE, Li Y, Jalan M, Anderson KS, Farina A, Soni R, Mohibullah N, Hamzic E, Rong-Mullins X, Sifuentes C, Damerla RR, Viale A, Powell SN, Higginson DS. Measuring nonhomologous end-joining, homologous recombination and alternative end-joining simultaneously at an endogenous locus in any transfectable human cell. Nucleic Acids Res 2021;49:e74. [PMID: 33877327 DOI: 10.1093/nar/gkab262] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 van den Berg J, G Manjón A, Kielbassa K, Feringa FM, Freire R, Medema RH. A limited number of double-strand DNA breaks is sufficient to delay cell cycle progression. Nucleic Acids Res 2018;46:10132-44. [PMID: 30184135 DOI: 10.1093/nar/gky786] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 11.0] [Reference Citation Analysis]
17 Vaziri C, Rogozin IB, Gu Q, Wu D, Day TA. Unravelling roles of error-prone DNA polymerases in shaping cancer genomes. Oncogene 2021. [PMID: 34663880 DOI: 10.1038/s41388-021-02032-9] [Reference Citation Analysis]
18 [DOI: 10.1101/404947] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Choudhury A, Fankhauser RG, Freed EF, Oh EJ, Morgenthaler AB, Bassalo MC, Copley SD, Kaar JL, Gill RT. Determinants for Efficient Editing with Cas9-Mediated Recombineering in Escherichia coli. ACS Synth Biol 2020;9:1083-99. [PMID: 32298586 DOI: 10.1021/acssynbio.9b00440] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
20 Ali A, Xiao W, Babar ME, Bi Y. Double-Stranded Break Repair in Mammalian Cells and Precise Genome Editing. Genes (Basel) 2022;13:737. [PMID: 35627122 DOI: 10.3390/genes13050737] [Reference Citation Analysis]
21 Edgington MP, Harvey-Samuel T, Alphey L. Population-level multiplexing: A promising strategy to manage the evolution of resistance against gene drives targeting a neutral locus. Evol Appl 2020;13:1939-48. [PMID: 32908596 DOI: 10.1111/eva.12945] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
22 Feng W, Smith CM, Simpson DA, Gupta GP. Targeting Non-homologous and Alternative End Joining Repair to Enhance Cancer Radiosensitivity. Semin Radiat Oncol 2022;32:29-41. [PMID: 34861993 DOI: 10.1016/j.semradonc.2021.09.007] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Kawall K, Cotter J, Then C. Broadening the GMO risk assessment in the EU for genome editing technologies in agriculture. Environ Sci Eur 2020;32. [DOI: 10.1186/s12302-020-00361-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 5.5] [Reference Citation Analysis]
24 March OP, Kocher T, Koller U. Context-Dependent Strategies for Enhanced Genome Editing of Genodermatoses. Cells 2020;9:E112. [PMID: 31906492 DOI: 10.3390/cells9010112] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
25 [DOI: 10.1101/406934] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
26 Gross T, Jeney C, Halm D, Finkenzeller G, Stark GB, Zengerle R, Koltay P, Zimmermann S. Characterization of CRISPR/Cas9 RANKL knockout mesenchymal stem cell clones based on single-cell printing technology and Emulsion Coupling assay as a low-cellularity workflow for single-cell cloning. PLoS One 2021;16:e0238330. [PMID: 33661950 DOI: 10.1371/journal.pone.0238330] [Reference Citation Analysis]
27 Kawall K. New Possibilities on the Horizon: Genome Editing Makes the Whole Genome Accessible for Changes. Front Plant Sci 2019;10:525. [PMID: 31068963 DOI: 10.3389/fpls.2019.00525] [Cited by in Crossref: 18] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
28 Ray U, Raghavan SC. Modulation of DNA double-strand break repair as a strategy to improve precise genome editing. Oncogene 2020;39:6393-405. [PMID: 32884115 DOI: 10.1038/s41388-020-01445-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
29 Weitzel AJ, Grunwald HA, Weber C, Levina R, Gantz VM, Hedrick SM, Bier E, Cooper KL. Meiotic Cas9 expression mediates gene conversion in the male and female mouse germline. PLoS Biol 2021;19:e3001478. [PMID: 34941868 DOI: 10.1371/journal.pbio.3001478] [Reference Citation Analysis]
30 Yaşa B, Şahin O, Öcüt E, Seven M, Sözer S. Assessment of Fetal Rhesus D and Gender with Cell-Free DNA and Exosomes from Maternal Blood. Reprod Sci 2021;28:562-9. [PMID: 32968935 DOI: 10.1007/s43032-020-00321-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Yoo BC, Yadav NS, Orozco EM Jr, Sakai H. Cas9/gRNA-mediated genome editing of yeast mitochondria and Chlamydomonas chloroplasts. PeerJ 2020;8:e8362. [PMID: 31934513 DOI: 10.7717/peerj.8362] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
32 Wang AS, Chen LC, Wu RA, Hao Y, McSwiggen DT, Heckert AB, Richardson CD, Gowen BG, Kazane KR, Vu JT, Wyman SK, Shin JJ, Darzacq X, Walter JC, Corn JE. The Histone Chaperone FACT Induces Cas9 Multi-turnover Behavior and Modifies Genome Manipulation in Human Cells. Mol Cell 2020;79:221-233.e5. [PMID: 32603710 DOI: 10.1016/j.molcel.2020.06.014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
33 Viviani A, Spada M, Giordani T, Fambrini M, Pugliesi C. Origin of the genome editing systems: application for crop improvement. Biologia. [DOI: 10.1007/s11756-022-01142-3] [Reference Citation Analysis]
34 Zou RS, Liu Y, Wu B, Ha T. Cas9 deactivation with photocleavable guide RNAs. Mol Cell 2021;81:1553-1565.e8. [PMID: 33662274 DOI: 10.1016/j.molcel.2021.02.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Iriki H, Kawata T, Muramoto T. Generation of deletions and precise point mutations in Dictyostelium discoideum using the CRISPR nickase. PLoS One 2019;14:e0224128. [PMID: 31622451 DOI: 10.1371/journal.pone.0224128] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
36 Tatiossian KJ, Clark RDE, Huang C, Thornton ME, Grubbs BH, Cannon PM. Rational Selection of CRISPR-Cas9 Guide RNAs for Homology-Directed Genome Editing. Mol Ther 2021;29:1057-69. [PMID: 33160457 DOI: 10.1016/j.ymthe.2020.10.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
37 Schep R, Leemans C, Brinkman EK, van Schaik T, van Steensel B. Protocol: A Multiplexed Reporter Assay to Study Effects of Chromatin Context on DNA Double-Strand Break Repair. Front Genet 2021;12:785947. [PMID: 35173762 DOI: 10.3389/fgene.2021.785947] [Reference Citation Analysis]
38 Stahl-Rommel S, Li D, Sung M, Li R, Vijayakumar A, Atabay KD, Bushkin GG, Castro CL, Foley KD, Copeland DS, Castro-Wallace SL, Alvarez Saavedra E, Gleason EJ, Kraves S. A CRISPR-based assay for the study of eukaryotic DNA repair onboard the International Space Station. PLoS One 2021;16:e0253403. [PMID: 34191829 DOI: 10.1371/journal.pone.0253403] [Reference Citation Analysis]
39 Tsai LJ, Lopezcolorado FW, Bhargava R, Mendez-Dorantes C, Jahanshir E, Stark JM. RNF8 has both KU-dependent and independent roles in chromosomal break repair. Nucleic Acids Res 2020;48:6032-52. [PMID: 32427332 DOI: 10.1093/nar/gkaa380] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
40 Rawal CC, Butova NL, Mitra A, Chiolo I. An Expanding Toolkit for Heterochromatin Repair Studies. Genes 2022;13:529. [DOI: 10.3390/genes13030529] [Reference Citation Analysis]
41 Yang M, Tkach D, Boyne A, Kazancioglu S, Duclert A, Poirot L, Duchateau P, Juillerat A. Optimized two-step electroporation process to achieve efficient nonviral-mediated gene insertion into primary T cells. FEBS Open Bio 2021. [PMID: 34510816 DOI: 10.1002/2211-5463.13292] [Reference Citation Analysis]
42 Hölttä M, Nitsch R, Henderson N. Bioanalytical challenges and strategies of CRISPR genome editors. Bioanalysis 2021;13:169-79. [PMID: 33538183 DOI: 10.4155/bio-2020-0215] [Reference Citation Analysis]
43 Park J, Lim JM, Jung I, Heo SJ, Park J, Chang Y, Kim HK, Jung D, Yu JH, Min S, Yoon S, Cho SR, Park T, Kim HH. Recording of elapsed time and temporal information about biological events using Cas9. Cell 2021;184:1047-1063.e23. [PMID: 33539780 DOI: 10.1016/j.cell.2021.01.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
44 Clouaire T, Legube G. A Snapshot on the Cis Chromatin Response to DNA Double-Strand Breaks. Trends Genet 2019;35:330-45. [PMID: 30898334 DOI: 10.1016/j.tig.2019.02.003] [Cited by in Crossref: 37] [Cited by in F6Publishing: 29] [Article Influence: 12.3] [Reference Citation Analysis]
45 Feng W, Simpson DA, Cho JE, Carvajal-Garcia J, Smith CM, Headley KM, Hathaway N, Ramsden DA, Gupta GP. Marker-free quantification of repair pathway utilization at Cas9-induced double-strand breaks. Nucleic Acids Res 2021;49:5095-105. [PMID: 33963863 DOI: 10.1093/nar/gkab299] [Reference Citation Analysis]
46 Foss DV, Hochstrasser ML, Wilson RC. Clinical applications of CRISPR-based genome editing and diagnostics. Transfusion 2019;59:1389-99. [PMID: 30600536 DOI: 10.1111/trf.15126] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
47 Chechik L, Martin O, Soutoglou E. Genome Editing Fidelity in the Context of DNA Sequence and Chromatin Structure. Front Cell Dev Biol 2020;8:319. [PMID: 32457906 DOI: 10.3389/fcell.2020.00319] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
48 van Sluis M, McStay B. Nucleolar DNA Double-Strand Break Responses Underpinning rDNA Genomic Stability. Trends Genet 2019;35:743-53. [PMID: 31353047 DOI: 10.1016/j.tig.2019.07.001] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
49 Du J, Yin N, Xie T, Zheng Y, Xia N, Shang J, Chen F, Zhang H, Yu J, Liu F. Quantitative assessment of HR and NHEJ activities via CRISPR/Cas9-induced oligodeoxynucleotide-mediated DSB repair. DNA Repair (Amst) 2018;70:67-71. [PMID: 30212742 DOI: 10.1016/j.dnarep.2018.09.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
50 Schep R, Brinkman EK, Leemans C, Vergara X, van der Weide RH, Morris B, van Schaik T, Manzo SG, Peric-Hupkes D, van den Berg J, Beijersbergen RL, Medema RH, van Steensel B. Impact of chromatin context on Cas9-induced DNA double-strand break repair pathway balance. Mol Cell 2021;81:2216-2230.e10. [PMID: 33848455 DOI: 10.1016/j.molcel.2021.03.032] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
51 Chakrabarti AM, Henser-Brownhill T, Monserrat J, Poetsch AR, Luscombe NM, Scaffidi P. Target-Specific Precision of CRISPR-Mediated Genome Editing. Mol Cell 2019;73:699-713.e6. [PMID: 30554945 DOI: 10.1016/j.molcel.2018.11.031] [Cited by in Crossref: 94] [Cited by in F6Publishing: 84] [Article Influence: 23.5] [Reference Citation Analysis]
52 Shademan B, Nourazarian A, Hajazimian S, Isazadeh A, Biray Avci C, Oskouee MA. CRISPR Technology in Gene-Editing-Based Detection and Treatment of SARS-CoV-2. Front Mol Biosci 2022;8:772788. [DOI: 10.3389/fmolb.2021.772788] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
53 Peterka M, Akrap N, Li S, Wimberger S, Hsieh PP, Degtev D, Bestas B, Barr J, van de Plassche S, Mendoza-Garcia P, Šviković S, Sienski G, Firth M, Maresca M. Harnessing DSB repair to promote efficient homology-dependent and -independent prime editing. Nat Commun 2022;13:1240. [PMID: 35332138 DOI: 10.1038/s41467-022-28771-1] [Reference Citation Analysis]
54 Hayward SB, Ciccia A. Towards a CRISPeR understanding of homologous recombination with high-throughput functional genomics. Curr Opin Genet Dev 2021;71:171-81. [PMID: 34583241 DOI: 10.1016/j.gde.2021.08.006] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Verkuijl SAN, Ang JXD, Alphey L, Bonsall MB, Anderson MAE. The Challenges in Developing Efficient and Robust Synthetic Homing Endonuclease Gene Drives. Front Bioeng Biotechnol 2022;10:856981. [DOI: 10.3389/fbioe.2022.856981] [Reference Citation Analysis]
56 Banas K, Rivera-Torres N, Bialk P, Yoo BC, Kmiec EB. Kinetics of Nuclear Uptake and Site-Specific DNA Cleavage during CRISPR-Directed Gene Editing in Solid Tumor Cells. Mol Cancer Res 2020;18:891-902. [PMID: 32184217 DOI: 10.1158/1541-7786.MCR-19-1208] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
57 Pomella S, Rota R. The CRISP(Y) Future of Pediatric Soft Tissue Sarcomas. Front Chem 2020;8:178. [PMID: 32232030 DOI: 10.3389/fchem.2020.00178] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Velichko AK, Razin SV, Kantidze OL. DNA Damage Response in Nucleoli. Mol Biol 2021;55:182-92. [DOI: 10.1134/s002689332102014x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 McBeath E, Parker-Thornburg J, Fujii Y, Aryal N, Smith C, Hofmann MC, Abe JI, Fujiwara K. Rapid Evaluation of CRISPR Guides and Donors for Engineering Mice. Genes (Basel) 2020;11:E628. [PMID: 32521708 DOI: 10.3390/genes11060628] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
60 Denes CE, Cole AJ, Aksoy YA, Li G, Neely GG, Hesselson D. Approaches to Enhance Precise CRISPR/Cas9-Mediated Genome Editing. Int J Mol Sci 2021;22:8571. [PMID: 34445274 DOI: 10.3390/ijms22168571] [Reference Citation Analysis]
61 Kumar RJ, Chao HX, Simpson DA, Feng W, Cho MG, Roberts VR, Sullivan AR, Shah SJ, Wozny AS, Fagan-Solis K, Kumar S, Luthman A, Ramsden DA, Purvis JE, Gupta GP. Dual inhibition of DNA-PK and DNA polymerase theta overcomes radiation resistance induced by p53 deficiency. NAR Cancer 2020;2:zcaa038. [PMID: 33385162 DOI: 10.1093/narcan/zcaa038] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
62 Giuliano CJ, Lin A, Girish V, Sheltzer JM. Generating Single Cell-Derived Knockout Clones in Mammalian Cells with CRISPR/Cas9. Curr Protoc Mol Biol 2019;128:e100. [PMID: 31503414 DOI: 10.1002/cpmb.100] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
63 Ishibashi A, Saga K, Hisatomi Y, Li Y, Kaneda Y, Nimura K. A simple method using CRISPR-Cas9 to knock-out genes in murine cancerous cell lines. Sci Rep 2020;10:22345. [PMID: 33339985 DOI: 10.1038/s41598-020-79303-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
64 Oh HS, Neuhausser WM, Eggan P, Angelova M, Kirchner R, Eggan KC, Knipe DM. Herpesviral lytic gene functions render the viral genome susceptible to novel editing by CRISPR/Cas9. Elife 2019;8:e51662. [PMID: 31789594 DOI: 10.7554/eLife.51662] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
65 Liu Y, Zou RS, He S, Nihongaki Y, Li X, Razavi S, Wu B, Ha T. Very fast CRISPR on demand. Science 2020;368:1265-9. [PMID: 32527834 DOI: 10.1126/science.aay8204] [Cited by in Crossref: 48] [Cited by in F6Publishing: 32] [Article Influence: 24.0] [Reference Citation Analysis]
66 Gong Y, Bi Y, Li Z, Li Y, Yao Y, Long Q, Pu T, Chen C, Liu T, Dong S, Cun W. High-efficiency nonhomologous insertion of a foreign gene into the herpes simplex virus genome. J Gen Virol 2020;101:982-96. [PMID: 32602833 DOI: 10.1099/jgv.0.001451] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
67 Kocher T, Petkovic I, Bischof J, Koller U. Current developments in gene therapy for epidermolysis bullosa. Expert Opin Biol Ther 2022. [PMID: 35235467 DOI: 10.1080/14712598.2022.2049229] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 So CC, Martin A. DSB structure impacts DNA recombination leading to class switching and chromosomal translocations in human B cells. PLoS Genet 2019;15:e1008101. [PMID: 30946744 DOI: 10.1371/journal.pgen.1008101] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
69 Miné-Hattab J, Chiolo I. Complex Chromatin Motions for DNA Repair. Front Genet 2020;11:800. [PMID: 33061931 DOI: 10.3389/fgene.2020.00800] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
70 Caron P, Pobega E, Polo SE. A molecular Rosetta Stone to decipher the impact of chromatin features on the repair of Cas9-mediated DNA double-strand breaks. Mol Cell 2021;81:2059-60. [PMID: 34019786 DOI: 10.1016/j.molcel.2021.04.024] [Reference Citation Analysis]
71 Bischoff N, Wimberger S, Maresca M, Brakebusch C. Improving Precise CRISPR Genome Editing by Small Molecules: Is there a Magic Potion? Cells 2020;9:E1318. [PMID: 32466303 DOI: 10.3390/cells9051318] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
72 Brinkman EK, van Steensel B. Rapid Quantitative Evaluation of CRISPR Genome Editing by TIDE and TIDER. In: Luo Y, editor. CRISPR Gene Editing. New York: Springer; 2019. pp. 29-44. [DOI: 10.1007/978-1-4939-9170-9_3] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
73 Sledzinski P, Nowaczyk M, Olejniczak M. Computational Tools and Resources Supporting CRISPR-Cas Experiments. Cells 2020;9:E1288. [PMID: 32455882 DOI: 10.3390/cells9051288] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
74 Tian R, Liu J, Fan W, Li R, Cui Z, Jin Z, Huang Z, Xie H, Li L, Huang Z, Hu Z, Zhou P, Tian X. Gene knock-out chain reaction enables high disruption efficiency of HPV18 E6/E7 genes in cervical cancer cells. Mol Ther Oncolytics 2022;24:171-9. [PMID: 35036522 DOI: 10.1016/j.omto.2021.12.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
75 Bennett EP, Petersen BL, Johansen IE, Niu Y, Yang Z, Chamberlain CA, Met Ö, Wandall HH, Frödin M. INDEL detection, the 'Achilles heel' of precise genome editing: a survey of methods for accurate profiling of gene editing induced indels. Nucleic Acids Res 2020;48:11958-81. [PMID: 33170255 DOI: 10.1093/nar/gkaa975] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
76 Park SH, Lee CM, Dever DP, Davis TH, Camarena J, Srifa W, Zhang Y, Paikari A, Chang AK, Porteus MH, Sheehan VA, Bao G. Highly efficient editing of the β-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic Acids Res 2019;47:7955-72. [PMID: 31147717 DOI: 10.1093/nar/gkz475] [Cited by in Crossref: 50] [Cited by in F6Publishing: 46] [Article Influence: 16.7] [Reference Citation Analysis]
77 Sreekanth V, Zhou Q, Kokkonda P, Bermudez-Cabrera HC, Lim D, Law BK, Holmes BR, Chaudhary SK, Pergu R, Leger BS, Walker JA, Gifford DK, Sherwood RI, Choudhary A. Chemogenetic System Demonstrates That Cas9 Longevity Impacts Genome Editing Outcomes. ACS Cent Sci 2020;6:2228-37. [PMID: 33376784 DOI: 10.1021/acscentsci.0c00129] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
78 Xue C, Greene EC. DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing. Trends Genet 2021;37:639-56. [PMID: 33896583 DOI: 10.1016/j.tig.2021.02.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
79 Chen X, Guo R, Zhao C, Xu J, Song H, Yu H, Pilarsky C, Nainu F, Li J, Zhou X, Zhang J. A Novel Anti-Cancer Therapy: CRISPR/Cas9 Gene Editing. Front Pharmacol 2022;13:939090. [DOI: 10.3389/fphar.2022.939090] [Reference Citation Analysis]
80 Saifaldeen M, Al-Ansari DE, Ramotar D, Aouida M. CRISPR FokI Dead Cas9 System: Principles and Applications in Genome Engineering. Cells 2020;9:E2518. [PMID: 33233344 DOI: 10.3390/cells9112518] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
81 Liu S, Feng Y, Sun X, Chen R, Liu Q, Xiao J, Zhang J, Huang Z, Xiang J, Chen G, Yang Y, Lou C, Li H, Cai Z, Xu S, Lin H, Xie A. Target residence of Cas9-sgRNA influences DNA double-strand break repair pathway choices in CRISPR/Cas9 genome editing. Genome Biol 2022;23. [DOI: 10.1186/s13059-022-02736-5] [Reference Citation Analysis]
82 Liu X, Wang S, Ai D. Predicting CRISPR/Cas9 Repair Outcomes by Attention-Based Deep Learning Framework. Cells 2022;11:1847. [DOI: 10.3390/cells11111847] [Reference Citation Analysis]
83 Manoj F, Tai LW, Wang KSM, Kuhlman TE. Targeted insertion of large genetic payloads using cas directed LINE-1 reverse transcriptase. Sci Rep 2021;11:23625. [PMID: 34880381 DOI: 10.1038/s41598-021-03130-0] [Reference Citation Analysis]
84 Antony JS, Hinz JM, Wyrick JJ. Tips, Tricks, and Potential Pitfalls of CRISPR Genome Editing in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2022;10:924914. [DOI: 10.3389/fbioe.2022.924914] [Reference Citation Analysis]
85 Schüller A, Wolansky L, Berger H, Studt L, Gacek-Matthews A, Sulyok M, Strauss J. A novel fungal gene regulation system based on inducible VPR-dCas9 and nucleosome map-guided sgRNA positioning. Appl Microbiol Biotechnol 2020;104:9801-22. [PMID: 33006690 DOI: 10.1007/s00253-020-10900-9] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
86 Bloh K, Kanchana R, Bialk P, Banas K, Zhang Z, Yoo BC, Kmiec EB. Deconvolution of Complex DNA Repair (DECODR): Establishing a Novel Deconvolution Algorithm for Comprehensive Analysis of CRISPR-Edited Sanger Sequencing Data. CRISPR J 2021;4:120-31. [PMID: 33571043 DOI: 10.1089/crispr.2020.0022] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
87 House NCM, Parasuram R, Layer JV, Price BD. Site-specific targeting of a light activated dCas9-KillerRed fusion protein generates transient, localized regions of oxidative DNA damage. PLoS One 2020;15:e0237759. [PMID: 33332350 DOI: 10.1371/journal.pone.0237759] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
88 Kroll F, Powell GT, Ghosh M, Gestri G, Antinucci P, Hearn TJ, Tunbak H, Lim S, Dennis HW, Fernandez JM, Whitmore D, Dreosti E, Wilson SW, Hoffman EJ, Rihel J. A simple and effective F0 knockout method for rapid screening of behaviour and other complex phenotypes. Elife 2021;10:e59683. [PMID: 33416493 DOI: 10.7554/eLife.59683] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 12.0] [Reference Citation Analysis]
89 Zhu X, Clarke R, Puppala AK, Chittori S, Merk A, Merrill BJ, Simonović M, Subramaniam S. Cryo-EM structures reveal coordinated domain motions that govern DNA cleavage by Cas9. Nat Struct Mol Biol 2019;26:679-85. [PMID: 31285607 DOI: 10.1038/s41594-019-0258-2] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 12.0] [Reference Citation Analysis]
90 Rautela J, Surgenor E, Huntington ND. Drug target validation in primary human natural killer cells using CRISPR RNP. J Leukoc Biol 2020;108:1397-408. [PMID: 33463756 DOI: 10.1002/JLB.2MA0620-074R] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
91 Edgington MP, Harvey-Samuel T, Alphey L. Split drive killer-rescue provides a novel threshold-dependent gene drive. Sci Rep 2020;10:20520. [PMID: 33239631 DOI: 10.1038/s41598-020-77544-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
92 Carlson-Stevermer J, Kelso R, Kadina A, Joshi S, Rossi N, Walker J, Stoner R, Maures T. CRISPRoff enables spatio-temporal control of CRISPR editing. Nat Commun 2020;11:5041. [PMID: 33028827 DOI: 10.1038/s41467-020-18853-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
93 Anaganti N, Chattopadhyay A, Poirier JT, Hussain MM. Generation of hepatoma cell lines deficient in microsomal triglyceride transfer protein. J Lipid Res 2022;:100257. [PMID: 35931202 DOI: 10.1016/j.jlr.2022.100257] [Reference Citation Analysis]
94 Meyenberg M, Ferreira da Silva J, Loizou JI. Tissue Specific DNA Repair Outcomes Shape the Landscape of Genome Editing. Front Genet 2021;12:728520. [PMID: 34539755 DOI: 10.3389/fgene.2021.728520] [Reference Citation Analysis]
95 [DOI: 10.1101/2020.06.04.133462] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
96 Siva N, Gupta S, Gupta A, Shukla JN, Malik B, Shukla N. Genome-editing approaches and applications: a brief review on CRISPR technology and its role in cancer. 3 Biotech 2021;11:146. [PMID: 33732568 DOI: 10.1007/s13205-021-02680-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
97 Hsu LJ, Liu CL, Kuo ML, Shen CN, Shen CR. An Alternative Cell Therapy for Cancers: Induced Pluripotent Stem Cell (iPSC)-Derived Natural Killer Cells. Biomedicines 2021;9:1323. [PMID: 34680440 DOI: 10.3390/biomedicines9101323] [Reference Citation Analysis]
98 Ferreira da Silva J, Salic S, Wiedner M, Datlinger P, Essletzbichler P, Hanzl A, Superti-Furga G, Bock C, Winter G, Loizou JI. Genome-scale CRISPR screens are efficient in non-homologous end-joining deficient cells. Sci Rep 2019;9:15751. [PMID: 31673055 DOI: 10.1038/s41598-019-52078-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
99 Hüdig M, Laibach N, Hein AC. Genome Editing in Crop Plant Research-Alignment of Expectations and Current Developments. Plants (Basel) 2022;11:212. [PMID: 35050100 DOI: 10.3390/plants11020212] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
100 Marnef A, Finoux AL, Arnould C, Guillou E, Daburon V, Rocher V, Mangeat T, Mangeot PE, Ricci EP, Legube G. A cohesin/HUSH- and LINC-dependent pathway controls ribosomal DNA double-strand break repair. Genes Dev 2019;33:1175-90. [PMID: 31395742 DOI: 10.1101/gad.324012.119] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 11.0] [Reference Citation Analysis]
101 Liu W, Scott JM, Langguth E, Chang H, Park PH, Kim S. FcRγ Gene Editing Reprograms Conventional NK Cells to Display Key Features of Adaptive Human NK Cells. iScience 2020;23:101709. [PMID: 33205022 DOI: 10.1016/j.isci.2020.101709] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
102 Krey K, Babnis AW, Pichlmair A. System-Based Approaches to Delineate the Antiviral Innate Immune Landscape. Viruses 2020;12:E1196. [PMID: 33096788 DOI: 10.3390/v12101196] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
103 Kostyushev D, Kostyusheva A, Ponomareva N, Brezgin S, Chulanov V. CRISPR/Cas and Hepatitis B Therapy: Technological Advances and Practical Barriers. Nucleic Acid Ther 2021. [PMID: 34797701 DOI: 10.1089/nat.2021.0075] [Reference Citation Analysis]
104 Dodsworth BT, Hatje K, Meyer CA, Flynn R, Cowley SA. Rates of homology directed repair of CRISPR-Cas9 induced double strand breaks are lower in naïve compared to primed human pluripotent stem cells. Stem Cell Res 2020;46:101852. [PMID: 32521498 DOI: 10.1016/j.scr.2020.101852] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
105 Conti A, Di Micco R. p53 activation: a checkpoint for precision genome editing? Genome Med 2018;10:66. [PMID: 30119695 DOI: 10.1186/s13073-018-0578-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
106 Yin J, Hu J. The origin of unwanted editing byproducts in gene editing. Acta Biochim Biophys Sin (Shanghai) 2022;54:1-15. [PMID: 35643959 DOI: 10.3724/abbs.2022056] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
107 Falk M, Hausmann M. A Paradigm Revolution or Just Better Resolution-Will Newly Emerging Superresolution Techniques Identify Chromatin Architecture as a Key Factor in Radiation-Induced DNA Damage and Repair Regulation? Cancers (Basel) 2020;13:E18. [PMID: 33374540 DOI: 10.3390/cancers13010018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
108 Okada K, Aoki K, Tabei T, Sugio K, Imai K, Bonkohara Y, Kamachi Y. Key sequence features of CRISPR RNA for dual-guide CRISPR-Cas9 ribonucleoprotein complexes assembled with wild-type or HiFi Cas9. Nucleic Acids Res 2022:gkac100. [PMID: 35166844 DOI: 10.1093/nar/gkac100] [Reference Citation Analysis]