BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang H, Hou W, Liu F, Han Q, Li T, Lin H, Deng G, He J. Preparation and evaluation of a self-anticlotting dialyzer via an interface crosslinking approach. Journal of Membrane Science 2018;563:115-25. [DOI: 10.1016/j.memsci.2018.05.056] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
Number Citing Articles
1 Wang H, Jiang L, Zhang C, Wang K, Li Y, Pu H, Zhao Q. Ca-bentonite/polymer nanocomposite geosynthetic clay liners for effective containment of hazardous landfill leachate. Journal of Cleaner Production 2022;365:132825. [DOI: 10.1016/j.jclepro.2022.132825] [Reference Citation Analysis]
2 Chen Q, Kou M, He Y, Zhao Y, Chen L. Constructing hierarchical surface structure of hemodialysis membranes to intervene in oxidative stress through Michael addition reaction between tannic acid and PEtOx brushes. Journal of Membrane Science 2022;657:120700. [DOI: 10.1016/j.memsci.2022.120700] [Reference Citation Analysis]
3 Liu Y, Li G, Han Q, Lin H, Li Q, Deng G, Liu F. Construction of electro-neutral surface on dialysis membrane for improved toxin clearance and anti-coagulation/inflammation through saltwater fish inspired trimethylamine N-oxide (TMAO). Journal of Membrane Science 2022;641:119900. [DOI: 10.1016/j.memsci.2021.119900] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
4 Jacob Kaleekkal N. Heparin immobilized graphene oxide in polyetherimide membranes for hemodialysis with enhanced hemocompatibility and removal of uremic toxins. Journal of Membrane Science 2021;623:119068. [DOI: 10.1016/j.memsci.2021.119068] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
5 Wang H, Ni Y, Dong Z, Zhao Q. A mechanically enhanced metal-organic framework/PDMS membrane for CO2/N2 separation. Reactive and Functional Polymers 2021;160:104825. [DOI: 10.1016/j.reactfunctpolym.2021.104825] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
6 Wang J, Liu Z, Qiu M, He C. Heparin-mimicking semi-interpenetrating composite membrane with multiple excellent performances for promising hemodialysis. Journal of Membrane Science 2021;618:118740. [DOI: 10.1016/j.memsci.2020.118740] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
7 Liu J, Shu G, Lu X, Li K, Kong X, Zheng S, Ma R, Li T. Alginate/HSA double-sided functional PVDF multifunctional composite membrane for bilirubin removal. Separation and Purification Technology 2020;252:117295. [DOI: 10.1016/j.seppur.2020.117295] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
8 Song C, Li Y, Wang B, Hong Y, Xue C, Li Q, Shen E, Cui D. A novel anticoagulant affinity membrane for enhanced hemocompatibility and bilirubin removal. Colloids Surf B Biointerfaces 2021;197:111430. [PMID: 33125976 DOI: 10.1016/j.colsurfb.2020.111430] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
9 Jiang P, He Y, Zhao Y, Chen L. Hierarchical Surface Architecture of Hemodialysis Membranes for Eliminating Homocysteine Based on the Multifunctional Role of Pyridoxal 5'-phosphate. ACS Appl Mater Interfaces 2020;12:36837-50. [PMID: 32705861 DOI: 10.1021/acsami.0c07090] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Liu Y, Li G, Han Q, Lin H, Li Q, Hua J, Liu F. Anticoagulant dialyzer with enhanced Ca2+ chelation and hydrophilicity for heparin free hemodialysis. Journal of Membrane Science 2020;604:118082. [DOI: 10.1016/j.memsci.2020.118082] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
11 Yu X, Zhu Y, Zhang T, Deng L, Li P, Wang X, Hsiao BS. Heparinized thin-film composite membranes with sub-micron ridge structure for efficient hemodialysis. Journal of Membrane Science 2020;599:117706. [DOI: 10.1016/j.memsci.2019.117706] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
12 Wang H, Tang S, Ni Y, Zhang C, Zhu X, Zhao Q. Covalent cross-linking for interface engineering of high flux UiO-66-TMS/PDMS pervaporation membranes. Journal of Membrane Science 2020;598:117791. [DOI: 10.1016/j.memsci.2019.117791] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
13 Liu Y, Han Q, Li T, Hua J, Liu F, Li Q, Deng G. Heparin reduced dialysis through a facile anti-coagulant coating on flat and hollow fiber membranes. Journal of Membrane Science 2020;595:117593. [DOI: 10.1016/j.memsci.2019.117593] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
14 Hedayati M, Neufeld MJ, Reynolds MM, Kipper MJ. The quest for blood-compatible materials: Recent advances and future technologies. Materials Science and Engineering: R: Reports 2019;138:118-52. [DOI: 10.1016/j.mser.2019.06.002] [Cited by in Crossref: 21] [Cited by in F6Publishing: 32] [Article Influence: 7.0] [Reference Citation Analysis]
15 Ji H, Xu H, Jin L, Song X, He C, Liu X, Xiong L, Zhao W, Zhao C. Surface engineering of low-fouling and hemocompatible polyethersulfone membranes via in-situ ring-opening reaction. Journal of Membrane Science 2019;581:373-82. [DOI: 10.1016/j.memsci.2019.03.082] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
16 Gao A, Yan Y, Li T, Liu F. Biomimetic urchin-like surface based on poly (lactic acid) membrane for robust anti-wetting and anti-bacteria properties. Materials Letters 2019;237:240-4. [DOI: 10.1016/j.matlet.2018.11.063] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]