BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yu X, Shen L, Zhu Y, Li X, Yang Y, Wang X, Zhu M, Hsiao BS. High performance thin-film nanofibrous composite hemodialysis membranes with efficient middle-molecule uremic toxin removal. Journal of Membrane Science 2017;523:173-84. [DOI: 10.1016/j.memsci.2016.09.057] [Cited by in Crossref: 60] [Cited by in F6Publishing: 30] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Han S, Yang K, Sun J, Liu J, Zhang L, Zhao J. Proteomics Investigations into Serum Proteins Adsorbed by High-Flux and Low-Flux Dialysis Membranes. Proteomics Clin Appl 2017;11. [PMID: 28795537 DOI: 10.1002/prca.201700079] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
2 Zhu L, Song H, Wang J, Xue L. Polysulfone hemodiafiltration membranes with enhanced anti-fouling and hemocompatibility modified by poly(vinyl pyrrolidone) via in situ cross-linked polymerization. Materials Science and Engineering: C 2017;74:159-66. [DOI: 10.1016/j.msec.2017.02.019] [Cited by in Crossref: 37] [Cited by in F6Publishing: 27] [Article Influence: 7.4] [Reference Citation Analysis]
3 Sasaki M, Liu Y, Ebara M. Zeolite Composite Nanofiber Mesh for Indoxyl Sulfate Adsorption toward Wearable Blood Purification Devices. Fibers 2021;9:37. [DOI: 10.3390/fib9060037] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 An Z, Xu R, Dai F, Xue G, He X, Zhao Y, Chen L. PVDF/PVDF-g-PACMO blend hollow fiber membranes for hemodialysis: preparation, characterization, and performance. RSC Adv 2017;7:26593-600. [DOI: 10.1039/c7ra03366d] [Cited by in Crossref: 13] [Article Influence: 2.6] [Reference Citation Analysis]
5 Liu C, Wang W, Li Y, Cui F, Xie C, Zhu L, Shan B. PMWCNT/PVDF ultrafiltration membranes with enhanced antifouling properties intensified by electric field for efficient blood purification. Journal of Membrane Science 2019;576:48-58. [DOI: 10.1016/j.memsci.2019.01.015] [Cited by in Crossref: 25] [Cited by in F6Publishing: 12] [Article Influence: 8.3] [Reference Citation Analysis]
6 Xix-rodriguez C, Varguez-catzim P, Alonzo-garcía A, Rodriguez-fuentes N, Vázquez-torres H, González-diaz A, Aguilar-vega M, González-díaz MO. Amphiphilic poly(lactic acid) membranes with low fouling and enhanced hemodiafiltration. Separation and Purification Technology 2021;259:118124. [DOI: 10.1016/j.seppur.2020.118124] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
7 Ranjbarzadeh-dibazar A, Barzin J, Shokrollahi P. Microstructure crystalline domains disorder critically controls formation of nano-porous/long fibrillar morphology of ePTFE membranes. Polymer 2017;121:75-87. [DOI: 10.1016/j.polymer.2017.06.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 2.6] [Reference Citation Analysis]
8 Jiang P, He Y, Zhao Y, Chen L. Hierarchical Surface Architecture of Hemodialysis Membranes for Eliminating Homocysteine Based on the Multifunctional Role of Pyridoxal 5'-phosphate. ACS Appl Mater Interfaces 2020;12:36837-50. [PMID: 32705861 DOI: 10.1021/acsami.0c07090] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Zhang W, Yue P, Zhang H, Yang N, Li C, Li JH, Meng J, Zhang Q. Surface modification of AO-PAN@OHec nanofiber membranes with amino acid for antifouling and hemocompatible properties. Applied Surface Science 2019;475:934-41. [DOI: 10.1016/j.apsusc.2018.12.179] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
10 Wang Y, Yin M, Zheng X, Li W, Ren X. Chitosan/mesoporous silica hybrid aerogel with bactericidal properties as hemostatic material. European Polymer Journal 2021;142:110132. [DOI: 10.1016/j.eurpolymj.2020.110132] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
11 Venkatesh K, Arthanareeswaran G, Suresh Kumar P, Kweon J. Fabrication of Zwitterion TiO2 Nanomaterial-Based Nanocomposite Membranes for Improved Antifouling and Antibacterial Properties and Hemocompatibility and Reduced Cytotoxicity. ACS Omega 2021;6:20279-91. [PMID: 34395976 DOI: 10.1021/acsomega.1c02151] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Li W, Li Y, Wen X, Teng Y, Wang J, Yang T, Li X, Li L, Wang C. Flexible Zr-MOF anchored polymer nanofiber membrane for efficient removal of creatinine in uremic toxins. Journal of Membrane Science 2022;648:120369. [DOI: 10.1016/j.memsci.2022.120369] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
13 Haghdoost F, Bahrami SH, Barzin J, Ghaee A. Preparation and characterization of electrospun polyethersulfone/polyvinylpyrrolidone-zeolite core–shell composite nanofibers for creatinine adsorption. Separation and Purification Technology 2021;257:117881. [DOI: 10.1016/j.seppur.2020.117881] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 12.0] [Reference Citation Analysis]
14 Song C, Li Y, Wang B, Hong Y, Xue C, Li Q, Shen E, Cui D. A novel anticoagulant affinity membrane for enhanced hemocompatibility and bilirubin removal. Colloids Surf B Biointerfaces 2021;197:111430. [PMID: 33125976 DOI: 10.1016/j.colsurfb.2020.111430] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Chen Q, He Y, Zhao Y, Chen L. Intervening oxidative stress integrated with an excellent biocompatibility of hemodialysis membrane fabricated by nucleobase-recognized co-immobilization strategy of tannic acid, looped PEtOx brush and heparin. Journal of Membrane Science 2021;625:119174. [DOI: 10.1016/j.memsci.2021.119174] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
16 Jacob Kaleekkal N. Heparin immobilized graphene oxide in polyetherimide membranes for hemodialysis with enhanced hemocompatibility and removal of uremic toxins. Journal of Membrane Science 2021;623:119068. [DOI: 10.1016/j.memsci.2021.119068] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
17 Koh E, Lee YT. Development of an embossed nanofiber hemodialysis membrane for improving capacity and efficiency via 3D printing and electrospinning technology. Separation and Purification Technology 2020;241:116657. [DOI: 10.1016/j.seppur.2020.116657] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
18 Jin Y, Ding S, Li P, Wang X. Coordination of thin-film nanofibrous composite dialysis membrane and reduced graphene oxide aerogel adsorbents for elimination of indoxyl sulfate. Chinese Journal of Chemical Engineering 2022. [DOI: 10.1016/j.cjche.2022.01.024] [Reference Citation Analysis]
19 Goushki MN, Mousavi SA, Abdekhodaie MJ, Sadeghi M. Free radical graft polymerization of 2-hydroxyethyl methacrylate and acrylic acid on the polysulfone membrane surface through circulation of reaction media to improve its performance and hemocompatibility properties. Journal of Membrane Science 2018;564:762-72. [DOI: 10.1016/j.memsci.2018.07.071] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
20 Shi S, Chang Y. Biofriendly chitosan-based high-efficiency dialysis membrane. Progress in Organic Coatings 2022;170:106981. [DOI: 10.1016/j.porgcoat.2022.106981] [Reference Citation Analysis]
21 Yen SC, Liu ZW, Juang RS, Sahoo S, Huang CH, Chen P, Hsiao YS, Fang JT. Carbon Nanotube/Conducting Polymer Hybrid Nanofibers as Novel Organic Bioelectronic Interfaces for Efficient Removal of Protein-Bound Uremic Toxins. ACS Appl Mater Interfaces 2019;11:43843-56. [PMID: 31663727 DOI: 10.1021/acsami.9b14351] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
22 Zhu Y, Yu X, Zhang T, Wang X. Constructing zwitterionic coatings on thin-film nanofibrous composite membrane substrate for multifunctionality. Applied Surface Science 2019;483:979-90. [DOI: 10.1016/j.apsusc.2019.04.063] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 5.3] [Reference Citation Analysis]
23 Ali M, Jahan Z, Sher F, Khan Niazi MB, Kakar SJ, Gul S. Nano architectured cues as sustainable membranes for ultrafiltration in blood hemodialysis. Mater Sci Eng C Mater Biol Appl 2021;128:112260. [PMID: 34474819 DOI: 10.1016/j.msec.2021.112260] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
24 Akkoca Palabıyık B, Batyrow M, Erucar I. Computational investigations of Bio-MOF membranes for uremic toxin separation. Separation and Purification Technology 2022;281:119852. [DOI: 10.1016/j.seppur.2021.119852] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Chen Q, He Y, Zhao Y, Chen L. Tannic acid and Poly(N-acryloyl morpholine) layer-by-layer built hemodialysis membrane surface for intervening oxidative stress integrated with high biocompatibility and dialysis performance. Journal of Membrane Science 2021;621:118896. [DOI: 10.1016/j.memsci.2020.118896] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
26 Yu X, Zhu Y, Zhang T, Deng L, Li P, Wang X, Hsiao BS. Heparinized thin-film composite membranes with sub-micron ridge structure for efficient hemodialysis. Journal of Membrane Science 2020;599:117706. [DOI: 10.1016/j.memsci.2019.117706] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
27 Wang Y, Yin M, Li Z, Liu Y, Ren X, Huang T. Preparation of antimicrobial and hemostatic cotton with modified mesoporous particles for biomedical applications. Colloids and Surfaces B: Biointerfaces 2018;165:199-206. [DOI: 10.1016/j.colsurfb.2018.02.045] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 5.8] [Reference Citation Analysis]
28 Liang Y, Ju J, Deng N, Zhou X, Yan J, Kang W, Cheng B. Super-hydrophobic self-cleaning bead-like SiO2@PTFE nanofiber membranes for waterproof-breathable applications. Applied Surface Science 2018;442:54-64. [DOI: 10.1016/j.apsusc.2018.02.126] [Cited by in Crossref: 45] [Cited by in F6Publishing: 13] [Article Influence: 11.3] [Reference Citation Analysis]
29 Zhu Y, Yu X, Zhang T, Hua W, Wang X. Nanofibrous composite hemodiafiltration membrane: A facile approach towards tuning the barrier layer for enhanced performance. Applied Surface Science 2019;465:950-63. [DOI: 10.1016/j.apsusc.2018.09.201] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
30 Rajesh S, Crandall C, Schneiderman S, Menkhaus TJ. Cellulose- graft -polyethyleneamidoamine Anion-Exchange Nanofiber Membranes for Simultaneous Protein Adsorption and Virus Filtration. ACS Appl Nano Mater 2018;1:3321-30. [DOI: 10.1021/acsanm.8b00519] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
31 Lusiana RA, Sangkota VDA, Sasongko NA, Gunawan G, Wijaya AR, Santosa SJ, Siswanta D, Mudasir M, Abidin MNZ, Mansur S, Othman MHD. Permeability improvement of polyethersulfone-polietylene glycol (PEG-PES) flat sheet type membranes by tripolyphosphate-crosslinked chitosan (TPP-CS) coating. International Journal of Biological Macromolecules 2020;152:633-44. [DOI: 10.1016/j.ijbiomac.2020.02.290] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
32 Yu X, Zhu Y, Cheng C, Zhang T, Wang X, Hsiao BS. Novel thin-film nanofibrous composite membranes containing directional toxin transport nanochannels for efficient and safe hemodialysis application. Journal of Membrane Science 2019;582:151-63. [DOI: 10.1016/j.memsci.2019.04.006] [Cited by in Crossref: 19] [Cited by in F6Publishing: 9] [Article Influence: 6.3] [Reference Citation Analysis]
33 Zhong D, Wang Z, Zhou J, Wang Y. Additive-free preparation of hemodialysis membranes from block copolymers of polysulfone and polyethylene glycol. Journal of Membrane Science 2021;618:118690. [DOI: 10.1016/j.memsci.2020.118690] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
34 Mohammadi F, Valipouri A, Semnani D, Alsahebfosoul F. Nanofibrous Tubular Membrane for Blood Hemodialysis. Appl Biochem Biotechnol 2018;186:443-58. [PMID: 29644596 DOI: 10.1007/s12010-018-2744-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
35 Zhao R, Li Y, Li X, Li Y, Sun B, Chao S, Wang C. Facile hydrothermal synthesis of branched polyethylenimine grafted electrospun polyacrylonitrile fiber membrane as a highly efficient and reusable bilirubin adsorbent in hemoperfusion. Journal of Colloid and Interface Science 2018;514:675-85. [DOI: 10.1016/j.jcis.2017.12.059] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
36 Reyes-rodríguez P, Ávila-orta C, Andrade-guel M, Cortés-hernández D, Herrera-guerrero A, Cabello-alvarado C, Sánchez-fuentes J, Ramos-martínez V, Valdez-garza J, Hurtado-lópez G. Synthesis and characterization of magnetic nanoparticles Zn1-xMgxFe2O4 with partial substitution of Mg2+ (x= 0.0, 0.25, 0.5, 0.75 and 1.0) for adsorption of uremic toxins. Ceramics International 2020;46:27913-21. [DOI: 10.1016/j.ceramint.2020.08.019] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
37 Li W, Chao S, Li Y, Bai F, Teng Y, Li X, Li L, Wang C. Dual-layered composite nanofiber membrane with Cu-BTC-modified electrospun nanofibers and biopolymeric nanofibers for the removal of uremic toxins and its application in hemodialysis. Journal of Membrane Science 2022;642:119964. [DOI: 10.1016/j.memsci.2021.119964] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
38 Yıldız T, Erucar I. Revealing the performance of bio-MOFs for adsorption-based uremic toxin separation using molecular simulations. Chemical Engineering Journal 2022;431:134263. [DOI: 10.1016/j.cej.2021.134263] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
39 Wang J, Liu Y, Liu T, Xu X, Hu Y. Improving the perm-selectivity and anti-fouling property of UF membrane through the micro-phase separation of PSf-b-PEG block copolymers. Journal of Membrane Science 2020;599:117851. [DOI: 10.1016/j.memsci.2020.117851] [Cited by in Crossref: 18] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
40 Ding S, Li P, Zhang T, Wang X. Coordination of Copper Ion Crosslinked Composite Beads with Enhanced Toxins Adsorption and Thin-Film Nanofibrous Composite Membrane for Realizing the Lightweight Hemodialysis. Adv Fiber Mater . [DOI: 10.1007/s42765-021-00131-6] [Reference Citation Analysis]
41 Fukuda M, Saomoto H, Mori T, Yoshimoto H, Kusumi R, Sakai K. Impact of three-dimensional tortuous pore structure on polyethersulfone membrane morphology and mass transfer properties from a manufacturing perspective. J Artif Organs 2020;23:171-9. [PMID: 31691039 DOI: 10.1007/s10047-019-01144-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
42 Lee GT, Hong YK, Tijing LD. Manufacturing and Separation Characteristics of Hemodialysis Membranes to Improve Toxin Removal Rate. Advances in Polymer Technology 2022;2022:1-18. [DOI: 10.1155/2022/2565010] [Reference Citation Analysis]
43 Raharjo Y, Zainol Abidin MN, Ismail AF, Fahmi MZ, Saiful, Elma M, Santoso D, Haula’ H, Habibi AR. Dialysis Membranes for Acute Kidney Injury. Membranes 2022;12:325. [DOI: 10.3390/membranes12030325] [Reference Citation Analysis]
44 Liu Y, Li G, Han Q, Lin H, Li Q, Deng G, Liu F. Construction of electro-neutral surface on dialysis membrane for improved toxin clearance and anti-coagulation/inflammation through saltwater fish inspired trimethylamine N-oxide (TMAO). Journal of Membrane Science 2022;641:119900. [DOI: 10.1016/j.memsci.2021.119900] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
45 Yang N, Jia X, Wang D, Wei C, He Y, Chen L, Zhao Y. Silibinin as a natural antioxidant for modifying polysulfone membranes to suppress hemodialysis-induced oxidative stress. Journal of Membrane Science 2019;574:86-99. [DOI: 10.1016/j.memsci.2018.12.056] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
46 Mansoori S, Davarnejad R, Matsuura T, Ismail AF. Membranes based on non-synthetic (natural) polymers for wastewater treatment. Polymer Testing 2020;84:106381. [DOI: 10.1016/j.polymertesting.2020.106381] [Cited by in Crossref: 19] [Cited by in F6Publishing: 3] [Article Influence: 9.5] [Reference Citation Analysis]
47 Ju J, Liang F, Zhang X, Sun R, Pan X, Guan X, Cui G, He X, Li M. Advancement in separation materials for blood purification therapy. Chinese Journal of Chemical Engineering 2019;27:1383-90. [DOI: 10.1016/j.cjche.2019.01.022] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
48 Li J, Han L, Xie J, Liu S, Jia L. Multi-sites polycyclodextrin adsorbents for removal of protein-bound uremic toxins combining with hemodialysis. Carbohydrate Polymers 2020;247:116665. [DOI: 10.1016/j.carbpol.2020.116665] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
49 An Z, Dai F, Wei C, Zhao Y, Chen L. Polydopamine/cysteine surface modified hemocompatible poly(vinylidene fluoride) hollow fiber membranes for hemodialysis. J Biomed Mater Res B Appl Biomater 2018;106:2869-77. [PMID: 29536617 DOI: 10.1002/jbm.b.34106] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
50 Ren J, Yang X, Yan W, Feng X, Zhao Y, Chen L. mPEG-b-PES-b-mPEG-based candidate hemodialysis membrane with enhanced performance in sieving, flux, and hemocompatibility. Journal of Membrane Science 2022;657:120680. [DOI: 10.1016/j.memsci.2022.120680] [Reference Citation Analysis]
51 Said N, Abidin MNZ, Hasbullah H, Ismail AF, Goh PS, Othman MHD, Abdullah MS, Ng BC, Kadir SHSA, Kamal F. Iron oxide nanoparticles improved biocompatibility and removal of middle molecule uremic toxin of polysulfone hollow fiber membranes. J Appl Polym Sci 2019;136:48234. [DOI: 10.1002/app.48234] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
52 Azhar O, Jahan Z, Sher F, Niazi MBK, Kakar SJ, Shahid M. Cellulose acetate-polyvinyl alcohol blend hemodialysis membranes integrated with dialysis performance and high biocompatibility. Mater Sci Eng C Mater Biol Appl 2021;126:112127. [PMID: 34082944 DOI: 10.1016/j.msec.2021.112127] [Reference Citation Analysis]
53 Guo B, Fan R, Shen S, Xue Y, Zhu Z, Xu RX. A photo-responsive membrane for tailored drug delivery with spatially and temporally controlled release. J Mater Chem B 2021;9:8615-25. [PMID: 34569590 DOI: 10.1039/d1tb01690c] [Reference Citation Analysis]
54 Zhang T, Li P, Ding S, Wang X. High-performance TFNC membrane with adsorption assisted for removal of Pb(II) and other contaminants. J Hazard Mater 2022;424:127742. [PMID: 34799164 DOI: 10.1016/j.jhazmat.2021.127742] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
55 Eduok U, Abdelrasoul A, Shoker A, Doan H. Recent developments, current challenges and future perspectives on cellulosic hemodialysis membranes for highly efficient clearance of uremic toxins. Materials Today Communications 2021;27:102183. [DOI: 10.1016/j.mtcomm.2021.102183] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
56 Lakshmanan A, Gavali DS, Venkataprasanna K, Thapa R, Sarkar D. Low-Basis Weight Polyacrylonitrile/Polyvinylpyrrolidone Blend Nanofiber Membranes for Efficient Particulate Matter Capture. ACS Appl Polym Mater 2022;4:3971-81. [DOI: 10.1021/acsapm.2c00422] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Hoseinpour V, Noori L, Mahmoodpour S, Shariatinia Z. A review on surface modification methods of poly(arylsulfone) membranes for biomedical applications. J Biomater Sci Polym Ed 2021;32:906-65. [PMID: 33380262 DOI: 10.1080/09205063.2020.1870379] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
58 Li P, Cheng C, Shen K, Zhang T, Wang X, Hsiao BS. Enhancing Dehydration Performance of Isopropanol by Introducing Intermediate Layer into Sodium Alginate Nanofibrous Composite Pervaporation Membrane. Adv Fiber Mater 2019;1:137-51. [DOI: 10.1007/s42765-019-00005-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]