BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Roshandel D, Eslani M, Baradaran-Rafii A, Cheung AY, Kurji K, Jabbehdari S, Maiz A, Jalali S, Djalilian AR, Holland EJ. Current and emerging therapies for corneal neovascularization. Ocul Surf 2018;16:398-414. [PMID: 29908870 DOI: 10.1016/j.jtos.2018.06.004] [Cited by in Crossref: 68] [Cited by in F6Publishing: 74] [Article Influence: 13.6] [Reference Citation Analysis]
Number Citing Articles
1 Cho WJ, Elbasiony E, Singh A, Mittal SK, Chauhan SK. Interleukin 36 gamma augments ocular angiogenesis by promoting the VEGF-VEGFR axis. Am J Pathol 2023:S0002-9440(23)00034-2. [PMID: 36740182 DOI: 10.1016/j.ajpath.2023.01.003] [Reference Citation Analysis]
2 Yang GN, Roberts PK, Gardner-Russell J, Shah MH, Couper TA, Zhu Z, Pollock GA, Dusting GJ, Daniell M. From bench to clinic: Emerging therapies for corneal scarring. Pharmacol Ther 2023;242:108349. [PMID: 36682466 DOI: 10.1016/j.pharmthera.2023.108349] [Reference Citation Analysis]
3 Patnam M, Dommaraju SR, Masood F, Herbst P, Chang JH, Hu WY, Rosenblatt MI, Azar DT. Lymphangiogenesis Guidance Mechanisms and Therapeutic Implications in Pathological States of the Cornea. Cells 2023;12. [PMID: 36672254 DOI: 10.3390/cells12020319] [Reference Citation Analysis]
4 Zhou T, Yan K, Zhang Y, Zhu L, Liao Y, Zheng X, Chen Y, Li X, Liu Z, Zhang Z. Fenofibrate suppresses corneal neovascularization by regulating lipid metabolism through PPARα signaling pathway. Front Pharmacol 2022;13:1000254. [PMID: 36588740 DOI: 10.3389/fphar.2022.1000254] [Reference Citation Analysis]
5 Yi K, Yang Y, Yuan Y, Xiang Y, Zhou S. Impaired Autophagy Causes Severe Corneal Neovascularization. Cells 2022;11. [PMID: 36497153 DOI: 10.3390/cells11233895] [Reference Citation Analysis]
6 Cui Y, Huo Y, Li Z, Qiu Y, Yang Q, Chen Z, Fan S, Huang X, Hao J, Kang L, Liang G. VEGF-targeted scFv inhibits corneal neovascularization via STAT3 pathway in alkali burn model. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022. [DOI: 10.1016/j.colsurfa.2022.130764] [Reference Citation Analysis]
7 Thomas MB, Selvam S, Agrawal P, Bellur P, Waghmare N, Chowdhury SK, Selvakumar K, Singh A, Tiwari A, Gour A, Sangwan VS, Bhowmick T, Chandru A. Print me a cornea - Are we there yet? Bioprinting 2022;28:e00227. [DOI: 10.1016/j.bprint.2022.e00227] [Reference Citation Analysis]
8 Jin H, Yang B, Jiang D, Ding Z, Xiong Y, Zeng X. Inhibitory effect of anti-Scg3 on corneal neovascularization: a preliminary study. BMC Ophthalmol 2022;22:455. [PMID: 36443679 DOI: 10.1186/s12886-022-02690-7] [Reference Citation Analysis]
9 Zhang C, Yin Y, Zhao J, Li Y, Wang Y, Zhang Z, Niu L, Zheng Y. An Update on Novel Ocular Nanosystems with Possible Benefits in the Treatment of Corneal Neovascularization. Int J Nanomedicine 2022;17:4911-31. [PMID: 36267540 DOI: 10.2147/IJN.S375570] [Reference Citation Analysis]
10 Huang W, Wang L, Yang R, Hu R, Zheng Q, Zan X. Combined delivery of small molecule and protein drugs as synergistic therapeutics for treating corneal neovascularization by a one-pot coassembly strategy. Mater Today Bio 2022;17:100456. [PMID: 36281304 DOI: 10.1016/j.mtbio.2022.100456] [Reference Citation Analysis]
11 Huang Y, Lin L, Yang Y, Duan F, Yuan M, Lou B, Lin X. Effect of Tauroursodeoxycholic Acid on Inflammation after Ocular Alkali Burn. IJMS 2022;23:11717. [DOI: 10.3390/ijms231911717] [Reference Citation Analysis]
12 Wilson SE. Magic Bullets: The Coming Age of Meaningful Pharmacological Control of the Corneal Responses to Injury and Disease. J Ocul Pharmacol Ther 2022. [PMID: 36161879 DOI: 10.1089/jop.2022.0088] [Reference Citation Analysis]
13 Delgado-tirado S, Gonzalez-buendia L, An M, Amarnani D, Isaacs-bernal D, Whitmore H, Arevalo-alquichire S, Leyton-cifuentes D, Ruiz-moreno JM, Arboleda-velasquez JF, Kim LA. Topical Nanoemulsion of an Runt-related Transcription Factor 1 Inhibitor for the Treatment of Pathologic Ocular Angiogenesis. Ophthalmology Science 2022;2:100163. [DOI: 10.1016/j.xops.2022.100163] [Reference Citation Analysis]
14 Zhang X, Wang G, Wang Q, Jiang R. Dexamethasone and MicroRNA-204 Inhibit Corneal Neovascularization. Mil Med 2022:usac260. [PMID: 36043264 DOI: 10.1093/milmed/usac260] [Reference Citation Analysis]
15 Luisi J, Lin JL, Karediya N, Kraft ER, Sharifi A, Schmitz-Brown ME, Zhang W, Ameredes BT, Merkley KH, Motamedi M, Gupta PK. Concentration-associated pathology of alkali burn in a mouse model using anterior segment optical coherence tomography with angiography. Exp Eye Res 2022;223:109210. [PMID: 35987418 DOI: 10.1016/j.exer.2022.109210] [Reference Citation Analysis]
16 Shi H, Zhu Y, Xing C, Li S, Bao Z, Lei L, Lin D, Wang Y, Chen H, Xu X. An injectable thermosensitive hydrogel for dual delivery of diclofenac and Avastin® to effectively suppress inflammatory corneal neovascularization. International Journal of Pharmaceutics 2022. [DOI: 10.1016/j.ijpharm.2022.122081] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Fernandes AR, Vidal LB, Sánchez-López E, Dos Santos T, Granja PL, Silva AM, Garcia ML, Souto EB. Customized cationic nanoemulsions loading triamcinolone acetonide for corneal neovascularization secondary to inflammatory processes. Int J Pharm 2022;623:121938. [PMID: 35728716 DOI: 10.1016/j.ijpharm.2022.121938] [Reference Citation Analysis]
18 Gupta N, Varshney A, Ramappa M, Basu S, Romano V, Acharya M, Gaur A, Kapur N, Singh A, Shah G, Chaudhary I, Patel N, Tiwari A, Kate A, Sangwan V, Mathur U. Role of AS-OCT in Managing Corneal Disorders. Diagnostics 2022;12:918. [DOI: 10.3390/diagnostics12040918] [Reference Citation Analysis]
19 Luo Q, Yang J, Xu H, Shi J, Liang Z, Zhang R, Lu P, Pu G, Zhao N, Zhang J. Sorafenib-loaded nanostructured lipid carriers for topical ocular therapy of corneal neovascularization: development, in-vitro and in vivo study. Drug Delivery 2022;29:837-55. [DOI: 10.1080/10717544.2022.2048134] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Lin J, Luisi J, Karediya N, Kraft ER, Sharifi A, Schmitz-brown ME, Merkley KH, Gupta P, Motamedi M. Anterior segment optical coherence tomography (AS-OCT) for the visualization and quantification of dose-dependent ocular toxicity. Ophthalmic Technologies XXXII 2022. [DOI: 10.1117/12.2608329] [Reference Citation Analysis]
21 Wang JH, Tseng CL, Lin FL, Chen J, Hsieh EH, Lama S, Chuang YF, Kumar S, Zhu L, McGuinness MB, Hernandez J, Tu L, Wang PY, Liu GS. Topical application of TAK1 inhibitor encapsulated by gelatin particle alleviates corneal neovascularization. Theranostics 2022;12:657-74. [PMID: 34976206 DOI: 10.7150/thno.65098] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Lin X, Yu X, Chen X, Sheng S, Wang J, Wang B, Xu W. Inhibition of Neovascularization and Inflammation in a Mouse Model of Corneal Alkali Burns Using Cationic Liposomal Tacrolimus. Front Bioeng Biotechnol 2021;9:791954. [PMID: 34950647 DOI: 10.3389/fbioe.2021.791954] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Chen J, Ding X, Du W, Tang X, Yu WZ. Inhibition of corneal neovascularization by topical application of nintedanib in rabbit models. Int J Ophthalmol 2021;14:1666-73. [PMID: 34804855 DOI: 10.18240/ijo.2021.11.04] [Reference Citation Analysis]
24 Tan Y, Zhang M, Pan Y, Feng H, Xie L. Suppression of the caspase-1/GSDMD-mediated pyroptotic signaling pathway through dexamethasone alleviates corneal alkali injuries. Exp Eye Res 2021;214:108858. [PMID: 34822855 DOI: 10.1016/j.exer.2021.108858] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Zhong Y, Wang K, Zhang Y, Yin Q, Li S, Wang J, Zhang X, Han H, Yao K. Ocular Wnt/β-Catenin Pathway Inhibitor XAV939-Loaded Liposomes for Treating Alkali-Burned Corneal Wound and Neovascularization. Front Bioeng Biotechnol 2021;9:753879. [PMID: 34765592 DOI: 10.3389/fbioe.2021.753879] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
26 Li Q, Wu X, Xin M. Strengthened rebamipide ocular nanoformulation to effectively treat corneal alkali burns in mice through the HMGB1 signaling pathway. Exp Eye Res 2021;213:108824. [PMID: 34742693 DOI: 10.1016/j.exer.2021.108824] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Su W, Sun S, Tian B, Tai PWL, Luo Y, Ko J, Zhan W, Ke X, Zheng Q, Li X, Yan H, Gao G, Lin H. Efficacious, safe, and stable inhibition of corneal neovascularization by AAV-vectored anti-VEGF therapeutics. Mol Ther Methods Clin Dev 2021;22:107-21. [PMID: 34514023 DOI: 10.1016/j.omtm.2021.06.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
28 Lyu N, Zhao Y, Xiang J, Fan X, Huang C, Sun X, Xu J, Xu ZP, Sun J. Inhibiting corneal neovascularization by sustainably releasing anti-VEGF and anti-inflammation drugs from silica-thermogel nanohybrids. Mater Sci Eng C Mater Biol Appl 2021;128:112274. [PMID: 34474833 DOI: 10.1016/j.msec.2021.112274] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Liu S, Gao J, Chen J. Knockdown of lncRNA TUG1 suppresses corneal angiogenesis through regulating miR-505-3p/VEGFA. Microvasc Res 2021;138:104233. [PMID: 34411571 DOI: 10.1016/j.mvr.2021.104233] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
30 Choi YJ, Han GL, Chung TY, Lim DH. Two Cases of Corneal Neovascularization Treatment Using High-frequency Radio Wave Electrosurgery. J Korean Ophthalmol Soc 2021;62:1129-34. [DOI: 10.3341/jkos.2021.62.8.1129] [Reference Citation Analysis]
31 Behera G, Mani M, Jacob NP, Vanathi M. Crystalline lipid keratopathy in anterior sclerokeratitis. BMJ Case Rep 2021;14:e244353. [PMID: 34326121 DOI: 10.1136/bcr-2021-244353] [Reference Citation Analysis]
32 Moreno-Montañés J, Bleau AM, Martínez T, Vargas B, González MV, Jiménez AI. siRNA Therapeutics in Ocular Diseases. Methods Mol Biol 2021;2282:417-42. [PMID: 33928588 DOI: 10.1007/978-1-0716-1298-9_23] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 Sun Y, Lin Q, Miao S, Wang W, Pan Z. Analysis of Graft Failure After Primary Penetrating Keratoplasty in Children With Peters Anomaly. Cornea 2020;39:961-7. [PMID: 32251169 DOI: 10.1097/ICO.0000000000002331] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
34 Lui KH, Li S, Lo WS, Gu Y, Wong WT. In vivo photoacoustic imaging for monitoring treatment outcome of corneal neovascularization with metformin eye drops. Biomed Opt Express 2021;12:3597-606. [PMID: 34221681 DOI: 10.1364/BOE.423982] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Wang Y, Gao Y, Huang Y, Pan Y, Yu Y, Zhou Y, Wan SS, Yang YN. The potential protective effects of miR-497 on corneal neovascularization are mediated via macrophage through the IL-6/STAT3/VEGF signaling pathway. Int Immunopharmacol 2021;96:107745. [PMID: 33984719 DOI: 10.1016/j.intimp.2021.107745] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
36 Matthaei M, Hos D, Bock F, Le VNH, Hou Y, Schaub F, Siebelmann S, Zhang W, Roters S, Bachmann BO, Cursiefen C. [Preconditioning of vascularized high-risk eyes using fine-needle diathermy and cross-linking]. Ophthalmologe 2021;118:553-60. [PMID: 33961088 DOI: 10.1007/s00347-021-01415-3] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
37 Balne PK, Gupta S, Zhang J, Bristow D, Faubion M, Heil SD, Sinha PR, Green SL, Iozzo RV, Mohan RR. The functional role of decorin in corneal neovascularization in vivo. Exp Eye Res 2021;207:108610. [PMID: 33940009 DOI: 10.1016/j.exer.2021.108610] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
38 Zhu Y, Reinach PS, Ge C, Li Y, Wu B, Xie Q, Tong L, Chen W. Corneal Collagen Cross-Linking Pretreatment Mitigates Injury-Induced Inflammation, Hemangiogenesis and Lymphangiogenesis In Vivo. Transl Vis Sci Technol 2021;10:11. [PMID: 34550310 DOI: 10.1167/tvst.10.5.11] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
39 Pourjabbar B, Biazar E, Heidari Keshel S, Ahani-nahayati M, Baradaran-rafii A, Roozafzoon R, Alemzadeh-ansari MH. Bio-polymeric hydrogels for regeneration of corneal epithelial tissue*. International Journal of Polymeric Materials and Polymeric Biomaterials 2022;71:797-815. [DOI: 10.1080/00914037.2021.1909586] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Lužnik Z, Anchouche S, Dana R, Yin J. Regulatory T Cells in Angiogenesis. J Immunol 2020;205:2557-65. [PMID: 33168598 DOI: 10.4049/jimmunol.2000574] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
41 Borzenok SA, Malyugin BE, Gerasimov MY, Ostrovsky DS. Cultivated autologous oral mucosal epithelial transplantation. RJTAO 2021;23:171-177. [DOI: 10.15825/1995-1191-2021-1-171-177] [Reference Citation Analysis]
42 Liu Y, Shu Y, Yin L, Xie T, Zou J, Zhan P, Wang Y, Wei T, Zhu L, Yang X, Wang W, Cai J, Li Y, Yao Y, Wang X. Protective roles of the TIR/BB-loop mimetic AS-1 in alkali-induced corneal neovascularization by inhibiting ERK phosphorylation. Exp Eye Res 2021;207:108568. [PMID: 33839112 DOI: 10.1016/j.exer.2021.108568] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
43 Sella R, Ben Ishai M, Livny E, Nahum Y, Bahar I. Subconjunctival Aflibercept for the Treatment of Formed Corneal Neovascularization. Eye Contact Lens 2021;47:180-4. [PMID: 32443011 DOI: 10.1097/ICL.0000000000000709] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
44 Stapleton F, Bakkar M, Carnt N, Chalmers R, Vijay AK, Marasini S, Ng A, Tan J, Wagner H, Woods C, Wolffsohn JS. CLEAR - Contact lens complications. Contact Lens and Anterior Eye 2021;44:330-67. [DOI: 10.1016/j.clae.2021.02.010] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 13.5] [Reference Citation Analysis]
45 Morgan PB, Murphy PJ, Gifford KL, Gifford P, Golebiowski B, Johnson L, Makrynioti D, Moezzi AM, Moody K, Navascues-Cornago M, Schweizer H, Swiderska K, Young G, Willcox M. CLEAR - Effect of contact lens materials and designs on the anatomy and physiology of the eye. Cont Lens Anterior Eye 2021;44:192-219. [PMID: 33775377 DOI: 10.1016/j.clae.2021.02.006] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
46 Di Zazzo A, Gaudenzi D, Yin J, Coassin M, Fernandes M, Dana R, Bonini S. Corneal angiogenic privilege and its failure. Exp Eye Res 2021;204:108457. [PMID: 33493471 DOI: 10.1016/j.exer.2021.108457] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
47 Kwon HJ, Chung HS, Lee YM, Kim YJ, Ko B, Kim HS, Chung T, Hyon JY, Tchah H. Patients at High Risk for Failure of Penetrating Keratoplasty. J Korean Ophthalmol Soc 2021;62:12-20. [DOI: 10.3341/jkos.2021.62.1.12] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
48 Yu J, Chu C, Wu Y, Liu G, Li W. The phototherapy toward corneal neovascularization elimination: An efficient, selective and safe strategy. Chinese Chemical Letters 2021;32:99-101. [DOI: 10.1016/j.cclet.2020.11.025] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
49 Ang M, Ting DSJ, Sng CCA, Schmetterer L. Anterior Segment OCT: Angiography. Essentials in Ophthalmology 2021. [DOI: 10.1007/978-3-030-53374-8_5] [Reference Citation Analysis]
50 Li Q, Yang X, Zhang P, Mo F, Si P, Kang X, Wang M, Zhang J. Dasatinib loaded nanostructured lipid carriers for effective treatment of corneal neovascularization. Biomater Sci 2021;9:2571-83. [DOI: 10.1039/d0bm01599g] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
51 Qin Y, Yu Y, Fu J, Xie X, Wang T, Woodward MA, Paulus YM, Yang X, Wang X. Photo-Mediated Ultrasound Therapy for the Treatment of Corneal Neovascularization in Rabbit Eyes. Transl Vis Sci Technol 2020;9:16. [PMID: 33344060 DOI: 10.1167/tvst.9.13.16] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
52 Nicholas MP, Mysore N. Corneal neovascularization. Exp Eye Res 2021;202:108363. [PMID: 33221371 DOI: 10.1016/j.exer.2020.108363] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 9.0] [Reference Citation Analysis]
53 Kamil S, Mohan RR. Corneal stromal wound healing: Major regulators and therapeutic targets. Ocul Surf 2021;19:290-306. [PMID: 33127599 DOI: 10.1016/j.jtos.2020.10.006] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
54 Giannaccare G, Pellegrini M, Bovone C, Spena R, Senni C, Scorcia V, Busin M. Anti-VEGF Treatment in Corneal Diseases. Curr Drug Targets 2020;21:1159-80. [PMID: 32189591 DOI: 10.2174/1389450121666200319111710] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
55 Liu H, Zhang XR, Xu HC, Ma Y, Huang LY, Zhai LY, Zhao Y. Effects of VEGF Inhibitor Conbercept on Corneal Neovascularization Following Penetrating Keratoplasty in Rabbit Model. Clin Ophthalmol 2020;14:2185-93. [PMID: 32801629 DOI: 10.2147/OPTH.S260302] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
56 Terao R, Kaneko H. Lipid Signaling in Ocular Neovascularization. Int J Mol Sci 2020;21:E4758. [PMID: 32635437 DOI: 10.3390/ijms21134758] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
57 Jin L, Zhang Y, Liang W, Lu X, Piri N, Wang W, Kaplan HJ, Dean DC, Zhang L, Liu Y. Zeb1 promotes corneal neovascularization by regulation of vascular endothelial cell proliferation. Commun Biol 2020;3:349. [PMID: 32620870 DOI: 10.1038/s42003-020-1069-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
58 Shen M, Feng Y, Wang J, Yuan Y, Yuan F. CXCR7 Inhibits Fibrosis via Wnt/β-Catenin Pathways during the Process of Angiogenesis in Human Umbilical Vein Endothelial Cells. Biomed Res Int 2020;2020:1216926. [PMID: 32566651 DOI: 10.1155/2020/1216926] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
59 Han H, Yin Q, Tang X, Yu X, Gao Q, Tang Y, Grzybowski A, Yao K, Ji J, Shentu X. Development of mucoadhesive cationic polypeptide micelles for sustained cabozantinib release and inhibition of corneal neovascularization. J Mater Chem B 2020;8:5143-54. [PMID: 32420566 DOI: 10.1039/d0tb00874e] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
60 Wang L, Wang R, Xu C, Zhou H. Pathogenesis of Herpes Stromal Keratitis: Immune Inflammatory Response Mediated by Inflammatory Regulators. Front Immunol 2020;11:766. [PMID: 32477330 DOI: 10.3389/fimmu.2020.00766] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 9.0] [Reference Citation Analysis]
61 Zhang QY, Tao SY, Lu C, Li JJ, Li XM, Yao J, Jiang Q, Yan B. SKLB1002, a potent inhibitor of VEGF receptor 2 signaling, inhibits endothelial angiogenic function in vitro and ocular angiogenesis in vivo. Mol Med Rep 2020;21:2571-9. [PMID: 32323773 DOI: 10.3892/mmr.2020.11056] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
62 Zhang J, Wang S, He Y, Yao B, Zhang Y. Regulation of matrix metalloproteinases 2 and 9 in corneal neovascularization. Chem Biol Drug Des 2020;95:485-92. [PMID: 31002472 DOI: 10.1111/cbdd.13529] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
63 Chintalapudi SR. Therapeutic Strategies for Corneal Wound Angiogenesis. Curr Pathobiol Rep 2020;8:15-24. [DOI: 10.1007/s40139-020-00206-w] [Reference Citation Analysis]
64 Ortiz G, Vacca O, Bénard R, Dupas B, Sennlaub F, Guillonneau X, Ja S, Tadayoni R, Rendon A, Giocanti-Aurégan A. Evidence of the involvement of dystrophin Dp71 in corneal angiogenesis. Mol Vis 2019;25:714-21. [PMID: 31814696] [Reference Citation Analysis]
65 Liu D, Wu Q, Zhu Y, Liu Y, Xie X, Li S, Lin H, Chen W, Zhu F. Co-delivery of metformin and levofloxacin hydrochloride using biodegradable thermosensitive hydrogel for the treatment of corneal neovascularization. Drug Deliv 2019;26:522-31. [PMID: 31090470 DOI: 10.1080/10717544.2019.1609623] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
66 Yoon HJ, Woo JM, Ji YS, Yoon KC. Comparison of the Therapeutic Efficacies of Topical Rivoceranib and Topical Bevacizumab in a Murine Model of Corneal Neovascularization. Medicina (Kaunas) 2019;55:E729. [PMID: 31703332 DOI: 10.3390/medicina55110729] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
67 Wang Y, Chodosh J. Angiography of the Limbus and Cornea. Int Ophthalmol Clin 2019;59:19-29. [PMID: 31569131 DOI: 10.1097/IIO.0000000000000283] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
68 Eslani M, Baradaran-Rafii A, Cheung AY, Djalilian AR, Holland EJ. Amniotic Membrane Transplantation in Acute Severe Ocular Chemical Injury: A Randomized Clinical Trial. Am J Ophthalmol 2019;205:203. [PMID: 31303248 DOI: 10.1016/j.ajo.2019.05.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
69 Estrella-Mendoza MF, Jiménez-Gómez F, López-Ornelas A, Pérez-Gutiérrez RM, Flores-Estrada J. Cucurbita argyrosperma Seed Extracts Attenuate Angiogenesis in a Corneal Chemical Burn Model. Nutrients 2019;11:E1184. [PMID: 31137826 DOI: 10.3390/nu11051184] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
70 Kethiri AR, Raju E, Bokara KK, Mishra DK, Basu S, Rao CM, Sangwan VS, Singh V. Inflammation, vascularization and goblet cell differences in LSCD: Validating animal models of corneal alkali burns. Exp Eye Res 2019;185:107665. [PMID: 31095932 DOI: 10.1016/j.exer.2019.05.005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
71 Sun B, Ding Y, Jin X, Xu S, Zhang H. Long non-coding RNA H19 promotes corneal neovascularization by targeting microRNA-29c. Biosci Rep 2019;39:BSR20182394. [PMID: 30948500 DOI: 10.1042/BSR20182394] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
72 Mukwaya A, Jensen L, Peebo B, Lagali N. MicroRNAs in the cornea: Role and implications for treatment of corneal neovascularization. Ocul Surf 2019;17:400-11. [PMID: 30959113 DOI: 10.1016/j.jtos.2019.04.002] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
73 Gutiérrez JG. Pathophysiology and Management of Corneal Neovascularization. Highlights of Ophthalmology 2019;47:15-25. [DOI: 10.5005/highlights-47-2-15] [Reference Citation Analysis]
74 Martin LM, Jeyabalan N, Tripathi R, Panigrahi T, Johnson PJ, Ghosh A, Mohan RR. Autophagy in corneal health and disease: A concise review. The Ocular Surface 2019;17:186-97. [DOI: 10.1016/j.jtos.2019.01.008] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
75 Ekim Y, Kara S, Gencer B, Karaca T. Efficacy of Sunitinib, Sunitinib-Hesperetin, and Sunitinib-Doxycycline Combinations on Experimentally-Induced Corneal Neovascularization. Curr Eye Res 2019;44:590-8. [PMID: 30803276 DOI: 10.1080/02713683.2019.1584320] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
76 Lee WD, Devarajan K, Chua J, Schmetterer L, Mehta JS, Ang M. Optical coherence tomography angiography for the anterior segment. Eye Vis (Lond) 2019;6:4. [PMID: 30775387 DOI: 10.1186/s40662-019-0129-2] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 9.5] [Reference Citation Analysis]
77 Sharif Z, Sharif W. Corneal neovascularization: updates on pathophysiology, investigations & management. Rom J Ophthalmol 2019;63:15-22. [PMID: 31198893] [Reference Citation Analysis]
78 Okada M, Yamawaki H. A current perspective of canstatin, a fragment of type IV collagen alpha 2 chain. J Pharmacol Sci 2019;139:59-64. [PMID: 30580971 DOI: 10.1016/j.jphs.2018.12.001] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]