BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wasilewski T, Gębicki J. Emerging strategies for enhancing detection of explosives by artificial olfaction. Microchemical Journal 2021;164:106025. [DOI: 10.1016/j.microc.2021.106025] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 15.0] [Reference Citation Analysis]
Number Citing Articles
1 Wang H, Firouzi-haji R, Aghajamali M, Vieira MA, Cho J, Lu Q, Zhang X, Bergren AJ, Veinot JGC, Hassanzadeh H, Meldrum A. Graphene Quantum Dot Bearing Liquid Droplets for Ultrasensitive Fluorescence-Based Detection of Nitroaromatics. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c03005] [Reference Citation Analysis]
2 Karadurmus L, Bilge S, Sınağ A, Ozkan SA. Molecularly imprinted polymer (MIP)-Based sensing for detection of explosives: Current perspectives and future applications. TrAC Trends in Analytical Chemistry 2022;155:116694. [DOI: 10.1016/j.trac.2022.116694] [Reference Citation Analysis]
3 Labanska M, van Amsterdam S, Jenkins S, Clarkson JP, Covington JA. Preliminary Studies on Detection of Fusarium Basal Rot Infection in Onions and Shallots Using Electronic Nose. Sensors 2022;22:5453. [DOI: 10.3390/s22145453] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Khatib M, Haick H. Sensors for Volatile Organic Compounds. ACS Nano 2022. [PMID: 35511046 DOI: 10.1021/acsnano.1c10827] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
5 Kober SL, Schaefer P, Hollert H, Frohme M. A novel strategy for high-throughput sample collection, analysis and visualization of explosives’ concentrations for contaminated areas. Int J Environ Sci Technol . [DOI: 10.1007/s13762-022-04088-w] [Reference Citation Analysis]
6 Jahangiri-manesh A, Mousazadeh M, Nikkhah M, Abbasian S, Moshaii A, Masroor MJ, Norouzi P. Molecularly imprinted polymer-based chemiresistive sensor for detection of nonanal as a cancer related biomarker. Microchemical Journal 2022;173:106988. [DOI: 10.1016/j.microc.2021.106988] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
7 Gao W, Wang T, Zhu C, Sha P, Dong P, Wu X. A 'sandwich' structure for highly sensitive detection of TNT based on surface-enhanced Raman scattering. Talanta 2022;236:122824. [PMID: 34635214 DOI: 10.1016/j.talanta.2021.122824] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
8 Bhadra BN, Shrestha LK, Ariga K. Porous carbon nanoarchitectonics for the environment: detection and adsorption. CrystEngComm. [DOI: 10.1039/d2ce00872f] [Reference Citation Analysis]
9 Stoukatch S, Fagnard J, Dupont F, Laurent P, Debliquy M, Redoute J. Low Thermal Conductivity Adhesive as a Key Enabler for Compact, Low-Cost Packaging for Metal-Oxide Gas Sensors. IEEE Access 2022;10:19242-53. [DOI: 10.1109/access.2022.3151356] [Reference Citation Analysis]
10 Wasilewski T, Gębicki J, Kamysz W. Bio-inspired approaches for explosives detection. TrAC Trends in Analytical Chemistry 2021;142:116330. [DOI: 10.1016/j.trac.2021.116330] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 10.0] [Reference Citation Analysis]
11 Kumar V, Saini SK, Choudhury N, Kumar A, Maiti B, De P, Kumar M, Satapathi S. Highly Sensitive Detection of Nitro Compounds Using a Fluorescent Copolymer-Based FRET System. ACS Appl Polym Mater 2021;3:4017-26. [DOI: 10.1021/acsapm.1c00540] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
12 Lapcinska S, Revilla-cuesta A, Abajo-cuadrado I, Cuevas JV, Avella M, Arsenyan P, Torroba T. Dye-modified silica–anatase nanoparticles for the ultrasensitive fluorogenic detection of the improvised explosive TATP in an air microfluidic device. Mater Chem Front 2021;5:8097-8107. [DOI: 10.1039/d1qm01041g] [Reference Citation Analysis]