BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lee H, Wu T, Lin C, Lee C, Wei Y, Tsai C, Chang D. The pathogenesis of systemic lupus erythematosus - From the viewpoint of oxidative stress and mitochondrial dysfunction. Mitochondrion 2016;30:1-7. [DOI: 10.1016/j.mito.2016.05.007] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
Number Citing Articles
1 Pravda J. Systemic Lupus Erythematosus: Pathogenesis at the Functional Limit of Redox Homeostasis. Oxid Med Cell Longev 2019;2019:1651724. [PMID: 31885772 DOI: 10.1155/2019/1651724] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
2 Xu Y, Shen J, Ran Z. Emerging views of mitophagy in immunity and autoimmune diseases. Autophagy 2020;16:3-17. [PMID: 30951392 DOI: 10.1080/15548627.2019.1603547] [Cited by in Crossref: 62] [Cited by in F6Publishing: 64] [Article Influence: 20.7] [Reference Citation Analysis]
3 Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med 2017;23:279-87. [PMID: 28267716 DOI: 10.1038/nm.4294] [Cited by in Crossref: 426] [Cited by in F6Publishing: 413] [Article Influence: 85.2] [Reference Citation Analysis]
4 Zhang CX, Wang HY, Yin L, Mao YY, Zhou W. Immunometabolism in the pathogenesis of systemic lupus erythematosus. J Transl Autoimmun 2020;3:100046. [PMID: 32743527 DOI: 10.1016/j.jtauto.2020.100046] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
5 Tsai CY, Hsieh SC, Lu CS, Wu TH, Liao HT, Wu CH, Li KJ, Kuo YM, Lee HT, Shen CY, Yu CL. Cross-Talk between Mitochondrial Dysfunction-Provoked Oxidative Stress and Aberrant Noncoding RNA Expression in the Pathogenesis and Pathophysiology of SLE. Int J Mol Sci 2019;20:E5183. [PMID: 31635056 DOI: 10.3390/ijms20205183] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
6 Yang SK, Zhang HR, Shi SP, Zhu YQ, Song N, Dai Q, Zhang W, Gui M, Zhang H. The Role of Mitochondria in Systemic Lupus Erythematosus: A Glimpse of Various Pathogenetic Mechanisms. Curr Med Chem 2020;27:3346-61. [PMID: 30479205 DOI: 10.2174/0929867326666181126165139] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
7 Lai R, Zhang X, Qiao K, Gao X, Li S, Zhang R, Qi Y, Peng C. Identification of sequence polymorphisms in the mitochondrial deoxyribonucleic acid displacement-loop region as risk factors for systemic lupus erythematosus. Arch Rheumatol 2021;36:375-80. [PMID: 34870169 DOI: 10.46497/ArchRheumatol.2021.8101] [Reference Citation Analysis]
8 Merashli M, Bucci T, Pastori D, Pignatelli P, Arcaro A, Gentile F, Marottoli V, Ames PRJ. Isoprostanes in systemic lupus erythematosus and antiphospholipid syndrome: A systematic review and meta-analysis. Autoimmun Rev 2021;20:102821. [PMID: 33872768 DOI: 10.1016/j.autrev.2021.102821] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Liu Q, Hu Y, Cao Y, Song G, Liu Z, Liu X. Chicoric Acid Ameliorates Lipopolysaccharide-Induced Oxidative Stress via Promoting the Keap1/Nrf2 Transcriptional Signaling Pathway in BV-2 Microglial Cells and Mouse Brain. J Agric Food Chem 2017;65:338-47. [DOI: 10.1021/acs.jafc.6b04873] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 6.2] [Reference Citation Analysis]
10 Wolf VL, Ryan MJ. Autoimmune Disease-Associated Hypertension. Curr Hypertens Rep 2019;21:10. [PMID: 30712132 DOI: 10.1007/s11906-019-0914-2] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
11 Tsai CY, Shen CY, Liu CW, Hsieh SC, Liao HT, Li KJ, Lu CS, Lee HT, Lin CS, Wu CH, Kuo YM, Yu CL. Aberrant Non-Coding RNA Expression in Patients with Systemic Lupus Erythematosus: Consequences for Immune Dysfunctions and Tissue Damage. Biomolecules 2020;10:E1641. [PMID: 33291347 DOI: 10.3390/biom10121641] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
12 De Angelis MT, Santamaria G, Parrotta EI, Scalise S, Lo Conte M, Gasparini S, Ferlazzo E, Aguglia U, Ciampi C, Sgura A, Cuda G. Establishment and characterization of induced pluripotent stem cells (iPSCs) from central nervous system lupus erythematosus. J Cell Mol Med 2019;23:7382-94. [PMID: 31536674 DOI: 10.1111/jcmm.14598] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
13 Sam NB, Li BZ, Leng RX, Pan HF, Ye DQ. Circulating antioxidant levels in systemic lupus erythematosus patients: a systematic review and meta-analysis. Biomark Med 2019;13:1137-52. [PMID: 31475863 DOI: 10.2217/bmm-2019-0034] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
14 Muñoz-Urbano M, Quintero-González DC, Vasquez G. T cell metabolism and possible therapeutic targets in systemic lupus erythematosus: a narrative review. Immunopharmacol Immunotoxicol 2022;:1-14. [PMID: 35352607 DOI: 10.1080/08923973.2022.2055568] [Reference Citation Analysis]
15 Blanco LP, Pedersen HL, Wang X, Lightfoot YL, Seto N, Carmona-Rivera C, Yu ZX, Hoffmann V, Yuen PST, Kaplan MJ. Improved Mitochondrial Metabolism and Reduced Inflammation Following Attenuation of Murine Lupus With Coenzyme Q10 Analog Idebenone. Arthritis Rheumatol 2020;72:454-64. [PMID: 31566908 DOI: 10.1002/art.41128] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
16 Choi CW, Eun SH, Choi KH, Bae JM. Increased risk of comorbid rheumatic disorders in vitiligo patients: A nationwide population-based study. J Dermatol 2017;44:909-13. [DOI: 10.1111/1346-8138.13846] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
17 Liu YT, Lin ZM, He SJ, Zuo JP. Heme oxygenase-1 as a potential therapeutic target in rheumatic diseases. Life Sci 2019;218:205-12. [PMID: 30580021 DOI: 10.1016/j.lfs.2018.12.033] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
18 Wang Z, Long H, Chang C, Zhao M, Lu Q. Crosstalk between metabolism and epigenetic modifications in autoimmune diseases: a comprehensive overview. Cell Mol Life Sci 2018;75:3353-69. [PMID: 29974127 DOI: 10.1007/s00018-018-2864-2] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
19 Nowak A, Przywara-chowaniec B, Damasiewicz-bodzek A, Blachut D, Nowalany-kozielska E, Tyrpień-golder K. Advanced Glycation End-Products (AGEs) and Their Soluble Receptor (sRAGE) in Women Suffering from Systemic Lupus Erythematosus (SLE). Cells 2021;10:3523. [DOI: 10.3390/cells10123523] [Reference Citation Analysis]
20 Gautam P, Kaur G, Tandon A, Sharma A, Bhatnagar A. Altered redox regulation by Nrf2-Keap1 system in dendritic cells of systemic lupus erythematosus patients. Lupus 2020;29:1544-55. [PMID: 32811277 DOI: 10.1177/0961203320950022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Milane L, Dolare S, Jahan T, Amiji M. Mitochondrial nanomedicine: Subcellular organelle-specific delivery of molecular medicines. Nanomedicine 2021;37:102422. [PMID: 34175455 DOI: 10.1016/j.nano.2021.102422] [Reference Citation Analysis]
22 Gao Y, Wang KX, Wang P, Li X, Chen JJ, Zhou BY, Tian JS, Guan DG, Qin XM, Lu AP. A Novel Network Pharmacology Strategy to Decode Mechanism of Lang Chuang Wan in Treating Systemic Lupus Erythematosus. Front Pharmacol 2020;11:512877. [PMID: 33117150 DOI: 10.3389/fphar.2020.512877] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
23 Ferreira HB, Pereira AM, Melo T, Paiva A, Domingues MR. Lipidomics in autoimmune diseases with main focus on systemic lupus erythematosus. Journal of Pharmaceutical and Biomedical Analysis 2019;174:386-95. [DOI: 10.1016/j.jpba.2019.06.005] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
24 Vaamonde-garcía C, López-armada MJ. Role of mitochondrial dysfunction on rheumatic diseases. Biochemical Pharmacology 2019;165:181-95. [DOI: 10.1016/j.bcp.2019.03.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
25 Smallwood MJ, Nissim A, Knight AR, Whiteman M, Haigh R, Winyard PG. Oxidative stress in autoimmune rheumatic diseases. Free Radic Biol Med 2018;125:3-14. [PMID: 29859343 DOI: 10.1016/j.freeradbiomed.2018.05.086] [Cited by in Crossref: 80] [Cited by in F6Publishing: 78] [Article Influence: 20.0] [Reference Citation Analysis]
26 Tsai CY, Shen CY, Liao HT, Li KJ, Lee HT, Lu CS, Wu CH, Kuo YM, Hsieh SC, Yu CL. Molecular and Cellular Bases of Immunosenescence, Inflammation, and Cardiovascular Complications Mimicking "Inflammaging" in Patients with Systemic Lupus Erythematosus. Int J Mol Sci 2019;20:E3878. [PMID: 31395799 DOI: 10.3390/ijms20163878] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
27 Pinegin B, Vorobjeva N, Pashenkov M, Chernyak B. The role of mitochondrial ROS in antibacterial immunity. J Cell Physiol 2018;233:3745-54. [PMID: 28771715 DOI: 10.1002/jcp.26117] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 7.0] [Reference Citation Analysis]