BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kozlowski MR. RPE cell senescence: a key contributor to age-related macular degeneration. Med Hypotheses 2012;78:505-10. [PMID: 22296808 DOI: 10.1016/j.mehy.2012.01.018] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 5.2] [Reference Citation Analysis]
Number Citing Articles
1 Demaria M, Campisi J. Matters of life and breath: A role for hypoxia in determining cell state. Aging (Albany NY) 2012;4:523-4. [PMID: 22915708 DOI: 10.18632/aging.100480] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
2 Pan J, Wang C, Yu Q, Zhang S, Li B, Hu J. Effect of Methyl-CpG binding domain protein 2 (MBD2) on AMD-like lesions in ApoE-deficient mice. J Huazhong Univ Sci Technol [Med Sci ] 2014;34:408-14. [DOI: 10.1007/s11596-014-1292-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
3 Dai Y, Zhao C, Liang X, Dai R, Dong F. Protectin DX, a double lipoxygenase product from DHA, inhibits the production of both inflammatory cytokines and reactive oxygen species in human retinal pigment epithelium cells: PDX inhibits ROS and inflammatory cytokines in RPE. Eur J Lipid Sci Technol 2015;117:1138-45. [DOI: 10.1002/ejlt.201400423] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
4 Sreekumar PG, Reddy ST, Hinton DR, Kannan R. Mechanisms of RPE senescence and potential role of αB crystallin peptide as a senolytic agent in experimental AMD. Exp Eye Res 2022;:108918. [PMID: 34986369 DOI: 10.1016/j.exer.2021.108918] [Reference Citation Analysis]
5 Chae JB, Jang H, Son C, Park CW, Choi H, Jin S, Lee HY, Lee H, Ryu JH, Kim N, Kim C, Chung H. Targeting senescent retinal pigment epithelial cells facilitates retinal regeneration in mouse models of age-related macular degeneration. Geroscience 2021;43:2809-33. [PMID: 34601706 DOI: 10.1007/s11357-021-00457-4] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Limoli PG, Vingolo EM, Morales MU, Nebbioso M, Limoli C. Preliminary study on electrophysiological changes after cellular autograft in age-related macular degeneration. Medicine (Baltimore) 2014;93:e355. [PMID: 25546695 DOI: 10.1097/MD.0000000000000355] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
7 Ni T, Yang W, Xing Y. Protective effects of delphinidin against H2O2-induced oxidative injuries in human retinal pigment epithelial cells. Biosci Rep 2019;39:BSR20190689. [PMID: 31345961 DOI: 10.1042/BSR20190689] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 3.3] [Reference Citation Analysis]
8 Mehta S. Age-Related Macular Degeneration. Prim Care 2015;42:377-91. [PMID: 26319344 DOI: 10.1016/j.pop.2015.05.009] [Cited by in Crossref: 50] [Cited by in F6Publishing: 45] [Article Influence: 8.3] [Reference Citation Analysis]
9 Minasyan L, Sreekumar PG, Hinton DR, Kannan R. Protective Mechanisms of the Mitochondrial-Derived Peptide Humanin in Oxidative and Endoplasmic Reticulum Stress in RPE Cells. Oxid Med Cell Longev 2017;2017:1675230. [PMID: 28814984 DOI: 10.1155/2017/1675230] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 4.6] [Reference Citation Analysis]
10 Jadeja RN, Powell FL, Jones MA, Fuller J, Joseph E, Thounaojam MC, Bartoli M, Martin PM. Loss of NAMPT in aging retinal pigment epithelium reduces NAD+ availability and promotes cellular senescence. Aging (Albany NY) 2018;10:1306-23. [PMID: 29905535 DOI: 10.18632/aging.101469] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 5.7] [Reference Citation Analysis]
11 Golestaneh N, Chu Y, Xiao YY, Stoleru GL, Theos AC. Dysfunctional autophagy in RPE, a contributing factor in age-related macular degeneration. Cell Death Dis 2017;8:e2537. [PMID: 28055007 DOI: 10.1038/cddis.2016.453] [Cited by in Crossref: 127] [Cited by in F6Publishing: 130] [Article Influence: 25.4] [Reference Citation Analysis]
12 Hyttinen JMT, Viiri J, Kaarniranta K, Błasiak J. Mitochondrial quality control in AMD: does mitophagy play a pivotal role? Cell Mol Life Sci 2018;75:2991-3008. [DOI: 10.1007/s00018-018-2843-7] [Cited by in Crossref: 43] [Cited by in F6Publishing: 38] [Article Influence: 10.8] [Reference Citation Analysis]
13 Cheng YS, Linetsky M, Gu X, Ayyash N, Gardella A, Salomon RG. Light-induced generation and toxicity of docosahexaenoate-derived oxidation products in retinal pigmented epithelial cells. Exp Eye Res 2019;181:325-45. [PMID: 30296412 DOI: 10.1016/j.exer.2018.09.012] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
14 Marazita MC, Dugour A, Marquioni-Ramella MD, Figueroa JM, Suburo AM. Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: Implications for Age-related Macular Degeneration. Redox Biol 2016;7:78-87. [PMID: 26654980 DOI: 10.1016/j.redox.2015.11.011] [Cited by in Crossref: 95] [Cited by in F6Publishing: 93] [Article Influence: 13.6] [Reference Citation Analysis]
15 Blasiak J, Koskela A, Pawlowska E, Liukkonen M, Ruuth J, Toropainen E, Hyttinen JMT, Viiri J, Eriksson JE, Xu H, Chen M, Felszeghy S, Kaarniranta K. Epithelial-Mesenchymal Transition and Senescence in the Retinal Pigment Epithelium of NFE2L2/PGC-1α Double Knock-Out Mice. Int J Mol Sci 2021;22:1684. [PMID: 33567500 DOI: 10.3390/ijms22041684] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Macchioni L, Chiasserini D, Mezzasoma L, Davidescu M, Orvietani PL, Fettucciari K, Salviati L, Cellini B, Bellezza I. Crosstalk between Long-Term Sublethal Oxidative Stress and Detrimental Inflammation as Potential Drivers for Age-Related Retinal Degeneration. Antioxidants (Basel) 2020;10:E25. [PMID: 33383836 DOI: 10.3390/antiox10010025] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Shu DY, Butcher E, Saint-Geniez M. EMT and EndMT: Emerging Roles in Age-Related Macular Degeneration. Int J Mol Sci 2020;21:E4271. [PMID: 32560057 DOI: 10.3390/ijms21124271] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
18 Cheng SY, Cipi J, Ma S, Hafler BP, Kanadia RN, Brush RS, Agbaga MP, Punzo C. Altered photoreceptor metabolism in mouse causes late stage age-related macular degeneration-like pathologies. Proc Natl Acad Sci U S A 2020;117:13094-104. [PMID: 32434914 DOI: 10.1073/pnas.2000339117] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 10.5] [Reference Citation Analysis]
19 Blasiak J, Piechota M, Pawlowska E, Szatkowska M, Sikora E, Kaarniranta K. Cellular Senescence in Age-Related Macular Degeneration: Can Autophagy and DNA Damage Response Play a Role? Oxid Med Cell Longev 2017;2017:5293258. [PMID: 29225722 DOI: 10.1155/2017/5293258] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 7.8] [Reference Citation Analysis]
20 Blasiak J. Senescence in the pathogenesis of age-related macular degeneration. Cell Mol Life Sci 2020;77:789-805. [PMID: 31897543 DOI: 10.1007/s00018-019-03420-x] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 15.5] [Reference Citation Analysis]
21 Yang C, Shani S, Tahiri H, Ortiz C, Gu M, Lavoie JC, Croteau S, Hardy P. Extracellular microparticles exacerbate oxidative damage to retinal pigment epithelial cells. Exp Cell Res 2020;390:111957. [PMID: 32173468 DOI: 10.1016/j.yexcr.2020.111957] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
22 Naylor RM, Baker DJ, van Deursen JM. Senescent cells: a novel therapeutic target for aging and age-related diseases. Clin Pharmacol Ther 2013;93:105-16. [PMID: 23212104 DOI: 10.1038/clpt.2012.193] [Cited by in Crossref: 167] [Cited by in F6Publishing: 150] [Article Influence: 16.7] [Reference Citation Analysis]
23 Chen DD, Peng X, Wang Y, Jiang M, Xue M, Shang G, Liu X, Jia X, Liu B, Lu Y, Mu H, Zhang F, Hu Y. HSP90 acts as a senomorphic target in senescent retinal pigmental epithelial cells. Aging (Albany NY) 2021;13:21547-70. [PMID: 34495872 DOI: 10.18632/aging.203496] [Reference Citation Analysis]
24 Bellezza I. Oxidative Stress in Age-Related Macular Degeneration: Nrf2 as Therapeutic Target. Front Pharmacol 2018;9:1280. [PMID: 30455645 DOI: 10.3389/fphar.2018.01280] [Cited by in Crossref: 59] [Cited by in F6Publishing: 54] [Article Influence: 14.8] [Reference Citation Analysis]
25 Fuhrmann S, Zou C, Levine EM. Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp Eye Res 2014;123:141-50. [PMID: 24060344 DOI: 10.1016/j.exer.2013.09.003] [Cited by in Crossref: 116] [Cited by in F6Publishing: 112] [Article Influence: 12.9] [Reference Citation Analysis]
26 Sreekumar PG, Ishikawa K, Spee C, Mehta HH, Wan J, Yen K, Cohen P, Kannan R, Hinton DR. The Mitochondrial-Derived Peptide Humanin Protects RPE Cells From Oxidative Stress, Senescence, and Mitochondrial Dysfunction. Invest Ophthalmol Vis Sci 2016;57:1238-53. [PMID: 26990160 DOI: 10.1167/iovs.15-17053] [Cited by in Crossref: 80] [Cited by in F6Publishing: 82] [Article Influence: 13.3] [Reference Citation Analysis]
27 Xie K, Jin B, Zhu H, Zhou P, Du L, Jin X. Ferulic acid (FA) protects human retinal pigment epithelial cells from H2 O2 -induced oxidative injuries. J Cell Mol Med 2020;24:13454-62. [PMID: 33079459 DOI: 10.1111/jcmm.15970] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
28 Al Gwairi O, Thach L, Zheng W, Osman N, Little PJ. Cellular and Molecular Pathology of Age-Related Macular Degeneration: Potential Role for Proteoglycans. J Ophthalmol 2016;2016:2913612. [PMID: 27563459 DOI: 10.1155/2016/2913612] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
29 Limoli PG, Limoli C, Vingolo EM, Scalinci SZ, Nebbioso M. Cell surgery and growth factors in dry age-related macular degeneration: visual prognosis and morphological study. Oncotarget 2016;7:46913-23. [PMID: 27391437 DOI: 10.18632/oncotarget.10442] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
30 Schottler J, Randoll N, Lucius R, Caliebe A, Roider J, Klettner A. Long-term treatment with anti-VEGF does not induce cell aging in primary retinal pigment epithelium. Experimental Eye Research 2018;171:1-11. [DOI: 10.1016/j.exer.2018.03.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
31 Blasiak J, Szczepanska J, Fila M, Pawlowska E, Kaarniranta K. Potential of Telomerase in Age-Related Macular Degeneration-Involvement of Senescence, DNA Damage Response and Autophagy and a Key Role of PGC-1α. Int J Mol Sci 2021;22:7194. [PMID: 34281248 DOI: 10.3390/ijms22137194] [Reference Citation Analysis]
32 Kokkinaki M, Abu-Asab M, Gunawardena N, Ahern G, Javidnia M, Young J, Golestaneh N. Klotho regulates retinal pigment epithelial functions and protects against oxidative stress. J Neurosci 2013;33:16346-59. [PMID: 24107965 DOI: 10.1523/JNEUROSCI.0402-13.2013] [Cited by in Crossref: 38] [Cited by in F6Publishing: 25] [Article Influence: 4.2] [Reference Citation Analysis]
33 Kaarniranta K, Kajdanek J, Morawiec J, Pawlowska E, Blasiak J. PGC-1α Protects RPE Cells of the Aging Retina against Oxidative Stress-Induced Degeneration through the Regulation of Senescence and Mitochondrial Quality Control. The Significance for AMD Pathogenesis. Int J Mol Sci 2018;19:E2317. [PMID: 30087287 DOI: 10.3390/ijms19082317] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 11.3] [Reference Citation Analysis]
34 Kaarniranta K, Tokarz P, Koskela A, Paterno J, Blasiak J. Autophagy regulates death of retinal pigment epithelium cells in age-related macular degeneration. Cell Biol Toxicol 2017;33:113-28. [PMID: 27900566 DOI: 10.1007/s10565-016-9371-8] [Cited by in Crossref: 86] [Cited by in F6Publishing: 79] [Article Influence: 14.3] [Reference Citation Analysis]
35 Govindaraju VK, Bodas M, Vij N. Cigarette smoke induced autophagy-impairment regulates AMD pathogenesis mechanisms in ARPE-19 cells. PLoS One 2017;12:e0182420. [PMID: 28767736 DOI: 10.1371/journal.pone.0182420] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
36 Pinelli R, Biagioni F, Limanaqi F, Bertelli M, Scaffidi E, Polzella M, Busceti CL, Fornai F. A Re-Appraisal of Pathogenic Mechanisms Bridging Wet and Dry Age-Related Macular Degeneration Leads to Reconsider a Role for Phytochemicals. Int J Mol Sci 2020;21:E5563. [PMID: 32756487 DOI: 10.3390/ijms21155563] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
37 Crespo-Garcia S, Tsuruda PR, Dejda A, Ryan RD, Fournier F, Chaney SY, Pilon F, Dogan T, Cagnone G, Patel P, Buscarlet M, Dasgupta S, Girouard G, Rao SR, Wilson AM, O'Brien R, Juneau R, Guber V, Dubrac A, Beausejour C, Armstrong S, Mallette FA, Yohn CB, Joyal JS, Marquess D, Beltran PJ, Sapieha P. Pathological angiogenesis in retinopathy engages cellular senescence and is amenable to therapeutic elimination via BCL-xL inhibition. Cell Metab 2021;33:818-832.e7. [PMID: 33548171 DOI: 10.1016/j.cmet.2021.01.011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
38 Sreekumar PG, Kannan R. Mechanisms of protection of retinal pigment epithelial cells from oxidant injury by humanin and other mitochondrial-derived peptides: Implications for age-related macular degeneration. Redox Biol 2020;37:101663. [PMID: 32768357 DOI: 10.1016/j.redox.2020.101663] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
39 de Mera-Rodríguez JA, Álvarez-Hernán G, Gañán Y, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Is Senescence-Associated β-Galactosidase a Reliable in vivo Marker of Cellular Senescence During Embryonic Development? Front Cell Dev Biol 2021;9:623175. [PMID: 33585480 DOI: 10.3389/fcell.2021.623175] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
40 Zhang Q, Presswalla F, Calton M, Charniga C, Stern J, Temple S, Vollrath D, Zacks DN, Ali RR, Thompson DA, Miller JML. Highly Differentiated Human Fetal RPE Cultures Are Resistant to the Accumulation and Toxicity of Lipofuscin-Like Material. Invest Ophthalmol Vis Sci 2019;60:3468-79. [PMID: 31408109 DOI: 10.1167/iovs.19-26690] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
41 Zhang Q, Presswalla F, Ali RR, Zacks DN, Thompson DA, Miller JML. Pharmacologic activation of autophagy without direct mTOR inhibition as a therapeutic strategy for treating dry macular degeneration. Aging (Albany NY) 2021;13:10866-90. [PMID: 33872219 DOI: 10.18632/aging.202974] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
42 Poulsen RC, Watts AC, Murphy RJ, Snelling SJ, Carr AJ, Hulley PA. Glucocorticoids induce senescence in primary human tenocytes by inhibition of sirtuin 1 and activation of the p53/p21 pathway: in vivo and in vitro evidence. Ann Rheum Dis 2014;73:1405-13. [PMID: 23727633 DOI: 10.1136/annrheumdis-2012-203146] [Cited by in Crossref: 56] [Cited by in F6Publishing: 49] [Article Influence: 6.2] [Reference Citation Analysis]
43 Rivera JC, Dabouz R, Noueihed B, Omri S, Tahiri H, Chemtob S. Ischemic Retinopathies: Oxidative Stress and Inflammation. Oxid Med Cell Longev. 2017;2017:3940241. [PMID: 29410732 DOI: 10.1155/2017/3940241] [Cited by in Crossref: 50] [Cited by in F6Publishing: 53] [Article Influence: 10.0] [Reference Citation Analysis]
44 Simão S, Santos DF, Silva GA. Aliskiren inhibits the renin-angiotensin system in retinal pigment epithelium cells. European Journal of Pharmaceutical Sciences 2016;92:22-7. [DOI: 10.1016/j.ejps.2016.06.019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
45 Li Y, Liu X, Zhou T, Kelley MR, Edwards P, Gao H, Qiao X. Inhibition of APE1/Ref-1 redox activity rescues human retinal pigment epithelial cells from oxidative stress and reduces choroidal neovascularization. Redox Biol 2014;2:485-94. [PMID: 24624338 DOI: 10.1016/j.redox.2014.01.023] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 3.6] [Reference Citation Analysis]
46 Lee KS, Lin S, Copland DA, Dick AD, Liu J. Cellular senescence in the aging retina and developments of senotherapies for age-related macular degeneration. J Neuroinflammation 2021;18:32. [PMID: 33482879 DOI: 10.1186/s12974-021-02088-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
47 Kirkland JL, Tchkonia T. Clinical strategies and animal models for developing senolytic agents. Exp Gerontol 2015;68:19-25. [PMID: 25446976 DOI: 10.1016/j.exger.2014.10.012] [Cited by in Crossref: 91] [Cited by in F6Publishing: 82] [Article Influence: 11.4] [Reference Citation Analysis]
48 Volz C, Pauly D. Antibody therapies and their challenges in the treatment of age-related macular degeneration. European Journal of Pharmaceutics and Biopharmaceutics 2015;95:158-72. [DOI: 10.1016/j.ejpb.2015.02.020] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 4.7] [Reference Citation Analysis]
49 Limoli PG, Vingolo EM, Limoli C, Scalinci SZ, Nebbioso M. Regenerative Therapy by Suprachoroidal Cell Autograft in Dry Age-related Macular Degeneration: Preliminary In Vivo Report. J Vis Exp. 2018;. [PMID: 29553543 DOI: 10.3791/56469] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
50 Miller JW, Bagheri S, Vavvas DG. Advances in Age-related Macular Degeneration Understanding and Therapy. US Ophthalmic Rev 2017;10:119-30. [PMID: 29142592 DOI: 10.17925/USOR.2017.10.02.119] [Cited by in Crossref: 35] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
51 Li S, Gaur U, Chong CM, Lin S, Fang J, Zeng Z, Wang H, Zheng W. Berberine Protects Human Retinal Pigment Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Damage through Activation of AMPK. Int J Mol Sci 2018;19:E1736. [PMID: 29895743 DOI: 10.3390/ijms19061736] [Cited by in Crossref: 13] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
52 Matsunaga D, Sreekumar PG, Ishikawa K, Terasaki H, Barron E, Cohen P, Kannan R, Hinton DR. Humanin Protects RPE Cells from Endoplasmic Reticulum Stress-Induced Apoptosis by Upregulation of Mitochondrial Glutathione. PLoS One 2016;11:e0165150. [PMID: 27783653 DOI: 10.1371/journal.pone.0165150] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 4.2] [Reference Citation Analysis]
53 Kozlowski MR. Senescent retinal pigment epithelial cells are more sensitive to vascular endothelial growth factor: implications for "wet" age-related macular degeneration. J Ocul Pharmacol Ther 2015;31:87-92. [PMID: 25453983 DOI: 10.1089/jop.2014.0071] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
54 Green YA, Ben-Yaakov K, Adir O, Pollack A, Dvashi Z. TAK1 is involved in the autophagy process in retinal pigment epithelial cells. Biochem Cell Biol 2016;94:188-96. [PMID: 26928052 DOI: 10.1139/bcb-2015-0120] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
55 Chae JB, Rho CR, Shin JA, Lyu J, Kang S. Effects of Ranibizumab, Bevacizumab, and Aflibercept on Senescent Retinal Pigment Epithelial Cells. Korean J Ophthalmol 2018;32:328-38. [PMID: 30091312 DOI: 10.3341/kjo.2017.0079] [Reference Citation Analysis]