BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yu X, Zhu Y, Cheng C, Zhang T, Wang X, Hsiao BS. Novel thin-film nanofibrous composite membranes containing directional toxin transport nanochannels for efficient and safe hemodialysis application. Journal of Membrane Science 2019;582:151-63. [DOI: 10.1016/j.memsci.2019.04.006] [Cited by in Crossref: 19] [Cited by in F6Publishing: 9] [Article Influence: 6.3] [Reference Citation Analysis]
Number Citing Articles
1 Liu C, Wang W, Zhu L, Cui F, Xie C, Chen X, Li N. High-performance nanofiltration membrane with structurally controlled PES substrate containing electrically aligned CNTs. Journal of Membrane Science 2020;605:118104. [DOI: 10.1016/j.memsci.2020.118104] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
2 Song C, Li Y, Wang B, Hong Y, Xue C, Li Q, Shen E, Cui D. A novel anticoagulant affinity membrane for enhanced hemocompatibility and bilirubin removal. Colloids Surf B Biointerfaces 2021;197:111430. [PMID: 33125976 DOI: 10.1016/j.colsurfb.2020.111430] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Li Z, Yan X, Wu K, Jiao Y, Zhou C, Yang J. Surface Modification of Reduced Graphene Oxide Beads: Integrating Efficient Endotoxin Adsorption and Improved Blood Compatibility. ACS Appl Bio Mater 2021;4:4896-906. [PMID: 35007038 DOI: 10.1021/acsabm.0c01666] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Jiang P, He Y, Zhao Y, Chen L. Hierarchical Surface Architecture of Hemodialysis Membranes for Eliminating Homocysteine Based on the Multifunctional Role of Pyridoxal 5'-phosphate. ACS Appl Mater Interfaces 2020;12:36837-50. [PMID: 32705861 DOI: 10.1021/acsami.0c07090] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
5 Kugarajah V, Ojha AK, Ranjan S, Dasgupta N, Ganesapillai M, Dharmalingam S, Elmoll A, Hosseini SA, Muthulakshmi L, Vijayakumar S, Mishra BN. Future applications of electrospun nanofibers in pressure driven water treatment: A brief review and research update. Journal of Environmental Chemical Engineering 2021;9:105107. [DOI: 10.1016/j.jece.2021.105107] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 10.0] [Reference Citation Analysis]
6 Jin Y, Ding S, Li P, Wang X. Coordination of thin-film nanofibrous composite dialysis membrane and reduced graphene oxide aerogel adsorbents for elimination of indoxyl sulfate. Chinese Journal of Chemical Engineering 2022. [DOI: 10.1016/j.cjche.2022.01.024] [Reference Citation Analysis]
7 Lee GT, Hong YK, Tijing LD. Manufacturing and Separation Characteristics of Hemodialysis Membranes to Improve Toxin Removal Rate. Advances in Polymer Technology 2022;2022:1-18. [DOI: 10.1155/2022/2565010] [Reference Citation Analysis]
8 Ali M, Jahan Z, Sher F, Khan Niazi MB, Kakar SJ, Gul S. Nano architectured cues as sustainable membranes for ultrafiltration in blood hemodialysis. Mater Sci Eng C Mater Biol Appl 2021;128:112260. [PMID: 34474819 DOI: 10.1016/j.msec.2021.112260] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
9 Azhar O, Jahan Z, Sher F, Niazi MBK, Kakar SJ, Shahid M. Cellulose acetate-polyvinyl alcohol blend hemodialysis membranes integrated with dialysis performance and high biocompatibility. Mater Sci Eng C Mater Biol Appl 2021;126:112127. [PMID: 34082944 DOI: 10.1016/j.msec.2021.112127] [Reference Citation Analysis]
10 Li W, Chao S, Li Y, Bai F, Teng Y, Li X, Li L, Wang C. Dual-layered composite nanofiber membrane with Cu-BTC-modified electrospun nanofibers and biopolymeric nanofibers for the removal of uremic toxins and its application in hemodialysis. Journal of Membrane Science 2022;642:119964. [DOI: 10.1016/j.memsci.2021.119964] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Liu Y, Li G, Han Q, Lin H, Li Q, Deng G, Liu F. Construction of electro-neutral surface on dialysis membrane for improved toxin clearance and anti-coagulation/inflammation through saltwater fish inspired trimethylamine N-oxide (TMAO). Journal of Membrane Science 2022;641:119900. [DOI: 10.1016/j.memsci.2021.119900] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
12 Yu X, Zhu Y, Zhang T, Deng L, Li P, Wang X, Hsiao BS. Heparinized thin-film composite membranes with sub-micron ridge structure for efficient hemodialysis. Journal of Membrane Science 2020;599:117706. [DOI: 10.1016/j.memsci.2019.117706] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
13 Chen Q, Kou M, He Y, Zhao Y, Chen L. Constructing hierarchical surface structure of hemodialysis membranes to intervene in oxidative stress through Michael addition reaction between tannic acid and PEtOx brushes. Journal of Membrane Science 2022;657:120700. [DOI: 10.1016/j.memsci.2022.120700] [Reference Citation Analysis]
14 Ding S, Li P, Zhang T, Wang X. Coordination of Copper Ion Crosslinked Composite Beads with Enhanced Toxins Adsorption and Thin-Film Nanofibrous Composite Membrane for Realizing the Lightweight Hemodialysis. Adv Fiber Mater . [DOI: 10.1007/s42765-021-00131-6] [Reference Citation Analysis]
15 Jacob Kaleekkal N. Heparin immobilized graphene oxide in polyetherimide membranes for hemodialysis with enhanced hemocompatibility and removal of uremic toxins. Journal of Membrane Science 2021;623:119068. [DOI: 10.1016/j.memsci.2021.119068] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
16 Li W, Li Y, Wen X, Teng Y, Wang J, Yang T, Li X, Li L, Wang C. Flexible Zr-MOF anchored polymer nanofiber membrane for efficient removal of creatinine in uremic toxins. Journal of Membrane Science 2022;648:120369. [DOI: 10.1016/j.memsci.2022.120369] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
17 Chen Q, He Y, Zhao Y, Chen L. Intervening oxidative stress integrated with an excellent biocompatibility of hemodialysis membrane fabricated by nucleobase-recognized co-immobilization strategy of tannic acid, looped PEtOx brush and heparin. Journal of Membrane Science 2021;625:119174. [DOI: 10.1016/j.memsci.2021.119174] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
18 Wang J, Liu Z, Qiu M, He C. Heparin-mimicking semi-interpenetrating composite membrane with multiple excellent performances for promising hemodialysis. Journal of Membrane Science 2021;618:118740. [DOI: 10.1016/j.memsci.2020.118740] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
19 Hou J, Zhou G, Wang Y, Guan D. Hierarchical structured PVA-PLA nanofibrous membrane with "water-chestnut-like" surface morphology for water harvesting. Microporous and Mesoporous Materials 2021;324:111260. [DOI: 10.1016/j.micromeso.2021.111260] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Zhao S, Dou P, Sun N, Shon HK, He T. Fabrication of dialyzer membrane-based forward osmosis modules via vacuum-assisted interfacial polymerization for the preparation of dialysate. Journal of Membrane Science 2022;659:120814. [DOI: 10.1016/j.memsci.2022.120814] [Reference Citation Analysis]
21 Yen SC, Liu ZW, Juang RS, Sahoo S, Huang CH, Chen P, Hsiao YS, Fang JT. Carbon Nanotube/Conducting Polymer Hybrid Nanofibers as Novel Organic Bioelectronic Interfaces for Efficient Removal of Protein-Bound Uremic Toxins. ACS Appl Mater Interfaces 2019;11:43843-56. [PMID: 31663727 DOI: 10.1021/acsami.9b14351] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
22 Wu J, Yin K, Li M, Wu Z, Xiao S, Wang H, Duan J, He J. Under-oil self-driven and directional transport of water on a femtosecond laser-processed superhydrophilic geometry-gradient structure. Nanoscale 2020;12:4077-84. [DOI: 10.1039/c9nr09902f] [Cited by in Crossref: 42] [Cited by in F6Publishing: 7] [Article Influence: 21.0] [Reference Citation Analysis]