BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Giverso C, Scianna M, Grillo A. Growing avascular tumours as elasto-plastic bodies by the theory of evolving natural configurations. Mechanics Research Communications 2015;68:31-9. [DOI: 10.1016/j.mechrescom.2015.04.004] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 3.1] [Reference Citation Analysis]
Number Citing Articles
1 Grillo A, Stefano SD, Ramírez‐torres A, Loverre M. A study of growth and remodeling in isotropic tissues, based on the Anand‐Aslan‐Chester theory of strain‐gradient plasticity. GAMM‐Mitteilungen 2019;42. [DOI: 10.1002/gamm.201900015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
2 Ramírez-torres A, Di Stefano S, Grillo A. Influence of non-local diffusion in avascular tumour growth. Mathematics and Mechanics of Solids 2021;26:1264-93. [DOI: 10.1177/1081286520975086] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
3 Evje S. An integrative multiphase model for cancer cell migration under influence of physical cues from the microenvironment. Chemical Engineering Science 2017;165:240-59. [DOI: 10.1016/j.ces.2017.02.045] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
4 Mascheroni P, Carfagna M, Grillo A, Boso D, Schrefler B. An avascular tumor growth model based on porous media mechanics and evolving natural states. Mathematics and Mechanics of Solids 2017;23:686-712. [DOI: 10.1177/1081286517711217] [Cited by in Crossref: 26] [Cited by in F6Publishing: 11] [Article Influence: 5.2] [Reference Citation Analysis]
5 Dey B, Sekhar GPR. Hydrodynamics and convection enhanced macromolecular fluid transport in soft biological tissues: Application to solid tumor. J Theor Biol 2016;395:62-86. [PMID: 26851443 DOI: 10.1016/j.jtbi.2016.01.031] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
6 Grillo A, Prohl R, Wittum G. A poroplastic model of structural reorganisation in porous media of biomechanical interest. Continuum Mech Thermodyn 2016;28:579-601. [DOI: 10.1007/s00161-015-0465-y] [Cited by in Crossref: 22] [Cited by in F6Publishing: 6] [Article Influence: 3.1] [Reference Citation Analysis]
7 Urdal J, Waldeland JO, Evje S. Enhanced cancer cell invasion caused by fibroblasts when fluid flow is present. Biomech Model Mechanobiol 2019;18:1047-78. [DOI: 10.1007/s10237-019-01128-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
8 Deville M, Natalini R, Poignard C. A Continuum Mechanics Model of Enzyme-Based Tissue Degradation in Cancer Therapies. Bull Math Biol 2018;80:3184-226. [DOI: 10.1007/s11538-018-0515-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
9 Giverso C, Arduino A, Preziosi L. How Nucleus Mechanics and ECM Microstructure Influence the Invasion of Single Cells and Multicellular Aggregates. Bull Math Biol 2018;80:1017-45. [PMID: 28409417 DOI: 10.1007/s11538-017-0262-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
10 Waldeland JO, Gaustad JV, Rofstad EK, Evje S. In silico investigations of intratumoral heterogeneous interstitial fluid pressure. J Theor Biol 2021;526:110787. [PMID: 34087266 DOI: 10.1016/j.jtbi.2021.110787] [Reference Citation Analysis]
11 Giverso C, Di Stefano S, Grillo A, Preziosi L. A three dimensional model of multicellular aggregate compression. Soft Matter 2019;15:10005-19. [PMID: 31761911 DOI: 10.1039/c9sm01628g] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
12 Di Stefano S, Ramírez-torres A, Penta R, Grillo A. Self-influenced growth through evolving material inhomogeneities. International Journal of Non-Linear Mechanics 2018;106:174-87. [DOI: 10.1016/j.ijnonlinmec.2018.08.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
13 Di Stefano S, Giammarini A, Giverso C, Grillo A. An elasto-plastic biphasic model of the compression of multicellular aggregates: the influence of fluid on stress and deformation. Z Angew Math Phys 2022;73. [DOI: 10.1007/s00033-022-01692-1] [Reference Citation Analysis]
14 Mascheroni P, Stigliano C, Carfagna M, Boso DP, Preziosi L, Decuzzi P, Schrefler BA. Predicting the growth of glioblastoma multiforme spheroids using a multiphase porous media model. Biomech Model Mechanobiol 2016;15:1215-28. [PMID: 26746883 DOI: 10.1007/s10237-015-0755-0] [Cited by in Crossref: 42] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
15 Arduino A, Preziosi L. A multiphase model of tumour segregation in situ by a heterogeneous extracellular matrix. International Journal of Non-Linear Mechanics 2015;75:22-30. [DOI: 10.1016/j.ijnonlinmec.2015.04.007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 1.6] [Reference Citation Analysis]
16 Lucci G, Agosti A, Ciarletta P, Giverso C. Coupling solid and fluid stresses with brain tumour growth and white matter tract deformations in a neuroimaging-informed model. Biomech Model Mechanobiol 2022. [PMID: 35908096 DOI: 10.1007/s10237-022-01602-4] [Reference Citation Analysis]
17 Logvenkov SA, Stein AA. A Mathematical Model of Spatial Self-Organization in a Mechanically Active Cellular Medium. BIOPHYSICS 2017;62:926-34. [DOI: 10.1134/s0006350917060136] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
18 Logvenkov SA. Mathematical Model of a Biological Medium with Account for the Active Interactions and Relative Displacements of Cells That Form It. Fluid Dyn 2018;53:583-95. [DOI: 10.1134/s0015462818050129] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]