BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kamel S, Weiß M, Klare HF, Mikhailopulo IA, Neubauer P, Wagner A. Chemo-enzymatic synthesis of α-d-pentofuranose-1-phosphates using thermostable pyrimidine nucleoside phosphorylases. Molecular Catalysis 2018;458:52-9. [DOI: 10.1016/j.mcat.2018.07.028] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 3.8] [Reference Citation Analysis]
Number Citing Articles
1 Wohlgemuth R. The Power of Biocatalysts for Highly Selective and Efficient Phosphorylation Reactions. Catalysts 2022;12:1436. [DOI: 10.3390/catal12111436] [Reference Citation Analysis]
2 Cruz G, Saiz LP, Bilal M, Eltoukhy L, Loderer C, Fernández-lucas J. Magnetic Multi-Enzymatic System for Cladribine Manufacturing. IJMS 2022;23:13634. [DOI: 10.3390/ijms232113634] [Reference Citation Analysis]
3 Cruz G, Acosta J, Mancheño JM, Del Arco J, Fernández-lucas J. Rational Design of a Thermostable 2′-Deoxyribosyltransferase for Nelarabine Production by Prediction of Disulfide Bond Engineering Sites. IJMS 2022;23:11806. [DOI: 10.3390/ijms231911806] [Reference Citation Analysis]
4 Cosgrove SC, Miller GJ. Advances in biocatalytic and chemoenzymatic synthesis of nucleoside analogues. Expert Opin Drug Discov 2022. [PMID: 35133222 DOI: 10.1080/17460441.2022.2039620] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
5 Kaspar F, Wolff DS, Neubauer P, Kurreck A, Arcus VL. pH-Independent Heat Capacity Changes during Phosphorolysis Catalyzed by the Pyrimidine Nucleoside Phosphorylase from Geobacillus thermoglucosidasius. Biochemistry 2021;60:1573-7. [PMID: 33955225 DOI: 10.1021/acs.biochem.1c00156] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Kamel S, Thiele I, Neubauer P, Wagner A. Thermophilic nucleoside phosphorylases: Their properties, characteristics and applications. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2020;1868:140304. [DOI: 10.1016/j.bbapap.2019.140304] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
7 Kulikova IV, Drenichev MS, Solyev PN, Alexeev CS, Mikhailov SN. Enzymatic Synthesis of 2-Deoxyribose 1-Phosphate and Ribose 1 Phosphate and Subsequent Preparation of Nucleosides: Enzymatic Synthesis of 2-Deoxyribose 1-Phosphate and Ribose 1 Phosphate and Subsequent Preparation of Nucleosides. Eur J Org Chem 2019;2019:6999-7004. [DOI: 10.1002/ejoc.201901454] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
8 Giessmann RT, Krausch N, Kaspar F, Cruz Bournazou MN, Wagner A, Neubauer P, Gimpel M. Dynamic Modelling of Phosphorolytic Cleavage Catalyzed by Pyrimidine-Nucleoside Phosphorylase. Processes 2019;7:380. [DOI: 10.3390/pr7060380] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
9 Zhou X, Yan W, Zhang C, Yang Z, Neubauer P, Mikhailopulo IA, Huang Z. Biocatalytic synthesis of seleno-, thio- and chloro-nucleobase modified nucleosides by thermostable nucleoside phosphorylases. Catalysis Communications 2019;121:32-7. [DOI: 10.1016/j.catcom.2018.12.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
10 Kamel S, Yehia H, Neubauer P, Wagner A. Enzymatic Synthesis of Nucleoside Analogues by Nucleoside Phosphorylases. Enzymatic and Chemical Synthesis of Nucleic Acid Derivatives 2018. [DOI: 10.1002/9783527812103.ch1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]