BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Amusat SO, Kebede TG, Dube S, Nindi MM. Ball-milling synthesis of biochar and biochar–based nanocomposites and prospects for removal of emerging contaminants: A review. Journal of Water Process Engineering 2021;41:101993. [DOI: 10.1016/j.jwpe.2021.101993] [Cited by in Crossref: 33] [Cited by in F6Publishing: 40] [Article Influence: 16.5] [Reference Citation Analysis]
Number Citing Articles
1 Setyawan HY, Safira L, Mulyarto AR, Wijana S, Pranowo D. The effect of pyrolysis temperature and ball-milling duration on characteristics of micro bio-char derived from oil palm empty fruit bunches. Sustainable Environment 2023;9. [DOI: 10.1080/27658511.2023.2173041] [Reference Citation Analysis]
2 Fahad SA, Nawab MS, Shaida MA, Verma S, Khan MU, Siddiqui V, Naushad M, Saleem L, Farooqi IH. Carbon based adsorbents as efficient tools for the removal of U(VI) from aqueous medium: A state of the art review. Journal of Water Process Engineering 2023;52:103458. [DOI: 10.1016/j.jwpe.2022.103458] [Reference Citation Analysis]
3 Nguyen TB, Nguyen TK, Chen WH, Chen CW, Bui XT, Patel AK, Dong CD. Hydrothermal and pyrolytic conversion of sunflower seed husk into novel porous biochar for efficient adsorption of tetracycline. Bioresour Technol 2023;373:128711. [PMID: 36773815 DOI: 10.1016/j.biortech.2023.128711] [Reference Citation Analysis]
4 Li T, Teng Y, Li X, Luo S, Xiu Z, Wang H, Sun H. Sulfidated microscale zero-valent iron/reduced graphene oxide composite (S-mZVI/rGO) for enhanced degradation of trichloroethylene: The role of hydrogen spillover. J Hazard Mater 2023;446:130657. [PMID: 36580785 DOI: 10.1016/j.jhazmat.2022.130657] [Reference Citation Analysis]
5 Ahmad A, Zahra M, Fakhar e Alam, Ali S, Pervaiz M, Saeed Z, Younas U, Mushtaq M, Rajendran S, Luque R. A sustainable approach for the multi-dimensional exploitation of mixed biochar based nano-composites. Fuel 2023;336:126930. [DOI: 10.1016/j.fuel.2022.126930] [Reference Citation Analysis]
6 Tang J, Ma Y, Zeng C, Yang L, Cui S, Zhi S, Yang F, Ding Y, Zhang K, Zhang Z. Fe-Al bimetallic oxides functionalized-biochar via ball milling for enhanced adsorption of tetracycline in water. Bioresour Technol 2023;369:128385. [PMID: 36423760 DOI: 10.1016/j.biortech.2022.128385] [Reference Citation Analysis]
7 Liu T, Xiong Z, Ni P, Ma Z, Tan Y, Li Z, Deng S, Li Y, Yang Q, Zhang H. Review on adsorbents in elemental mercury removal in coal combustion flue gas, smelting flue gas and natural gas. Chemical Engineering Journal 2023;454:140095. [DOI: 10.1016/j.cej.2022.140095] [Reference Citation Analysis]
8 Koyuncu F, Güzel F, Teymur YA. Red pepper (Capsicum annuum L.) industrial processing pulp-derived nanoporous carbon sorbent for the removal of methylene blue, diclofenac, and copper(II). Biomass Conv Bioref 2023. [DOI: 10.1007/s13399-022-03677-6] [Reference Citation Analysis]
9 Sonowal S, Koch N, Sarma H, Prasad K, Prasad R. A Review on Magnetic Nanobiochar with Their Use in Environmental Remediation and High-Value Applications. Journal of Nanomaterials 2023;2023:1-14. [DOI: 10.1155/2023/4881952] [Reference Citation Analysis]
10 Huang Z, Fang X, Wang S, Zhou N, Fan S. Effects of KMnO4 pre- and post-treatments on biochar properties and its adsorption of tetracycline. Journal of Molecular Liquids 2023. [DOI: 10.1016/j.molliq.2023.121257] [Reference Citation Analysis]
11 Chen C, Yang F, Beesley L, Trakal L, Ma Y, Sun Y, Zhang Z, Ding Y. Removal of cadmium in aqueous solutions using a ball milling-assisted one-pot pyrolyzed iron-biochar composite derived from cotton husk. Environ Sci Pollut Res Int 2023;30:12571-83. [PMID: 36112289 DOI: 10.1007/s11356-022-22828-w] [Reference Citation Analysis]
12 Chauhan S, Shafi T, Dubey BK, Chowdhury S. Biochar-mediated removal of pharmaceutical compounds from aqueous matrices via adsorption. Waste Dispos Sustain Energy 2022;:1-26. [PMID: 36568572 DOI: 10.1007/s42768-022-00118-y] [Reference Citation Analysis]
13 Thakur A, Kumar R, Sahoo PK. Uranium and Fluoride Removal from Aqueous Solution Using Biochar: A Critical Review for Understanding the Role of Feedstock Types, Mechanisms, and Modification Methods. Water 2022;14:4063. [DOI: 10.3390/w14244063] [Reference Citation Analysis]
14 Liu Z, Xu Z, Xu L, Buyong F, Chay TC, Li Z, Cai Y, Hu B, Zhu Y, Wang X. Modified biochar: synthesis and mechanism for removal of environmental heavy metals. carbon res 2022;1. [DOI: 10.1007/s44246-022-00007-3] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 14.0] [Reference Citation Analysis]
15 Murtaza G, Ahmed Z, Dai D, Iqbal R, Bawazeer S, Usman M, Rizwan M, Iqbal J, Akram MI, Althubiani AS, Tariq A, Ali I. A review of mechanism and adsorption capacities of biochar-based engineered composites for removing aquatic pollutants from contaminated water. Front Environ Sci 2022;10. [DOI: 10.3389/fenvs.2022.1035865] [Reference Citation Analysis]
16 Zhang J, Xie L, Ma Q, Liu Y, Li J, Li Z, Li S, Zhang T. Ball milling enhanced Cr(VI) removal of zero-valent iron biochar composites: Functional groups response and dominant reduction species. Chemosphere 2022. [DOI: 10.1016/j.chemosphere.2022.137174] [Reference Citation Analysis]
17 Qiu B, Shao Q, Shi J, Yang C, Chu H. Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Separation and Purification Technology 2022;300:121925. [DOI: 10.1016/j.seppur.2022.121925] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Qiu Y, Hou Y, Zhang S, Jin L, Zhou J, Chen J. Study on the preparation and properties of CaCO3 ultrafine powder derived from waste eggshell. Environmental Technology 2022. [DOI: 10.1080/09593330.2022.2141664] [Reference Citation Analysis]
19 Kumar A, Bhattacharya T, Shaikh WA, Chakraborty S, Sarkar D, Biswas JK. Biochar Modification Methods for Augmenting Sorption of Contaminants. Curr Pollution Rep. [DOI: 10.1007/s40726-022-00238-3] [Reference Citation Analysis]
20 Wei T, Meng Y, Ai D, Zhu C, Wang B. Ball milling Fe3O4@biochar cathode coupling persulfate for the removal of sulfadiazine from water: effectiveness and mechanisms. Journal of Environmental Chemical Engineering 2022. [DOI: 10.1016/j.jece.2022.108879] [Reference Citation Analysis]
21 Peng H, Wang H, Wang L, Huang C, Zheng X, Wen J. Efficient adsorption-photocatalytic removal of tetracycline hydrochloride over La2S3-modified biochar with S,N-codoping. Journal of Water Process Engineering 2022;49:103038. [DOI: 10.1016/j.jwpe.2022.103038] [Reference Citation Analysis]
22 Venkatesh R, Karthi N, Kawin N, Prakash T, Kannan CR, Karthigairajan M, Bobe K, Barik D. Synthesis and Adsorbent Performance of Modified Biochar with Ag/MgO Nanocomposites for Heat Storage Application. Adsorption Science & Technology 2022;2022:1-14. [DOI: 10.1155/2022/7423102] [Reference Citation Analysis]
23 Kuzniewski S. EPA's detection methods, the drinking water treatability database, and innovative technologies for PFAS remediation. Remediation Journal 2022;32:309-323. [DOI: 10.1002/rem.21730] [Reference Citation Analysis]
24 Amusat SO, Kebede TG, Nxumalo EN, Dube S, Nindi MM. Incorporating pristine biochar into metal-organic frameworks: Facile green synthesis, characterization, and wastewater remediation. Bioresource Technology Reports 2022;19:101160. [DOI: 10.1016/j.biteb.2022.101160] [Reference Citation Analysis]
25 Yu F, Pan J, Zhang X, Bai X, Ma J, Sun K. Adsorption of contaminants from aqueous solutions by modified biochar: a review. Environ Chem 2022;19:53-81. [DOI: 10.1071/en22014] [Reference Citation Analysis]
26 Gallego-ramírez C, Chica E, Rubio-clemente A. Coupling of Advanced Oxidation Technologies and Biochar for the Removal of Dyes in Water. Water 2022;14:2531. [DOI: 10.3390/w14162531] [Reference Citation Analysis]
27 Chen Y, Li L, Wen Q, Yang R, Zhao Y, Rao X, Li J, Xu S, Song H. Oxidative Magnetic Modification of Pristine Biochar Assisted by Ball-Milling for Removal of Methylene Blue and Tetracycline in Aqueous Solution. Sustainability 2022;14:9349. [DOI: 10.3390/su14159349] [Reference Citation Analysis]
28 Priyan V V, Narayanasamy S. Effective removal of pharmaceutical contaminants ibuprofen and sulfamethoxazole from water by Corn starch nanoparticles: An ecotoxicological assessment. Environ Toxicol Pharmacol 2022;94:103930. [PMID: 35835281 DOI: 10.1016/j.etap.2022.103930] [Reference Citation Analysis]
29 Ambika S, Kumar M, Pisharody L, Malhotra M, Kumar G, Sreedharan V, Singh L, Nidheesh P, Bhatnagar A. Modified biochar as a green adsorbent for removal of hexavalent chromium from various environmental matrices: Mechanisms, methods, and prospects. Chemical Engineering Journal 2022;439:135716. [DOI: 10.1016/j.cej.2022.135716] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 20.0] [Reference Citation Analysis]
30 Xu S, Li D, Guo H, Lu H, Qiu M, Yang J, Shen F. Solvent-Free Synthesis of MgO-Modified Biochars for Phosphorus Removal from Wastewater. IJERPH 2022;19:7770. [DOI: 10.3390/ijerph19137770] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Mun H, Ri C, Liu Q, Tang J. Characteristics of ball-milled PET plastic char for the adsorption of different types of aromatic organic pollutants. Environ Sci Pollut Res Int 2022. [PMID: 35680752 DOI: 10.1007/s11356-022-21143-8] [Reference Citation Analysis]
32 Chen Z, Wei W, Chen H, Ni B. Recent advances in waste-derived functional materials for wastewater remediation. Eco-Environment & Health 2022. [DOI: 10.1016/j.eehl.2022.05.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Hamadeen HM, Elkhatib EA. Nanostructured modified biochar for effective elimination of chlorpyrifos from wastewater: Enhancement, mechanisms and performance. Journal of Water Process Engineering 2022;47:102703. [DOI: 10.1016/j.jwpe.2022.102703] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
34 Karadeniz F, Güzel F. Adsorptive performance of Melia Azedarach fruit-derived biochar in removing methylene blue, diclofenac, and copper(II) from aqueous solution. Biomass Conv Bioref . [DOI: 10.1007/s13399-022-02864-9] [Reference Citation Analysis]
35 Lin T, Meng F, Zhang M, Liu Q. Effects of different low temperature pretreatments on properties of corn stover biochar for precursors of sulfonated solid acid catalysts. Bioresour Technol 2022;:127342. [PMID: 35605770 DOI: 10.1016/j.biortech.2022.127342] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
36 Song B, Cao X, Gao W, Aziz S, Gao S, Lam C, Lin R. Preparation of nano-biochar from conventional biorefineries for high-value applications. Renewable and Sustainable Energy Reviews 2022;157:112057. [DOI: 10.1016/j.rser.2021.112057] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
37 Liu C, Zhang H. Modified-biochar adsorbents (MBAs) for heavy-metal ions adsorption: A critical review. Journal of Environmental Chemical Engineering 2022;10:107393. [DOI: 10.1016/j.jece.2022.107393] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
38 Cao G, Qiao J, Ai J, Ning S, Sun H, Chen M, Zhao L, Zhang G, Lian F. Systematic Research on the Transport of Ball-Milled Biochar in Saturated Porous Media: Effect of Humic Acid, Ionic Strength, and Cation Types. Nanomaterials 2022;12:988. [DOI: 10.3390/nano12060988] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
39 Qiu M, Liu L, Ling Q, Cai Y, Yu S, Wang S, Fu D, Hu B, Wang X. Biochar for the removal of contaminants from soil and water: a review. Biochar 2022;4. [DOI: 10.1007/s42773-022-00146-1] [Cited by in Crossref: 79] [Cited by in F6Publishing: 95] [Article Influence: 79.0] [Reference Citation Analysis]
40 Zhang P, Bing X, Jiao L, Xiao H, Li B, Sun H. Amelioration effects of coastal saline-alkali soil by ball-milled red phosphorus-loaded biochar. Chemical Engineering Journal 2022;431:133904. [DOI: 10.1016/j.cej.2021.133904] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
41 Juela DM. Promising adsorptive materials derived from agricultural and industrial wastes for antibiotic removal: A comprehensive review. Separation and Purification Technology 2022;284:120286. [DOI: 10.1016/j.seppur.2021.120286] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
42 Matsagar BM, Wu KC. Agricultural waste-derived biochar for environmental management. Biochar in Agriculture for Achieving Sustainable Development Goals 2022. [DOI: 10.1016/b978-0-323-85343-9.00026-4] [Reference Citation Analysis]
43 Younis SA, Kim K. Recent Advances in Biochar-based Catalysts: Air Purification and Opportunities for Industrial Upscaling. JKSAE 2022;16:104-120. [DOI: 10.5572/ajae.2022.117] [Reference Citation Analysis]
44 Balasubramanian J, Lemere J, Khan SS, Agarwal NR. Plasmonic nanosensors and their spectroscopic applications—current trends and future perspectives. Molecular and Laser Spectroscopy 2022. [DOI: 10.1016/b978-0-323-91249-5.00001-6] [Reference Citation Analysis]
45 Azam MA, Mupit M. Carbon nanomaterial-based sensor: Synthesis and characterization. Carbon Nanomaterials-Based Sensors 2022. [DOI: 10.1016/b978-0-323-91174-0.00015-9] [Reference Citation Analysis]
46 Zhao M, Hu L, Dai L, Wang Z, He J, Wang Z, Chen J, Hrynsphan D, Tatsiana S. Bamboo charcoal powder-based polyurethane as packing material in biotrickling filter for simultaneous removal of n-hexane and dichloromethane. Bioresour Technol 2021;345:126427. [PMID: 34838976 DOI: 10.1016/j.biortech.2021.126427] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
47 Mo Z, Shi Q, Zeng H, Lu Z, Bi J, Zhang H, Rinklebe J, Lima EC, Rashid A, Shahab A. Efficient removal of Cd(II) from aqueous environment by potassium permanganate-modified eucalyptus biochar. Biomass Conv Bioref . [DOI: 10.1007/s13399-021-02079-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
48 Sun Y, Lyu H, Cheng Z, Wang Y, Tang J. Insight into the mechanisms of ball-milled biochar addition on soil tetracycline degradation enhancement: Physicochemical properties and microbial community structure. Chemosphere 2021;:132691. [PMID: 34755608 DOI: 10.1016/j.chemosphere.2021.132691] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
49 Song Z, Su X, Li P, Sun F, Dong W, Zhao Z, Wen Z, Liao R. Facial fabricated biocompatible homogeneous biocarriers involving biochar to enhance denitrification performance in an anoxic moving bed biofilm reactor. Bioresour Technol 2021;341:125866. [PMID: 34523551 DOI: 10.1016/j.biortech.2021.125866] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
50 Graber E. Mysteries and musings at the biochar/plant/stress/ growing media interface. Acta Hortic 2021. [DOI: 10.17660/actahortic.2021.1317.8] [Reference Citation Analysis]