BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Asher G, Bercovich Z, Tsvetkov P, Shaul Y, Kahana C. 20S proteasomal degradation of ornithine decarboxylase is regulated by NQO1. Mol Cell. 2005;17:645-655. [PMID: 15749015 DOI: 10.1016/j.molcel.2005.01.020] [Cited by in Crossref: 114] [Cited by in F6Publishing: 107] [Article Influence: 6.7] [Reference Citation Analysis]
Number Citing Articles
1 El-Sayed ASA, George NM, Yassin MA, Alaidaroos BA, Bolbol AA, Mohamed MS, Rady AM, Aziz SW, Zayed RA, Sitohy MZ. Purification and Characterization of Ornithine Decarboxylase from Aspergillus terreus; Kinetics of Inhibition by Various Inhibitors. Molecules 2019;24:E2756. [PMID: 31362455 DOI: 10.3390/molecules24152756] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
2 Megarity CF, Abdel‐aal Bettley H, Caraher MC, Scott KA, Whitehead RC, Jowitt TA, Gutierrez A, Bryce RA, Nolan KA, Stratford IJ, Timson DJ. Negative Cooperativity in NAD(P)H Quinone Oxidoreductase 1 (NQO1). ChemBioChem 2019;20:2841-9. [DOI: 10.1002/cbic.201900313] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
3 Liang D, Kong X, Sang N. Effects of histone deacetylase inhibitors on HIF-1. Cell Cycle 2006;5:2430-5. [PMID: 17102633 DOI: 10.4161/cc.5.21.3409] [Cited by in Crossref: 48] [Cited by in F6Publishing: 46] [Article Influence: 3.0] [Reference Citation Analysis]
4 Ngoc LV, Wauquier C, Soin R, Bousbata S, Twyffels L, Kruys V, Gueydan C. Rapid proteasomal degradation of posttranscriptional regulators of the TIS11/tristetraprolin family is induced by an intrinsically unstructured region independently of ubiquitination. Mol Cell Biol 2014;34:4315-28. [PMID: 25246635 DOI: 10.1128/MCB.00643-14] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
5 Ginsberg G, Guyton K, Johns D, Schimek J, Angle K, Sonawane B. Genetic polymorphism in metabolism and host defense enzymes: implications for human health risk assessment. Crit Rev Toxicol 2010;40:575-619. [PMID: 20662711 DOI: 10.3109/10408441003742895] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 2.9] [Reference Citation Analysis]
6 Sharma R, Demény M, Ambrus V, Király SB, Kurtán T, Gatti-Lafranconi P, Fuxreiter M. Specific and Fuzzy Interactions Cooperate in Modulating Protein Half-Life. J Mol Biol 2019;431:1700-7. [PMID: 30790629 DOI: 10.1016/j.jmb.2019.02.006] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
7 Pegg AE. Regulation of ornithine decarboxylase. J Biol Chem 2006;281:14529-32. [PMID: 16459331 DOI: 10.1074/jbc.R500031200] [Cited by in Crossref: 309] [Cited by in F6Publishing: 143] [Article Influence: 19.3] [Reference Citation Analysis]
8 Oh ET, Park HJ. Implications of NQO1 in cancer therapy. BMB Rep 2015;48:609-17. [PMID: 26424559 DOI: 10.5483/bmbrep.2015.48.11.190] [Cited by in Crossref: 74] [Cited by in F6Publishing: 37] [Article Influence: 12.3] [Reference Citation Analysis]
9 Choi WH, de Poot SA, Lee JH, Kim JH, Han DH, Kim YK, Finley D, Lee MJ. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation. Nat Commun 2016;7:10963. [PMID: 26957043 DOI: 10.1038/ncomms10963] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 7.0] [Reference Citation Analysis]
10 Moussa RS, Park KC, Kovacevic Z, Richardson DR. Ironing out the role of the cyclin-dependent kinase inhibitor, p21 in cancer: Novel iron chelating agents to target p21 expression and activity. Free Radic Biol Med 2019;133:276-94. [PMID: 29572098 DOI: 10.1016/j.freeradbiomed.2018.03.027] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
11 Njomen E, Osmulski PA, Jones CL, Gaczynska M, Tepe JJ. Small Molecule Modulation of Proteasome Assembly. Biochemistry 2018;57:4214-24. [PMID: 29897236 DOI: 10.1021/acs.biochem.8b00579] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 6.8] [Reference Citation Analysis]
12 Ross D, Zhou H, Siegel D. Benzene toxicity: The role of the susceptibility factor NQO1 in bone marrow endothelial cell signaling and function. Chem Biol Interact 2011;192:145-9. [PMID: 20970411 DOI: 10.1016/j.cbi.2010.10.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
13 Medina-Carmona E, Palomino-Morales RJ, Fuchs JE, Padín-Gonzalez E, Mesa-Torres N, Salido E, Timson DJ, Pey AL. Conformational dynamics is key to understanding loss-of-function of NQO1 cancer-associated polymorphisms and its correction by pharmacological ligands. Sci Rep 2016;6:20331. [PMID: 26838129 DOI: 10.1038/srep20331] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 4.3] [Reference Citation Analysis]
14 Scarpa ES, Bonfili L, Eleuteri AM, La Teana A, Brugè F, Bertoli E, Littarru GP, Cacciamani T. ATP independent proteasomal degradation of NQO1 in BL cell lines. Biochimie 2012;94:1242-9. [PMID: 22586705 DOI: 10.1016/j.biochi.2012.02.014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
15 Levy D, Adamovich Y, Reuven N, Shaul Y. The Yes-associated protein 1 stabilizes p73 by preventing Itch-mediated ubiquitination of p73. Cell Death Differ. 2007;14:743-751. [PMID: 17110958 DOI: 10.1038/sj.cdd.4402063] [Cited by in Crossref: 144] [Cited by in F6Publishing: 140] [Article Influence: 9.0] [Reference Citation Analysis]
16 Grune T, Botzen D, Engels M, Voss P, Kaiser B, Jung T, Grimm S, Ermak G, Davies KJ. Tau protein degradation is catalyzed by the ATP/ubiquitin-independent 20S proteasome under normal cell conditions. Arch Biochem Biophys 2010;500:181-8. [PMID: 20478262 DOI: 10.1016/j.abb.2010.05.008] [Cited by in Crossref: 52] [Cited by in F6Publishing: 50] [Article Influence: 4.3] [Reference Citation Analysis]
17 Hershkovitz Rokah O, Shpilberg O, Granot G. NAD(P)H quinone oxidoreductase protects TAp63gamma from proteasomal degradation and regulates TAp63gamma-dependent growth arrest. PLoS One 2010;5:e11401. [PMID: 20613985 DOI: 10.1371/journal.pone.0011401] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
18 Alvarez-Castelao B, Castaño JG. Mechanism of direct degradation of IkappaBalpha by 20S proteasome. FEBS Lett 2005;579:4797-802. [PMID: 16098527 DOI: 10.1016/j.febslet.2005.07.060] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 2.5] [Reference Citation Analysis]
19 Nakanishi S, Cleveland JL. Polyamine Homeostasis in Development and Disease. Med Sci (Basel) 2021;9:28. [PMID: 34068137 DOI: 10.3390/medsci9020028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Kahana C. Ubiquitin dependent and independent protein degradation in the regulation of cellular polyamines. Amino Acids 2007;33:225-30. [DOI: 10.1007/s00726-007-0519-y] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 1.4] [Reference Citation Analysis]
21 Megarity CF, Timson DJ. Cancer-associated variants of human NQO1: impacts on inhibitor binding and cooperativity. Biosci Rep 2019;39:BSR20191874. [PMID: 31431515 DOI: 10.1042/BSR20191874] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
22 Cho LY, Yang JJ, Ko KP, Ma SH, Shin A, Choi BY, Kim HJ, Han DS, Song KS, Kim YS, Chang SH, Shin HR, Kang D, Yoo KY, Park SK. Gene polymorphisms in the ornithine decarboxylase-polyamine pathway modify gastric cancer risk by interaction with isoflavone concentrations. Gastric Cancer. 2015;18:495-503. [PMID: 25079701 DOI: 10.1007/s10120-014-0396-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
23 Karakurt S, Kandir S, Gökçek-saraç Ç. Upregulation of p53 by tannic acid treatment suppresses the proliferation of human colorectal carcinoma. Acta Pharmaceutica 2021;71:587-602. [DOI: 10.2478/acph-2021-0036] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Sato M, Toyama T, Lee J, Miura N, Naganuma A, Hwang G. Activation of ornithine decarboxylase protects against methylmercury toxicity by increasing putrescine. Toxicology and Applied Pharmacology 2018;356:120-6. [DOI: 10.1016/j.taap.2018.08.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
25 Kravtsova-Ivantsiv Y, Ciechanover A. Non-canonical ubiquitin-based signals for proteasomal degradation. J Cell Sci 2012;125:539-48. [PMID: 22389393 DOI: 10.1242/jcs.093567] [Cited by in Crossref: 148] [Cited by in F6Publishing: 138] [Article Influence: 14.8] [Reference Citation Analysis]
26 Ross D, Siegel D. Functions of NQO1 in Cellular Protection and CoQ10 Metabolism and its Potential Role as a Redox Sensitive Molecular Switch. Front Physiol 2017;8:595. [PMID: 28883796 DOI: 10.3389/fphys.2017.00595] [Cited by in Crossref: 113] [Cited by in F6Publishing: 108] [Article Influence: 22.6] [Reference Citation Analysis]
27 Tang Z, Wu M, Li Y, Zheng X, Liu H, Cheng X, Xu L, Wang G, Hao H. Absolute quantification of NAD(P)H:quinone oxidoreductase 1 in human tumor cell lines and tissues by liquid chromatography-mass spectrometry/mass spectrometry using both isotopic and non-isotopic internal standards. Anal Chim Acta 2013;772:59-67. [PMID: 23540248 DOI: 10.1016/j.aca.2013.02.013] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
28 Pey AL, Megarity CF, Timson DJ. FAD binding overcomes defects in activity and stability displayed by cancer-associated variants of human NQO1. Biochim Biophys Acta 2014;1842:2163-73. [PMID: 25179580 DOI: 10.1016/j.bbadis.2014.08.011] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 4.9] [Reference Citation Analysis]
29 Basbous J, Jariel-Encontre I, Gomard T, Bossis G, Piechaczyk M. Ubiquitin-independent- versus ubiquitin-dependent proteasomal degradation of the c-Fos and Fra-1 transcription factors: is there a unique answer? Biochimie 2008;90:296-305. [PMID: 17825471 DOI: 10.1016/j.biochi.2007.07.016] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 2.3] [Reference Citation Analysis]
30 Abi Habib J, De Plaen E, Stroobant V, Zivkovic D, Bousquet MP, Guillaume B, Wahni K, Messens J, Busse A, Vigneron N, Van den Eynde BJ. Efficiency of the four proteasome subtypes to degrade ubiquitinated or oxidized proteins. Sci Rep 2020;10:15765. [PMID: 32978409 DOI: 10.1038/s41598-020-71550-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
31 Choi TY, Sohn KC, Kim JH, Kim SM, Kim CH, Hwang JS, Lee JH, Kim CD, Yoon TJ. Impact of NAD(P)H:quinone oxidoreductase-1 on pigmentation. J Invest Dermatol 2010;130:784-92. [PMID: 19759547 DOI: 10.1038/jid.2009.280] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.4] [Reference Citation Analysis]
32 Ben-Nissan G, Sharon M. Regulating the 20S proteasome ubiquitin-independent degradation pathway. Biomolecules 2014;4:862-84. [PMID: 25250704 DOI: 10.3390/biom4030862] [Cited by in Crossref: 175] [Cited by in F6Publishing: 160] [Article Influence: 21.9] [Reference Citation Analysis]
33 Nolan KA, Doncaster JR, Dunstan MS, Scott KA, Frenkel AD, Siegel D, Ross D, Barnes J, Levy C, Leys D, Whitehead RC, Stratford IJ, Bryce RA. Synthesis and Biological Evaluation of Coumarin-Based Inhibitors of NAD(P)H: Quinone Oxidoreductase-1 (NQO1). J Med Chem 2009;52:7142-56. [DOI: 10.1021/jm9011609] [Cited by in Crossref: 66] [Cited by in F6Publishing: 52] [Article Influence: 5.1] [Reference Citation Analysis]
34 Jiang ZN, Ahmed SMU, Wang QC, Shi HF, Tang XW. Quinone oxidoreductase 1 is overexpressed in gastric cancer and associated with outcome of adjuvant chemotherapy and survival. World J Gastroenterol 2021; 27(22): 3085-3096 [PMID: 34168410 DOI: 10.3748/wjg.v27.i22.3085] [Reference Citation Analysis]
35 Giovannucci TA, Salomons FA, Haraldsson M, Elfman LHM, Wickström M, Young P, Lundbäck T, Eirich J, Altun M, Jafari R, Gustavsson AL, Johnsen JI, Dantuma NP. Inhibition of the ubiquitin-proteasome system by an NQO1-activatable compound. Cell Death Dis 2021;12:914. [PMID: 34615851 DOI: 10.1038/s41419-021-04191-9] [Reference Citation Analysis]
36 Nolan KA, Scott KA, Barnes J, Doncaster J, Whitehead RC, Stratford IJ. Pharmacological inhibitors of NAD(P)H quinone oxidoreductase, NQO1: structure/activity relationships and functional activity in tumour cells. Biochem Pharmacol 2010;80:977-81. [PMID: 20599803 DOI: 10.1016/j.bcp.2010.06.024] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 1.8] [Reference Citation Analysis]
37 Yao C, Li Y, Wang Z, Song C, Hu X, Liu S. Cytosolic NQO1 Enzyme-Activated Near-Infrared Fluorescence Imaging and Photodynamic Therapy with Polymeric Vesicles. ACS Nano 2020;14:1919-35. [PMID: 31935063 DOI: 10.1021/acsnano.9b08285] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 17.0] [Reference Citation Analysis]
38 Nolan KA, Zhao H, Faulder PF, Frenkel AD, Timson DJ, Siegel D, Ross D, Burke Jr. TR, Stratford IJ, Bryce RA. Coumarin-Based Inhibitors of Human NAD(P)H:Quinone Oxidoreductase-1. Identification, Structure–Activity, Off-Target Effects and In Vitro Human Pancreatic Cancer Toxicity. J Med Chem 2007;50:6316-25. [DOI: 10.1021/jm070472p] [Cited by in Crossref: 54] [Cited by in F6Publishing: 47] [Article Influence: 3.6] [Reference Citation Analysis]
39 Endo R, Saito T, Asada A, Kawahara H, Ohshima T, Hisanaga S. Commitment of 1-methyl-4-phenylpyrinidinium ion-induced neuronal cell death by proteasome-mediated degradation of p35 cyclin-dependent kinase 5 activator. J Biol Chem 2009;284:26029-39. [PMID: 19638632 DOI: 10.1074/jbc.M109.026443] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
40 Bonfili L, Cecarini V, Amici M, Cuccioloni M, Angeletti M, Keller JN, Eleuteri AM. Natural polyphenols as proteasome modulators and their role as anti-cancer compounds: Antioxidants and proteasome in cancer treatment. FEBS Journal 2008;275:5512-26. [DOI: 10.1111/j.1742-4658.2008.06696.x] [Cited by in Crossref: 52] [Cited by in F6Publishing: 49] [Article Influence: 3.7] [Reference Citation Analysis]
41 Nolan K, Humphries M, Bryce R, Stratford I. Imidazoacridin-6-ones as novel inhibitors of the quinone oxidoreductase NQO2. Bioorganic & Medicinal Chemistry Letters 2010;20:2832-6. [DOI: 10.1016/j.bmcl.2010.03.051] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
42 Garate M, Wong RP, Campos EI, Wang Y, Li G. NAD(P)H quinone oxidoreductase 1 inhibits the proteasomal degradation of the tumour suppressor p33(ING1b). EMBO Rep 2008;9:576-81. [PMID: 18388957 DOI: 10.1038/embor.2008.48] [Cited by in Crossref: 58] [Cited by in F6Publishing: 56] [Article Influence: 4.1] [Reference Citation Analysis]
43 Dahlmann B. Role of proteasomes in disease. BMC Biochem 2007;8 Suppl 1:S3. [PMID: 18047740 DOI: 10.1186/1471-2091-8-S1-S3] [Cited by in Crossref: 118] [Cited by in F6Publishing: 59] [Article Influence: 7.9] [Reference Citation Analysis]
44 Nolan KA, Humphries MP, Barnes J, Doncaster JR, Caraher MC, Tirelli N, Bryce RA, Whitehead RC, Stratford IJ. Triazoloacridin-6-ones as novel inhibitors of the quinone oxidoreductases NQO1 and NQO2. Bioorg Med Chem 2010;18:696-706. [PMID: 20036559 DOI: 10.1016/j.bmc.2009.11.059] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.3] [Reference Citation Analysis]
45 Huang L, Marvin JM, Tatsis N, Eisenlohr LC. Cutting Edge: Selective role of ubiquitin in MHC class I antigen presentation. J Immunol 2011;186:1904-8. [PMID: 21239720 DOI: 10.4049/jimmunol.1003411] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.7] [Reference Citation Analysis]
46 Ross D, Siegel D. The diverse functionality of NQO1 and its roles in redox control. Redox Biol 2021;41:101950. [PMID: 33774477 DOI: 10.1016/j.redox.2021.101950] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
47 Fusco AJ, Savinova OV, Talwar R, Kearns JD, Hoffmann A, Ghosh G. Stabilization of RelB requires multidomain interactions with p100/p52. J Biol Chem 2008;283:12324-32. [PMID: 18321863 DOI: 10.1074/jbc.M707898200] [Cited by in Crossref: 48] [Cited by in F6Publishing: 37] [Article Influence: 3.4] [Reference Citation Analysis]
48 Yang Y, Zheng J, Wang M, Zhang J, Tian T, Wang Z, Yuan S, Liu L, Zhu P, Gu F, Fu S, Shan Y, Pan Z, Zhou W. NQO1 promotes an aggressive phenotype in hepatocellular carcinoma via amplifying ERK-NRF2 signaling. Cancer Sci 2021;112:641-54. [PMID: 33222332 DOI: 10.1111/cas.14744] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
49 Smirnova OA, Bartosch B, Zakirova NF, Kochetkov SN, Ivanov AV. Polyamine Metabolism and Oxidative Protein Folding in the ER as ROS-Producing Systems Neglected in Virology. Int J Mol Sci 2018;19:E1219. [PMID: 29673197 DOI: 10.3390/ijms19041219] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
50 Lee WS, Ham W, Kim J. Roles of NAD(P)H:quinone Oxidoreductase 1 in Diverse Diseases. Life (Basel) 2021;11:1301. [PMID: 34947831 DOI: 10.3390/life11121301] [Reference Citation Analysis]
51 Ross D, Siegel D. NQO1 in protection against oxidative stress. Current Opinion in Toxicology 2018;7:67-72. [DOI: 10.1016/j.cotox.2017.10.005] [Cited by in Crossref: 35] [Cited by in F6Publishing: 15] [Article Influence: 8.8] [Reference Citation Analysis]
52 Harris Z, Donovan MG, Branco GM, Limesand KH, Burd R. Quercetin as an Emerging Anti-Melanoma Agent: A Four-Focus Area Therapeutic Development Strategy. Front Nutr 2016;3:48. [PMID: 27843913 DOI: 10.3389/fnut.2016.00048] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 4.5] [Reference Citation Analysis]
53 Sollner S, Macheroux P. New roles of flavoproteins in molecular cell biology: An unexpected role for quinone reductases as regulators of proteasomal degradation. FEBS Journal 2009;276:4313-24. [DOI: 10.1111/j.1742-4658.2009.07143.x] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 1.7] [Reference Citation Analysis]
54 Betancor-fernández I, Timson DJ, Salido E, Pey AL. Natural (and Unnatural) Small Molecules as Pharmacological Chaperones and Inhibitors in Cancer. In: Ulloa-aguirre A, Tao Y, editors. Targeting Trafficking in Drug Development. Cham: Springer International Publishing; 2018. pp. 155-90. [DOI: 10.1007/164_2017_55] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
55 Tirosh B, Iwakoshi NN, Glimcher LH, Ploegh HL. Rapid turnover of unspliced Xbp-1 as a factor that modulates the unfolded protein response. J Biol Chem 2006;281:5852-60. [PMID: 16332684 DOI: 10.1074/jbc.M509061200] [Cited by in Crossref: 86] [Cited by in F6Publishing: 50] [Article Influence: 5.1] [Reference Citation Analysis]
56 Medina-Carmona E, Neira JL, Salido E, Fuchs JE, Palomino-Morales R, Timson DJ, Pey AL. Site-to-site interdomain communication may mediate different loss-of-function mechanisms in a cancer-associated NQO1 polymorphism. Sci Rep 2017;7:44532. [PMID: 28291250 DOI: 10.1038/srep44532] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
57 Adler J, Reuven N, Kahana C, Shaul Y. c-Fos proteasomal degradation is activated by a default mechanism, and its regulation by NAD(P)H:quinone oxidoreductase 1 determines c-Fos serum response kinetics. Mol Cell Biol 2010;30:3767-78. [PMID: 20498278 DOI: 10.1128/MCB.00899-09] [Cited by in Crossref: 32] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
58 Grimm S, Höhn A, Grune T. Oxidative protein damage and the proteasome. Amino Acids 2012;42:23-38. [DOI: 10.1007/s00726-010-0646-8] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 3.7] [Reference Citation Analysis]
59 Raven JF, Baltzis D, Wang S, Mounir Z, Papadakis AI, Gao HQ, Koromilas AE. PKR and PKR-like Endoplasmic Reticulum Kinase Induce the Proteasome-dependent Degradation of Cyclin D1 via a Mechanism Requiring Eukaryotic Initiation Factor 2α Phosphorylation. Journal of Biological Chemistry 2008;283:3097-108. [DOI: 10.1074/jbc.m709677200] [Cited by in Crossref: 68] [Cited by in F6Publishing: 47] [Article Influence: 4.9] [Reference Citation Analysis]
60 Liu GY, Liao YF, Hsu PC, Chang WH, Hsieh MC, Lin CY, Hour TC, Kao MC, Tsay GJ, Hung HC. Antizyme, a natural ornithine decarboxylase inhibitor, induces apoptosis of haematopoietic cells through mitochondrial membrane depolarization and caspases' cascade. Apoptosis 2006;11:1773-88. [PMID: 16927018 DOI: 10.1007/s10495-006-9512-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 0.9] [Reference Citation Analysis]
61 Zwighaft Z, Aviram R, Shalev M, Rousso-Noori L, Kraut-Cohen J, Golik M, Brandis A, Reinke H, Aharoni A, Kahana C, Asher G. Circadian Clock Control by Polyamine Levels through a Mechanism that Declines with Age. Cell Metab 2015;22:874-85. [PMID: 26456331 DOI: 10.1016/j.cmet.2015.09.011] [Cited by in Crossref: 67] [Cited by in F6Publishing: 64] [Article Influence: 9.6] [Reference Citation Analysis]
62 Moorthy AK, Savinova OV, Ho JQ, Wang VY, Vu D, Ghosh G. The 20S proteasome processes NF-kappaB1 p105 into p50 in a translation-independent manner. EMBO J 2006;25:1945-56. [PMID: 16619030 DOI: 10.1038/sj.emboj.7601081] [Cited by in Crossref: 88] [Cited by in F6Publishing: 83] [Article Influence: 5.5] [Reference Citation Analysis]
63 Hamajima N, Naito M, Kondo T, Goto Y. Genetic factors involved in the development of Helicobacter pylori-related gastric cancer. Cancer Sci. 2006;97:1129-1138. [PMID: 16879717 DOI: 10.1111/j.1349-7006.2006.00290.x] [Cited by in Crossref: 70] [Cited by in F6Publishing: 66] [Article Influence: 4.4] [Reference Citation Analysis]
64 Guryanova OA, Drazba JA, Frolova EI, Chumakov PM. Actin cytoskeleton remodeling by the alternatively spliced isoform of PDLIM4/RIL protein. J Biol Chem 2011;286:26849-59. [PMID: 21636573 DOI: 10.1074/jbc.M111.241554] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
65 Botzen D, Grune T. Degradation of HNE-modified proteins--possible role of ubiquitin. Redox Rep 2007;12:63-7. [PMID: 17263912 DOI: 10.1179/135100007X162130] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
66 Pinto G, Alhaiek AA, Amadi S, Qattan AT, Crawford M, Radulovic M, Godovac-Zimmermann J. Systematic nucleo-cytoplasmic trafficking of proteins following exposure of MCF7 breast cancer cells to estradiol. J Proteome Res. 2014;13:1112-1127. [PMID: 24422525 DOI: 10.1021/pr4012359] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
67 Petros LM, Howard MT, Gesteland RF, Atkins JF. Polyamine sensing during antizyme mRNA programmed frameshifting. Biochem Biophys Res Commun 2005;338:1478-89. [PMID: 16269132 DOI: 10.1016/j.bbrc.2005.10.115] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 1.5] [Reference Citation Analysis]
68 Adamovich Y, Shlomai A, Tsvetkov P, Umansky KB, Reuven N, Estall JL, Spiegelman BM, Shaul Y. The protein level of PGC-1α, a key metabolic regulator, is controlled by NADH-NQO1. Mol Cell Biol 2013;33:2603-13. [PMID: 23648480 DOI: 10.1128/MCB.01672-12] [Cited by in Crossref: 59] [Cited by in F6Publishing: 34] [Article Influence: 6.6] [Reference Citation Analysis]
69 Ito T, Fujio Y, Takahashi K, Azuma J. Degradation of NFAT5, a transcriptional regulator of osmotic stress-related genes, is a critical event for doxorubicin-induced cytotoxicity in cardiac myocytes. J Biol Chem 2007;282:1152-60. [PMID: 17105721 DOI: 10.1074/jbc.M609547200] [Cited by in Crossref: 37] [Cited by in F6Publishing: 24] [Article Influence: 2.3] [Reference Citation Analysis]
70 Huang H, Zhang X, Li S, Liu N, Lian W, McDowell E, Zhou P, Zhao C, Guo H, Zhang C, Yang C, Wen G, Dong X, Lu L, Ma N, Dong W, Dou QP, Wang X, Liu J. Physiological levels of ATP negatively regulate proteasome function. Cell Res 2010;20:1372-85. [PMID: 20805844 DOI: 10.1038/cr.2010.123] [Cited by in Crossref: 95] [Cited by in F6Publishing: 89] [Article Influence: 7.9] [Reference Citation Analysis]
71 Lata S, Ali A, Sood V, Raja R, Banerjea AC. HIV-1 Rev downregulates Tat expression and viral replication via modulation of NAD(P)H:quinine oxidoreductase 1 (NQO1). Nat Commun 2015;6. [DOI: 10.1038/ncomms8244] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
72 Alard A, Marboeuf C, Fabre B, Jean C, Martineau Y, Lopez F, Vende P, Poncet D, Schneider RJ, Bousquet C, Pyronnet S. Differential Regulation of the Three Eukaryotic mRNA Translation Initiation Factor (eIF) 4Gs by the Proteasome. Front Genet 2019;10:254. [PMID: 30984242 DOI: 10.3389/fgene.2019.00254] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
73 Siegel D, Bersie S, Harris P, Di Francesco A, Armstrong M, Reisdorph N, Bernier M, de Cabo R, Fritz K, Ross D. A redox-mediated conformational change in NQO1 controls binding to microtubules and α-tubulin acetylation. Redox Biol 2021;39:101840. [PMID: 33360352 DOI: 10.1016/j.redox.2020.101840] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
74 Gödderz D, Schäfer E, Palanimurugan R, Dohmen RJ. The N-Terminal Unstructured Domain of Yeast ODC Functions as a Transplantable and Replaceable Ubiquitin-Independent Degron. Journal of Molecular Biology 2011;407:354-67. [DOI: 10.1016/j.jmb.2011.01.051] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 2.9] [Reference Citation Analysis]
75 Turton JP, Strom M, Langham S, Dattani MT, Le Tissier P. Two novel mutations in the POU1F1 gene generate null alleles through different mechanisms leading to combined pituitary hormone deficiency. Clin Endocrinol (Oxf) 2012;76:387-93. [PMID: 22010633 DOI: 10.1111/j.1365-2265.2011.04236.x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
76 Pey AL, Megarity CF, Timson DJ. NAD(P)H quinone oxidoreductase (NQO1): an enzyme which needs just enough mobility, in just the right places. Biosci Rep 2019;39:BSR20180459. [PMID: 30518535 DOI: 10.1042/BSR20180459] [Cited by in Crossref: 21] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
77 Alard A, Fabre B, Anesia R, Marboeuf C, Pierre P, Susini C, Bousquet C, Pyronnet S. NAD(P)H quinone-oxydoreductase 1 protects eukaryotic translation initiation factor 4GI from degradation by the proteasome. Mol Cell Biol 2010;30:1097-105. [PMID: 20028737 DOI: 10.1128/MCB.00868-09] [Cited by in Crossref: 28] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
78 Siegel D, Kepa JK, Ross D. NAD(P)H:quinone oxidoreductase 1 (NQO1) localizes to the mitotic spindle in human cells. PLoS One. 2012;7:e44861. [PMID: 22984577 DOI: 10.1371/journal.pone.0044861] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 2.7] [Reference Citation Analysis]
79 Fang Q, Andrews J, Sharma N, Wilk A, Clark J, Slyskova J, Koczor CA, Lans H, Prakash A, Sobol RW. Stability and sub-cellular localization of DNA polymerase β is regulated by interactions with NQO1 and XRCC1 in response to oxidative stress. Nucleic Acids Res 2019;47:6269-86. [PMID: 31287140 DOI: 10.1093/nar/gkz293] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
80 Hamajima N, Hishida A. Genetic traits for the persistence of Helicobacter pylori infection. Per Med 2010;7:249-62. [PMID: 29776221 DOI: 10.2217/pme.10.14] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
81 Dinkova-Kostova AT, Talalay P. NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys 2010;501:116-23. [PMID: 20361926 DOI: 10.1016/j.abb.2010.03.019] [Cited by in Crossref: 440] [Cited by in F6Publishing: 417] [Article Influence: 36.7] [Reference Citation Analysis]
82 Kong X, Alvarez-castelao B, Lin Z, Castaño JG, Caro J. Constitutive/Hypoxic Degradation of HIF-α Proteins by the Proteasome Is Independent of von Hippel Lindau Protein Ubiquitylation and the Transactivation Activity of the Protein. Journal of Biological Chemistry 2007;282:15498-505. [DOI: 10.1074/jbc.m700704200] [Cited by in Crossref: 51] [Cited by in F6Publishing: 29] [Article Influence: 3.4] [Reference Citation Analysis]
83 Inobe T, Matouschek A. Paradigms of protein degradation by the proteasome. Curr Opin Struct Biol 2014;24:156-64. [PMID: 24632559 DOI: 10.1016/j.sbi.2014.02.002] [Cited by in Crossref: 78] [Cited by in F6Publishing: 70] [Article Influence: 9.8] [Reference Citation Analysis]
84 Gomes AV, Young GW, Wang Y, Zong C, Eghbali M, Drews O, Lu H, Stefani E, Ping P. Contrasting proteome biology and functional heterogeneity of the 20 S proteasome complexes in mammalian tissues. Mol Cell Proteomics 2009;8:302-15. [PMID: 18931337 DOI: 10.1074/mcp.M800058-MCP200] [Cited by in Crossref: 68] [Cited by in F6Publishing: 45] [Article Influence: 4.9] [Reference Citation Analysis]
85 Sekiguchi M, Seki M, Kawai T, Yoshida K, Yoshida M, Isobe T, Hoshino N, Shirai R, Tanaka M, Souzaki R, Watanabe K, Arakawa Y, Nannya Y, Suzuki H, Fujii Y, Kataoka K, Shiraishi Y, Chiba K, Tanaka H, Shimamura T, Sato Y, Sato-Otsubo A, Kimura S, Kubota Y, Hiwatari M, Koh K, Hayashi Y, Kanamori Y, Kasahara M, Kohashi K, Kato M, Yoshioka T, Matsumoto K, Oka A, Taguchi T, Sanada M, Tanaka Y, Miyano S, Hata K, Ogawa S, Takita J. Integrated multiomics analysis of hepatoblastoma unravels its heterogeneity and provides novel druggable targets. NPJ Precis Oncol 2020;4:20. [PMID: 32656360 DOI: 10.1038/s41698-020-0125-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
86 Nurtjahja-Tjendraputra E, Fu D, Phang JM, Richardson DR. Iron chelation regulates cyclin D1 expression via the proteasome: a link to iron deficiency-mediated growth suppression. Blood 2007;109:4045-54. [PMID: 17197429 DOI: 10.1182/blood-2006-10-047753] [Cited by in Crossref: 103] [Cited by in F6Publishing: 98] [Article Influence: 6.4] [Reference Citation Analysis]
87 Eisenlohr LC, Huang L, Golovina TN. Rethinking peptide supply to MHC class I molecules. Nat Rev Immunol 2007;7:403-10. [PMID: 17457346 DOI: 10.1038/nri2077] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 2.1] [Reference Citation Analysis]
88 Lata S, Mishra R, Banerjea AC. Proteasomal Degradation Machinery: Favorite Target of HIV-1 Proteins. Front Microbiol. 2018;9:2738. [PMID: 30524389 DOI: 10.3389/fmicb.2018.02738] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
89 Jamart C, Gomes AV, Dewey S, Deldicque L, Raymackers JM, Francaux M. Regulation of ubiquitin-proteasome and autophagy pathways after acute LPS and epoxomicin administration in mice. BMC Musculoskelet Disord 2014;15:166. [PMID: 24885455 DOI: 10.1186/1471-2474-15-166] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
90 Navon A, Gatushkin A, Zelcbuch L, Shteingart S, Farago M, Hadar R, Tirosh B. Direct proteasome binding and subsequent degradation of unspliced XBP-1 prevent its intracellular aggregation. FEBS Letters 2010;584:67-73. [DOI: 10.1016/j.febslet.2009.11.069] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
91 Chai X, Zhan J, Pan J, He M, Li B, Wang J, Ma H, Wang Y, Liu S. The rational discovery of multipurpose inhibitors of the ornithine decarboxylase. FASEB J 2020;34:10907-2921. [PMID: 32767470 DOI: 10.1096/fj.202001222R] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
92 Coleman RA, Mohallem R, Aryal UK, Trader DJ. Protein degradation profile reveals dynamic nature of 20S proteasome small molecule stimulation. RSC Chem Biol 2021;2:636-44. [PMID: 34458805 DOI: 10.1039/d0cb00191k] [Reference Citation Analysis]
93 Wiggins CM, Tsvetkov P, Johnson M, Joyce CL, Lamb CA, Bryant NJ, Komander D, Shaul Y, Cook SJ. BIMEL, an intrinsically disordered protein, is degraded by 20S proteasomes in the absence of poly-ubiquitylation. Journal of Cell Science 2011;124:969-77. [DOI: 10.1242/jcs.058438] [Cited by in Crossref: 58] [Cited by in F6Publishing: 53] [Article Influence: 5.3] [Reference Citation Analysis]
94 Smirnova OA, Isaguliants MG, Hyvonen MT, Keinanen TA, Tunitskaya VL, Vepsalainen J, Alhonen L, Kochetkov SN, Ivanov AV. Chemically induced oxidative stress increases polyamine levels by activating the transcription of ornithine decarboxylase and spermidine/spermine-N1-acetyltransferase in human hepatoma HUH7 cells. Biochimie 2012;94:1876-83. [PMID: 22579641 DOI: 10.1016/j.biochi.2012.04.023] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 2.7] [Reference Citation Analysis]
95 Fu D, Richardson DR. Iron chelation and regulation of the cell cycle: 2 mechanisms of posttranscriptional regulation of the universal cyclin-dependent kinase inhibitor p21CIP1/WAF1 by iron depletion. Blood 2007;110:752-61. [PMID: 17429006 DOI: 10.1182/blood-2007-03-076737] [Cited by in Crossref: 102] [Cited by in F6Publishing: 96] [Article Influence: 6.8] [Reference Citation Analysis]
96 Rousseau E, Kojima R, Hoffner G, Djian P, Bertolotti A. Misfolding of proteins with a polyglutamine expansion is facilitated by proteasomal chaperones. J Biol Chem 2009;284:1917-29. [PMID: 18986984 DOI: 10.1074/jbc.M806256200] [Cited by in Crossref: 31] [Cited by in F6Publishing: 16] [Article Influence: 2.2] [Reference Citation Analysis]
97 Jariel-Encontre I, Bossis G, Piechaczyk M. Ubiquitin-independent degradation of proteins by the proteasome. Biochim Biophys Acta. 2008;1786:153-177. [PMID: 18558098 DOI: 10.1016/j.bbcan.2008.05.004] [Cited by in Crossref: 30] [Cited by in F6Publishing: 95] [Article Influence: 2.1] [Reference Citation Analysis]
98 Mathes E, O'Dea EL, Hoffmann A, Ghosh G. NF-kappaB dictates the degradation pathway of IkappaBalpha. EMBO J 2008;27:1357-67. [PMID: 18401342 DOI: 10.1038/emboj.2008.73] [Cited by in Crossref: 118] [Cited by in F6Publishing: 112] [Article Influence: 8.4] [Reference Citation Analysis]
99 Bae DH, Lane DJR, Jansson PJ, Richardson DR. The old and new biochemistry of polyamines. Biochim Biophys Acta Gen Subj 2018;1862:2053-68. [PMID: 29890242 DOI: 10.1016/j.bbagen.2018.06.004] [Cited by in Crossref: 63] [Cited by in F6Publishing: 51] [Article Influence: 15.8] [Reference Citation Analysis]
100 Kahana C. Protein degradation, the main hub in the regulation of cellular polyamines. Biochem J 2016;473:4551-8. [PMID: 27941031 DOI: 10.1042/BCJ20160519C] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
101 Li Z, Zhang Y, Jin T, Men J, Lin Z, Qi P, Piao Y, Yan G. NQO1 protein expression predicts poor prognosis of non-small cell lung cancers. BMC Cancer. 2015;15:207. [PMID: 25880877 DOI: 10.1186/s12885-015-1227-8] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 6.6] [Reference Citation Analysis]
102 Shrader WD, Amagata A, Barnes A, Enns GM, Hinman A, Jankowski O, Kheifets V, Komatsuzaki R, Lee E, Mollard P, Murase K, Sadun AA, Thoolen M, Wesson K, Miller G. α-Tocotrienol quinone modulates oxidative stress response and the biochemistry of aging. Bioorg Med Chem Lett 2011;21:3693-8. [PMID: 21600768 DOI: 10.1016/j.bmcl.2011.04.085] [Cited by in Crossref: 61] [Cited by in F6Publishing: 54] [Article Influence: 5.5] [Reference Citation Analysis]
103 Tsvetkov P, Reuven N, Shaul Y. Ubiquitin-independent p53 proteasomal degradation. Cell Death Differ 2010;17:103-8. [DOI: 10.1038/cdd.2009.67] [Cited by in Crossref: 91] [Cited by in F6Publishing: 82] [Article Influence: 7.0] [Reference Citation Analysis]
104 Asher G, Reuven N, Shaul Y. 20S proteasomes and protein degradation "by default". Bioessays 2006;28:844-9. [PMID: 16927316 DOI: 10.1002/bies.20447] [Cited by in Crossref: 147] [Cited by in F6Publishing: 134] [Article Influence: 9.2] [Reference Citation Analysis]
105 Basbous J, Chalbos D, Hipskind R, Jariel-Encontre I, Piechaczyk M. Ubiquitin-independent proteasomal degradation of Fra-1 is antagonized by Erk1/2 pathway-mediated phosphorylation of a unique C-terminal destabilizer. Mol Cell Biol 2007;27:3936-50. [PMID: 17371847 DOI: 10.1128/MCB.01776-06] [Cited by in Crossref: 63] [Cited by in F6Publishing: 42] [Article Influence: 4.2] [Reference Citation Analysis]
106 Jones CL, Tepe JJ. Proteasome Activation to Combat Proteotoxicity. Molecules 2019;24:E2841. [PMID: 31387243 DOI: 10.3390/molecules24152841] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
107 Erales J, Coffino P. Ubiquitin-independent proteasomal degradation. Biochim Biophys Acta 2014;1843:216-21. [PMID: 23684952 DOI: 10.1016/j.bbamcr.2013.05.008] [Cited by in Crossref: 139] [Cited by in F6Publishing: 124] [Article Influence: 15.4] [Reference Citation Analysis]
108 Kumar Deshmukh F, Yaffe D, Olshina MA, Ben-Nissan G, Sharon M. The Contribution of the 20S Proteasome to Proteostasis. Biomolecules 2019;9:E190. [PMID: 31100951 DOI: 10.3390/biom9050190] [Cited by in Crossref: 41] [Cited by in F6Publishing: 33] [Article Influence: 13.7] [Reference Citation Analysis]
109 Del Principe D, Avigliano L, Savini I, Catani MV. Trans-plasma membrane electron transport in mammals: functional significance in health and disease. Antioxid Redox Signal 2011;14:2289-318. [PMID: 20812784 DOI: 10.1089/ars.2010.3247] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 3.2] [Reference Citation Analysis]