BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu C, Wang W, Li Y, Cui F, Xie C, Zhu L, Shan B. PMWCNT/PVDF ultrafiltration membranes with enhanced antifouling properties intensified by electric field for efficient blood purification. Journal of Membrane Science 2019;576:48-58. [DOI: 10.1016/j.memsci.2019.01.015] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
Number Citing Articles
1 Li Y, Chen G, Xie H, Chen Z, Xu Z, Mao H. Increasing the hydrophilicity and antifouling properties of polyvinylidene fluoride membranes by doping novel nano-hybrid ZnO@ZIF-8 nanoparticles for 4-nitrophenol degradation. Polymer Testing 2022;113:107613. [DOI: 10.1016/j.polymertesting.2022.107613] [Reference Citation Analysis]
2 Ren J, Yang X, Yan W, Feng X, Zhao Y, Chen L. mPEG-b-PES-b-mPEG-based candidate hemodialysis membrane with enhanced performance in sieving, flux, and hemocompatibility. Journal of Membrane Science 2022;657:120680. [DOI: 10.1016/j.memsci.2022.120680] [Reference Citation Analysis]
3 Cheng L, Li L, Pei X, Ma Y, Liu F, Li J. PVDF/MOFs mixed matrix ultrafiltration membrane for efficient water treatment. Front Chem 2022;10:985750. [DOI: 10.3389/fchem.2022.985750] [Reference Citation Analysis]
4 Mo Y, Zhang L, Zhao X, Li J, Wang L. A critical review on classifications, characteristics, and applications of electrically conductive membranes for toxic pollutant removal from water: Comparison between composite and inorganic electrically conductive membranes. Journal of Hazardous Materials 2022;436:129162. [DOI: 10.1016/j.jhazmat.2022.129162] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Liu J, Lu X, Shu G, Li K, Zheng S, Kong X, Li T, Yang J. The facile method developed for preparing polyvinylidene fluoride plasma separation membrane via macromolecular interaction. Chinese Journal of Chemical Engineering 2022. [DOI: 10.1016/j.cjche.2022.07.021] [Reference Citation Analysis]
6 Li N, Wang W, Ma C, Zhu L, Chen X, Zhang B, Zhong C. A novel conductive rGO/ZnO/PSF membrane with superior water flux for electrocatalytic degradation of organic pollutants. Journal of Membrane Science 2022;641:119901. [DOI: 10.1016/j.memsci.2021.119901] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
7 Ajibade TF, Tian H, Hassan Lasisi K, Xue Q, Yao W, Zhang K. Multifunctional PAN UF membrane modified with 3D-MXene/O-MWCNT nanostructures for the removal of complex oil and dyes from industrial wastewater. Separation and Purification Technology 2021;275:119135. [DOI: 10.1016/j.seppur.2021.119135] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
8 Ali M, Jahan Z, Sher F, Khan Niazi MB, Kakar SJ, Gul S. Nano architectured cues as sustainable membranes for ultrafiltration in blood hemodialysis. Mater Sci Eng C Mater Biol Appl 2021;128:112260. [PMID: 34474819 DOI: 10.1016/j.msec.2021.112260] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
9 Jacob Kaleekkal N. Heparin immobilized graphene oxide in polyetherimide membranes for hemodialysis with enhanced hemocompatibility and removal of uremic toxins. Journal of Membrane Science 2021;623:119068. [DOI: 10.1016/j.memsci.2021.119068] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
10 Yang J, Zhang Y, Li Y, Wang Z, Wang W, An Q, Tong W. Piezoelectric Nanogenerators based on Graphene Oxide/PVDF Electrospun Nanofiber with Enhanced Performances by In-Situ Reduction. Materials Today Communications 2021;26:101629. [DOI: 10.1016/j.mtcomm.2020.101629] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
11 Yuan J, Zhang D, Fu Y, Ni Y, Wang Y, Protsak I, Yang Y, Peng Y, Tan J, Yang J. Comb-like structural modification stabilizes polyvinylidene fluoride membranes to realize thermal-regulated sustainable transportation efficiency. J Colloid Interface Sci 2021;591:173-83. [PMID: 33596504 DOI: 10.1016/j.jcis.2021.01.091] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
12 Zhong D, Wang Z, Zhou J, Wang Y. Additive-free preparation of hemodialysis membranes from block copolymers of polysulfone and polyethylene glycol. Journal of Membrane Science 2021;618:118690. [DOI: 10.1016/j.memsci.2020.118690] [Cited by in Crossref: 4] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
13 Ding J, Zeng J, Zeng Y, Yuan Z, Huang X, Wu Y. Engineering multistructure poly(vinylidene fluoride) membranes modified by polydopamine to achieve superhydrophilicity, excellent permeability, and antifouling properties. Asia‐Pac J Chem Eng 2021;16. [DOI: 10.1002/apj.2607] [Reference Citation Analysis]
14 Abdulkarem E, Ibrahim Y, Kumar M, Arafat HA, Naddeo V, Banat F, Hasan SW. Polyvinylidene fluoride (PVDF)-α-zirconium phosphate (α-ZrP) nanoparticles based mixed matrix membranes for removal of heavy metal ions. Chemosphere 2021;267:128896. [PMID: 33187662 DOI: 10.1016/j.chemosphere.2020.128896] [Cited by in Crossref: 7] [Cited by in F6Publishing: 22] [Article Influence: 3.5] [Reference Citation Analysis]
15 Zhu J, Zhou S, Li M, Xue A, Zhao Y, Peng W, Xing W. PVDF mixed matrix ultrafiltration membrane incorporated with deformed rebar-like Fe3O4–palygorskite nanocomposites to enhance strength and antifouling properties. Journal of Membrane Science 2020;612:118467. [DOI: 10.1016/j.memsci.2020.118467] [Cited by in Crossref: 17] [Cited by in F6Publishing: 27] [Article Influence: 8.5] [Reference Citation Analysis]
16 Liu L, Chen G, Mao H, Wang Y, Wan J. High performance polyvinylidene fluoride (PVDF) mixed matrix membrane (MMM) doped by various zeolite imidazolate frameworks. High Performance Polymers 2021;33:309-25. [DOI: 10.1177/0954008320952525] [Reference Citation Analysis]
17 Jiang P, He Y, Zhao Y, Chen L. Hierarchical Surface Architecture of Hemodialysis Membranes for Eliminating Homocysteine Based on the Multifunctional Role of Pyridoxal 5'-phosphate. ACS Appl Mater Interfaces 2020;12:36837-50. [PMID: 32705861 DOI: 10.1021/acsami.0c07090] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Yu X, Zhu Y, Zhang T, Deng L, Li P, Wang X, Hsiao BS. Heparinized thin-film composite membranes with sub-micron ridge structure for efficient hemodialysis. Journal of Membrane Science 2020;599:117706. [DOI: 10.1016/j.memsci.2019.117706] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
19 Wang J, Liu Y, Liu T, Xu X, Hu Y. Improving the perm-selectivity and anti-fouling property of UF membrane through the micro-phase separation of PSf-b-PEG block copolymers. Journal of Membrane Science 2020;599:117851. [DOI: 10.1016/j.memsci.2020.117851] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
20 Kumari P, Modi A, Bellare J. Enhanced flux and antifouling property on municipal wastewater of polyethersulfone hollow fiber membranes by embedding carboxylated multi-walled carbon nanotubes and a vitamin E derivative. Separation and Purification Technology 2020;235:116199. [DOI: 10.1016/j.seppur.2019.116199] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
21 Shen S, Zhang L, Zhang Y, Zhang G, Yang J, Bai R. Fabrication of antifouling membranes by blending poly(vinylidene fluoride) with cationic polyionic liquid. J Appl Polym Sci 2020;137:48878. [DOI: 10.1002/app.48878] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
22 Filimon A, Dobos AM, Musteata V. New perspectives on development of polysulfones/cellulose derivatives based ionic-exchange membranes: Dielectric response and hemocompatibility study. Carbohydr Polym 2019;226:115300. [PMID: 31582061 DOI: 10.1016/j.carbpol.2019.115300] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
23 Xiao F, Hu X, Chen Y, Zhang Y. Porous Zr-Based Metal-Organic Frameworks (Zr-MOFs)-Incorporated Thin-Film Nanocomposite Membrane toward Enhanced Desalination Performance. ACS Appl Mater Interfaces 2019;11:47390-403. [DOI: 10.1021/acsami.9b17212] [Cited by in Crossref: 31] [Cited by in F6Publishing: 48] [Article Influence: 10.3] [Reference Citation Analysis]
24 Yen SC, Liu ZW, Juang RS, Sahoo S, Huang CH, Chen P, Hsiao YS, Fang JT. Carbon Nanotube/Conducting Polymer Hybrid Nanofibers as Novel Organic Bioelectronic Interfaces for Efficient Removal of Protein-Bound Uremic Toxins. ACS Appl Mater Interfaces 2019;11:43843-56. [PMID: 31663727 DOI: 10.1021/acsami.9b14351] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
25 Ma H, Xie Q, Wu C, Shen L, Hong Z, Zhang G, Lu Y, Shao W. A facile approach to enhance performance of PVDF-matrix nanocomposite membrane via manipulating migration behavior of graphene oxide. Journal of Membrane Science 2019;590:117268. [DOI: 10.1016/j.memsci.2019.117268] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 3.7] [Reference Citation Analysis]
26 Yaghoubi Z, Parsa JB. Preparation of thermo-responsive PNIPAAm-MWCNT membranes and evaluation of its antifouling properties in dairy wastewater. Mater Sci Eng C Mater Biol Appl 2019;103:109779. [PMID: 31349494 DOI: 10.1016/j.msec.2019.109779] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]