BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xiong Z, Zhong Y, Lin H, Liu F, Li T, Li J. PDLA/PLLA ultrafiltration membrane with excellent permeability, rejection and fouling resistance via stereocomplexation. Journal of Membrane Science 2017;533:103-11. [DOI: 10.1016/j.memsci.2017.03.028] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Sangroniz A, Sarasua JR, Iriarte M, Etxeberria A. Survey on transport properties of vapours and liquids on biodegradable polymers. European Polymer Journal 2019;120:109232. [DOI: 10.1016/j.eurpolymj.2019.109232] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
2 Liu C, Wang W, Li Y, Cui F, Xie C, Zhu L, Shan B. PMWCNT/PVDF ultrafiltration membranes with enhanced antifouling properties intensified by electric field for efficient blood purification. Journal of Membrane Science 2019;576:48-58. [DOI: 10.1016/j.memsci.2019.01.015] [Cited by in Crossref: 25] [Cited by in F6Publishing: 12] [Article Influence: 8.3] [Reference Citation Analysis]
3 Xiong Z, Huang Y, Huang Z, Shi Y, Qu F, Zhang G, Yang J, Zhao S. Confining Nano-Fe3O4 in the Superhydrophilic Membrane Skin Layer to Minimize Internal Fouling. ACS Appl Mater Interfaces 2022;14:26044-56. [PMID: 35609300 DOI: 10.1021/acsami.2c04685] [Reference Citation Analysis]
4 Kian LK, Jawaid M, Nasef MM, Fouad H, Karim Z. Poly(lactic acid)/poly(butylene succinate) dual-layer membranes with cellulose nanowhisker for heavy metal ion separation. Int J Biol Macromol 2021;192:654-64. [PMID: 34655581 DOI: 10.1016/j.ijbiomac.2021.10.042] [Reference Citation Analysis]
5 Gao A, Zhang G, Zhao S, Cui J, Yan Y. A solution for trade-off phenomenon based on symmetric-like membrane with nano-scale pore structure. Separation and Purification Technology 2019;227:115693. [DOI: 10.1016/j.seppur.2019.115693] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
6 Su Y, Beltsios KG, Cheng L. Phase inversion in reusable baths (PIRBs): A new polymer membrane fabrication method as applied to EVOH. J Appl Polym Sci 2019;136:48193. [DOI: 10.1002/app.48193] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
7 Zhang Z, Gan Z, Bao R, Ke K, Liu Z, Yang M, Yang W. Green and robust superhydrophilic electrospun stereocomplex polylactide membranes: Multifunctional oil/water separation and self-cleaning. Journal of Membrane Science 2020;593:117420. [DOI: 10.1016/j.memsci.2019.117420] [Cited by in Crossref: 41] [Cited by in F6Publishing: 19] [Article Influence: 20.5] [Reference Citation Analysis]
8 Zhong Y, Li T, Lin H, Zhang L, Xiong Z, Fang Q, Zhang G, Liu F. Meso-/macro-porous microspheres confining Au nanoparticles based on PDLA/PLLA stereo-complex membrane for continuous flowing catalysis and separation. Chemical Engineering Journal 2018;344:299-310. [DOI: 10.1016/j.cej.2018.03.080] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
9 Jing Y, Zhang L, Huang R, Bai D, Bai H, Zhang Q, Fu Q. Ultrahigh-performance electrospun polylactide membranes with excellent oil/water separation ability via interfacial stereocomplex crystallization. J Mater Chem A 2017;5:19729-37. [DOI: 10.1039/c7ta05379g] [Cited by in Crossref: 43] [Cited by in F6Publishing: 1] [Article Influence: 8.6] [Reference Citation Analysis]
10 Kian LK, Fouad H, Jawaid M, Karim Z. Crystalline nanocellulose based sustainable nanoscopic composite membrane production: removal of metal ions from water. Cellulose. [DOI: 10.1007/s10570-022-04494-w] [Reference Citation Analysis]
11 Knoch S, Chouinard G, Dumont M, Tavares JR. Dip-dip-dry: Solvent-induced tuning of polylactic acid surface properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019;578:123591. [DOI: 10.1016/j.colsurfa.2019.123591] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
12 Chen G, Yang Y, Kang D, Qin Q, Jin J, Shao H, Qin S. Enhanced performances of chlorinated polyvinyl chloride (CPVC) ultrafiltration membranes by styrene-maleic anhydride copolymer. Separation and Purification Technology 2021;258:118043. [DOI: 10.1016/j.seppur.2020.118043] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
13 Wang X, Feng M, Liu Y, Deng H, Lu J. Fabrication of graphene oxide blended polyethersulfone membranes via phase inversion assisted by electric field for improved separation and antifouling performance. Journal of Membrane Science 2019;577:41-50. [DOI: 10.1016/j.memsci.2019.01.055] [Cited by in Crossref: 30] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
14 Vatanpour V, Dehqan A, Paziresh S, Zinadini S, Zinatizadeh AA, Koyuncu I. Polylactic acid in the fabrication of separation membranes: A review. Separation and Purification Technology 2022;296:121433. [DOI: 10.1016/j.seppur.2022.121433] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Lin Z, Hu C, Wu X, Zhong W, Chen M, Zhang Q, Zhu A, Liu Q. Towards improved antifouling ability and separation performance of polyethersulfone ultrafiltration membranes through poly(ethylenimine) grafting. Journal of Membrane Science 2018;554:125-33. [DOI: 10.1016/j.memsci.2018.02.065] [Cited by in Crossref: 25] [Cited by in F6Publishing: 9] [Article Influence: 6.3] [Reference Citation Analysis]
16 Zhong Y, Mahmud S, He Z, Yang Y, Zhang Z, Guo F, Chen Z, Xiong Z, Zhao Y. Graphene oxide modified membrane for highly efficient wastewater treatment by dynamic combination of nanofiltration and catalysis. Journal of Hazardous Materials 2020;397:122774. [DOI: 10.1016/j.jhazmat.2020.122774] [Cited by in Crossref: 22] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]