BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li J, Liu F, Qin Y, He J, Xiong Z, Deng G, Li Q. A novel natural hirudin facilitated anti-clotting polylactide membrane via hydrogen bonding interaction. Journal of Membrane Science 2017;523:505-14. [DOI: 10.1016/j.memsci.2016.10.027] [Cited by in Crossref: 42] [Cited by in F6Publishing: 33] [Article Influence: 8.4] [Reference Citation Analysis]
Number Citing Articles
1 Liu W, Lin H, Wang J, Han Q, Liu F. Polytetrafluoroethylene (PTFE) hollow fibers modified by hydrophilic crosslinking network (HCN) for robust resistance to fouling and harsh chemical cleaning. Journal of Membrane Science 2021;630:119301. [DOI: 10.1016/j.memsci.2021.119301] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
2 Lei Y, Xia Y, Wang Y. The tropoelastin and lysyl oxidase treatments increased the content of insoluble elastin in bioprosthetic heart valves. J Biomater Appl 2018;33:637-46. [DOI: 10.1177/0885328218807077] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
3 Ma L, Huang L, Zhang Y, Zhao L, Xin Q, Ye H, Li H. Hemocompatible poly(lactic acid) membranes prepared by immobilizing carboxylated graphene oxide via mussel-inspired method for hemodialysis. RSC Adv 2018;8:153-61. [DOI: 10.1039/c7ra11091j] [Cited by in Crossref: 13] [Article Influence: 3.3] [Reference Citation Analysis]
4 Jiang P, He Y, Zhao Y, Chen L. Hierarchical Surface Architecture of Hemodialysis Membranes for Eliminating Homocysteine Based on the Multifunctional Role of Pyridoxal 5'-phosphate. ACS Appl Mater Interfaces 2020;12:36837-50. [PMID: 32705861 DOI: 10.1021/acsami.0c07090] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
5 Wang H, Li J, Liu F, Li T, Zhong Y, Lin H, He J. Enhanced hemocompatibility of flat and hollow fiber membranes via a heparin free surface crosslinking strategy. Reactive and Functional Polymers 2018;124:104-14. [DOI: 10.1016/j.reactfunctpolym.2018.01.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
6 Chen Q, He Y, Zhao Y, Chen L. Intervening oxidative stress integrated with an excellent biocompatibility of hemodialysis membrane fabricated by nucleobase-recognized co-immobilization strategy of tannic acid, looped PEtOx brush and heparin. Journal of Membrane Science 2021;625:119174. [DOI: 10.1016/j.memsci.2021.119174] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
7 Geremia I, Pavlenko D, Maksymow K, Rüth M, Lemke HD, Stamatialis D. Ex vivo evaluation of the blood compatibility of mixed matrix haemodialysis membranes. Acta Biomater 2020;111:118-28. [PMID: 32447066 DOI: 10.1016/j.actbio.2020.05.016] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
8 da Câmara PC, Madruga LY, Sabino RM, Vlcek J, Balaban RC, Popat KC, Martins AF, Kipper MJ. Polyelectrolyte multilayers containing a tannin derivative polyphenol improve blood compatibility through interactions with platelets and serum proteins. Materials Science and Engineering: C 2020;112:110919. [DOI: 10.1016/j.msec.2020.110919] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
9 Yang L, Huang X, Deng L, Ma X, Jiang H, Ning Q, Liang Z, Lei Y, Wang Y. Pre-mounted dry TAVI valve with improved endothelialization potential using REDV-loaded PEGMA hydrogel hybrid pericardium. J Mater Chem B 2020;8:2689-701. [DOI: 10.1039/c9tb00879a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
10 Liu C, Wang W, Li Y, Cui F, Xie C, Zhu L, Shan B. PMWCNT/PVDF ultrafiltration membranes with enhanced antifouling properties intensified by electric field for efficient blood purification. Journal of Membrane Science 2019;576:48-58. [DOI: 10.1016/j.memsci.2019.01.015] [Cited by in Crossref: 25] [Cited by in F6Publishing: 12] [Article Influence: 8.3] [Reference Citation Analysis]
11 Lei Y, Ning Q, Tang Y, Wang Y. Exogenous hyaluronic acid and chondroitin sulfate crosslinking treatment for increasing the amount and stability of glycosaminoglycans in bioprosthetic heart valves. J Mater Sci: Mater Med 2019;30. [DOI: 10.1007/s10856-019-6237-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
12 Wang H, Hou W, Liu F, Han Q, Li T, Lin H, Deng G, He J. Preparation and evaluation of a self-anticlotting dialyzer via an interface crosslinking approach. Journal of Membrane Science 2018;563:115-25. [DOI: 10.1016/j.memsci.2018.05.056] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.8] [Reference Citation Analysis]
13 Lei L, Tao X, Xie L, Hong Z. Vascular endothelial growth factor-loaded elastin-hydrogel modification of the pericardium improves endothelialization potential of bioprosthetic heart valves. J Biomater Appl 2019;34:451-9. [DOI: 10.1177/0885328219854336] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Hu M, Peng X, Zhao Y, Yu X, Cheng C, Yu X. Dialdehyde pectin-crosslinked and hirudin-loaded decellularized porcine pericardium with improved matrix stability, enhanced anti-calcification and anticoagulant for bioprosthetic heart valves. Biomater Sci 2021;9:7617-35. [PMID: 34671797 DOI: 10.1039/d1bm01297e] [Reference Citation Analysis]
15 Li R, Mai Z, Peng D, Xu S, Wang J, Zhu J, Zhang Y. In situ formation of porous organic polymer-based thin polyester membranes for loose nanofiltration. Journal of Membrane Science 2022;644:120074. [DOI: 10.1016/j.memsci.2021.120074] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
16 Goushki MN, Mousavi SA, Abdekhodaie MJ, Sadeghi M. Free radical graft polymerization of 2-hydroxyethyl methacrylate and acrylic acid on the polysulfone membrane surface through circulation of reaction media to improve its performance and hemocompatibility properties. Journal of Membrane Science 2018;564:762-72. [DOI: 10.1016/j.memsci.2018.07.071] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
17 Zhu Y, Yu X, Zhang T, Wang X. Constructing zwitterionic coatings on thin-film nanofibrous composite membrane substrate for multifunctionality. Applied Surface Science 2019;483:979-90. [DOI: 10.1016/j.apsusc.2019.04.063] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 5.3] [Reference Citation Analysis]
18 Wu X, Liu C, Chen H, Zhang Y, Li L, Tang N. Layer-by-Layer Deposition of Hyaluronan and Quercetin-Loaded Chitosan Nanoparticles onto Titanium for Improving Blood Compatibility. Coatings 2020;10:256. [DOI: 10.3390/coatings10030256] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
19 Mollahosseini A, Abdelrasoul A, Shoker A. A critical review of recent advances in hemodialysis membranes hemocompatibility and guidelines for future development. Materials Chemistry and Physics 2020;248:122911. [DOI: 10.1016/j.matchemphys.2020.122911] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
20 Chen Q, He Y, Zhao Y, Chen L. Tannic acid and Poly(N-acryloyl morpholine) layer-by-layer built hemodialysis membrane surface for intervening oxidative stress integrated with high biocompatibility and dialysis performance. Journal of Membrane Science 2021;621:118896. [DOI: 10.1016/j.memsci.2020.118896] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
21 Lei Y, Deng L, Tang Y, Ning Q, Lan X, Wang Y. Hybrid Pericardium with VEGF‐Loaded Hyaluronic Acid Hydrogel Coating to Improve the Biological Properties of Bioprosthetic Heart Valves. Macromol Biosci 2019;19:1800390. [DOI: 10.1002/mabi.201800390] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
22 Yu X, Zhu Y, Zhang T, Deng L, Li P, Wang X, Hsiao BS. Heparinized thin-film composite membranes with sub-micron ridge structure for efficient hemodialysis. Journal of Membrane Science 2020;599:117706. [DOI: 10.1016/j.memsci.2019.117706] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
23 Zhu Y, Yu X, Zhang T, Hua W, Wang X. Nanofibrous composite hemodiafiltration membrane: A facile approach towards tuning the barrier layer for enhanced performance. Applied Surface Science 2019;465:950-63. [DOI: 10.1016/j.apsusc.2018.09.201] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
24 Yu X, Zhu Y, Cheng C, Zhang T, Wang X, Hsiao BS. Novel thin-film nanofibrous composite membranes containing directional toxin transport nanochannels for efficient and safe hemodialysis application. Journal of Membrane Science 2019;582:151-63. [DOI: 10.1016/j.memsci.2019.04.006] [Cited by in Crossref: 19] [Cited by in F6Publishing: 9] [Article Influence: 6.3] [Reference Citation Analysis]
25 Li T, Liu F, Lin H, Xiong Z, Wang H, Zhong Y, Xiang L, Wu A. Fabrication of anti-fouling, anti-bacterial and non-clotting PVDF membranes through one step “outside-in” interface segregation strategy. Journal of Colloid and Interface Science 2018;517:93-103. [DOI: 10.1016/j.jcis.2018.01.107] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
26 Wang J, Liu Z, Qiu M, He C. Heparin-mimicking semi-interpenetrating composite membrane with multiple excellent performances for promising hemodialysis. Journal of Membrane Science 2021;618:118740. [DOI: 10.1016/j.memsci.2020.118740] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
27 Mulinti P, Brooks J, Lervick B, Pullan J, Brooks A. Strategies to improve the hemocompatibility of biodegradable biomaterials. Hemocompatibility of Biomaterials for Clinical Applications. Elsevier; 2018. pp. 253-78. [DOI: 10.1016/b978-0-08-100497-5.00017-3] [Cited by in Crossref: 13] [Article Influence: 3.3] [Reference Citation Analysis]
28 Zhou S, Zhang Y, Ni L, Pei Y, Zhang H, Zhang H. Applied organic-inorganic nanocomposite of PLA-TiO2 for preparing polysulfone membrane: structure, performance and UV-assisted cleaning strategy. Water Sci Technol 2021;83:198-211. [PMID: 33460418 DOI: 10.2166/wst.2020.564] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Lei Y, Yang L, Guo G, Wang Y. EGCG and enzymatic cross-linking combined treatments for improving elastin stability and reducing calcification in bioprosthetic heart valves. J Biomed Mater Res B Appl Biomater 2019;107:1551-9. [PMID: 30267643 DOI: 10.1002/jbm.b.34247] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
30 Lan X, Zhao Q, Zhang J, Lei Y, Wang Y. A combination of hydrogen bonding and chemical covalent crosslinking to fabricate a novel swim-bladder-derived dry heart valve material yields advantageous mechanical and biological properties. Biomed Mater 2020;16:015014. [DOI: 10.1088/1748-605x/abb616] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Eduok U, Abdelrasoul A, Shoker A, Doan H. Recent developments, current challenges and future perspectives on cellulosic hemodialysis membranes for highly efficient clearance of uremic toxins. Materials Today Communications 2021;27:102183. [DOI: 10.1016/j.mtcomm.2021.102183] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
32 Wang H, Shi X, Gao A, Lin H, Chen Y, Ye Y, He J, Liu F, Deng G. Heparin free coating on PLA membranes for enhanced hemocompatibility via iCVD. Applied Surface Science 2018;433:869-78. [DOI: 10.1016/j.apsusc.2017.10.123] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
33 Vatanpour V, Dehqan A, Paziresh S, Zinadini S, Zinatizadeh AA, Koyuncu I. Polylactic acid in the fabrication of separation membranes: A review. Separation and Purification Technology 2022;296:121433. [DOI: 10.1016/j.seppur.2022.121433] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Ji M, Chen X, Luo J, Wan Y. Improved blood compatibility of polysulfone membrane by anticoagulant protein immobilization. Colloids and Surfaces B: Biointerfaces 2019;175:586-95. [DOI: 10.1016/j.colsurfb.2018.12.026] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
35 Hedayati M, Neufeld MJ, Reynolds MM, Kipper MJ. The quest for blood-compatible materials: Recent advances and future technologies. Materials Science and Engineering: R: Reports 2019;138:118-52. [DOI: 10.1016/j.mser.2019.06.002] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
36 Cong S, Li H, Shen X, Wang J, Zhu J, Liu J, Zhang Y, Van der Bruggen B. Construction of graphene oxide based mixed matrix membranes with CO 2 -philic sieving gas-transport channels through strong π–π interactions. J Mater Chem A 2018;6:17854-60. [DOI: 10.1039/c8ta05774e] [Cited by in Crossref: 24] [Article Influence: 6.0] [Reference Citation Analysis]
37 Beisl S, Monteiro S, Santos R, Figueiredo AS, Sánchez-loredo MG, Lemos MA, Lemos F, Minhalma M, de Pinho MN. Synthesis and bactericide activity of nanofiltration composite membranes – Cellulose acetate/silver nanoparticles and cellulose acetate/silver ion exchanged zeolites. Water Research 2019;149:225-31. [DOI: 10.1016/j.watres.2018.10.096] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
38 Yang Y, Yin S, He C, Wu X, Yin J, Zhang J, Ma L, Zhao W, Cheng C, Zhao C. Construction of Kevlar nanofiber/graphene oxide composite beads as safe, self-anticoagulant, and highly efficient hemoperfusion adsorbents. J Mater Chem B 2020;8:1960-70. [PMID: 32067017 DOI: 10.1039/c9tb02789k] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
39 Sasongko NA, Siahaan P, Lusiana RA, Prasasty V. Understanding the interaction of polysulfone with urea and creatinine at the molecular level and its application for hemodialysis membrane. J Phys : Conf Ser 2020;1524:012084. [DOI: 10.1088/1742-6596/1524/1/012084] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]