BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rea G, Cristofaro F, Pani G, Pascucci B, Ghuge SA, Corsetto PA, Imbriani M, Visai L, Rizzo AM. Microgravity-driven remodeling of the proteome reveals insights into molecular mechanisms and signal networks involved in response to the space flight environment. J Proteomics 2016;137:3-18. [PMID: 26571091 DOI: 10.1016/j.jprot.2015.11.005] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
Number Citing Articles
1 Low EK, Brudvik E, Kuhlman B, Wilson PF, Almeida-porada G, Porada CD. Microgravity Impairs DNA Damage Repair in Human Hematopoietic Stem/Progenitor Cells and Inhibits Their Differentiation into Dendritic Cells. Stem Cells and Development 2018;27:1257-67. [DOI: 10.1089/scd.2018.0052] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
2 Zupanska AK, Schultz ER, Yao J, Sng NJ, Zhou M, Callaham JB, Ferl RJ, Paul AL. ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight. Astrobiology 2017;17:1077-111. [PMID: 29088549 DOI: 10.1089/ast.2016.1538] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
3 Bauer J, Grimm D, Gombocz E. Semantic analysis of thyroid cancer cell proteins obtained from rare research opportunities. Journal of Biomedical Informatics 2017;76:138-53. [DOI: 10.1016/j.jbi.2017.10.011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
4 Zhang H, Chen J, Wang H, Lu X, Li K, Yang C, Wu F, Xu Z, Nie H, Ding B, Guo Z, Li Y, Wang J, Li Y, Dai Z. Serum Metabolomics Associating With Circulating MicroRNA Profiles Reveal the Role of miR-383-5p in Rat Hippocampus Under Simulated Microgravity. Front Physiol 2020;11:939. [PMID: 33013433 DOI: 10.3389/fphys.2020.00939] [Reference Citation Analysis]
5 Tascher G, Brioche T, Maes P, Chopard A, O'Gorman D, Gauquelin-Koch G, Blanc S, Bertile F. Proteome-wide Adaptations of Mouse Skeletal Muscles during a Full Month in Space. J Proteome Res 2017;16:2623-38. [PMID: 28590761 DOI: 10.1021/acs.jproteome.7b00201] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
6 Ott E, Fuchs FM, Moeller R, Hemmersbach R, Kawaguchi Y, Yamagishi A, Weckwerth W, Milojevic T. Molecular response of Deinococcus radiodurans to simulated microgravity explored by proteometabolomic approach. Sci Rep 2019;9:18462. [PMID: 31804539 DOI: 10.1038/s41598-019-54742-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
7 Bauer J, Bussen M, Wise P, Wehland M, Schneider S, Grimm D. Searching the literature for proteins facilitates the identification of biological processes, if advanced methods of analysis are linked: a case study on microgravity-caused changes in cells. Expert Review of Proteomics 2016;13:697-705. [DOI: 10.1080/14789450.2016.1197775] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
8 Oluwafemi FA, Neduncheran A. Analog and simulated microgravity platforms for life sciences research: Their individual capacities, benefits and limitations. Advances in Space Research 2022;69:2921-9. [DOI: 10.1016/j.asr.2022.01.007] [Reference Citation Analysis]
9 Rusanov V, Pastushkova L, Luchitskaya E, Goncharova A, Nosovsky A, Kussmaul A, Kashirina D, Nikolaev E, Orlov O, Larina I. Potential protein markers associated with the functional state of vessels prior to long-term space missions and on the first post-landing day. Acta Astronautica 2022;195:226-33. [DOI: 10.1016/j.actaastro.2022.02.020] [Reference Citation Analysis]
10 Buravkova L, Larina I, Andreeva E, Grigoriev A. Microgravity Effects on the Matrisome. Cells 2021;10:2226. [PMID: 34571874 DOI: 10.3390/cells10092226] [Reference Citation Analysis]
11 Stankovic B. Plants in Space. In: Russomano T, Rehnberg L, editors. Into Space - A Journey of How Humans Adapt and Live in Microgravity. InTech; 2018. [DOI: 10.5772/intechopen.74230] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
12 Fu X, Liu G, Halim A, Ju Y, Luo Q, Song AG. Mesenchymal Stem Cell Migration and Tissue Repair. Cells. 2019;8. [PMID: 31357692 DOI: 10.3390/cells8080784] [Cited by in Crossref: 107] [Cited by in F6Publishing: 113] [Article Influence: 35.7] [Reference Citation Analysis]
13 Calzia D, Ottaggio L, Cora A, Chiappori G, Cuccarolo P, Cappelli E, Izzotti A, Tavella S, Degan P. Characterization of C2C12 cells in simulated microgravity: Possible use for myoblast regeneration. J Cell Physiol 2020;235:3508-18. [PMID: 31549411 DOI: 10.1002/jcp.29239] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
14 Jorrin-novo JV, Komatsu S, Sanchez-lucas R, Rodríguez de Francisco LE. Gel electrophoresis-based plant proteomics: Past, present, and future. Happy 10th anniversary Journal of Proteomics! Journal of Proteomics 2019;198:1-10. [DOI: 10.1016/j.jprot.2018.08.016] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
15 Lee NN, Fritz J, Fries MD, Gil JF, Beck A, Pellinen-wannberg A, Schmitz B, Steele A, Hofmann BA. The Extreme Biology of Meteorites: Their Role in Understanding the Origin and Distribution of Life on Earth and in the Universe. In: Stan-lotter H, Fendrihan S, editors. Adaption of Microbial Life to Environmental Extremes. Cham: Springer International Publishing; 2017. pp. 283-325. [DOI: 10.1007/978-3-319-48327-6_11] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
16 Kononikhin AS, Starodubtseva NL, Pastushkova LK, Kashirina DN, Fedorchenko KY, Brhozovsky AG, Popov IA, Larina IM, Nikolaev EN. Spaceflight induced changes in the human proteome. Expert Rev Proteomics 2017;14:15-29. [PMID: 27817217 DOI: 10.1080/14789450.2017.1258307] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
17 Quynh Chi HN, Nghia Son H, Chinh Chung D, Huan LD, Hong Diem T, Long LT. Simulated microgravity reduces proliferation and reorganizes the cytoskeleton of human umbilical cord mesenchymal stem cells. Physiol Res 2020;69:897-906. [PMID: 32901501 DOI: 10.33549/physiolres.934472] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Coulombe JC, Senwar B, Ferguson VL. Spaceflight-Induced Bone Tissue Changes that Affect Bone Quality and Increase Fracture Risk. Curr Osteoporos Rep 2020;18:1-12. [PMID: 31897866 DOI: 10.1007/s11914-019-00540-y] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Kim H, Park B, Park H, Choi I, Rhee M. Low-shear modeled microgravity affects metabolic networks of Escherichia coli O157:H7 EDL933: Further insights into space-microbiology consequences. Food Research International 2022;154:111013. [DOI: 10.1016/j.foodres.2022.111013] [Reference Citation Analysis]
20 Pastushkova LC, Goncharova AG, Kashirina DN, Goncharov IN, Rukavishnikov IV, Brzhozovskiy AG, Kononikhin AS, Koloteva MI, Tomilovskaya ES, Nikolaev EN, Larina IM. Characteristics of blood proteome changes in hemorrhagic syndrome after head-up tilt test during 21-day Dry Immersion. Acta Astronautica 2021;189:158-65. [DOI: 10.1016/j.actaastro.2021.08.044] [Reference Citation Analysis]
21 Turko AJ, Kültz D, Fudge D, Croll RP, Smith FM, Stoyek MR, Wright PA. Skeletal stiffening in an amphibious fish out of water is a response to increased body weight. J Exp Biol 2017;220:3621-31. [PMID: 29046415 DOI: 10.1242/jeb.161638] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
22 Karouia F, Peyvan K, Pohorille A. Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth. Biotechnol Adv 2017;35:905-32. [PMID: 28433608 DOI: 10.1016/j.biotechadv.2017.04.003] [Cited by in Crossref: 30] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
23 Jiang N, Chen Z, Li B, Guo S, Li A, Zhang T, Fu X, Si S, Cui Y. Effects of rotary cell culture system‐simulated microgravity on the ultrastructure and biological behavior of human MDA‐MB‐231 breast cancer cells. Prec Radiat Oncol 2019;3:87-93. [DOI: 10.1002/pro6.1074] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Casaburi G, Goncharenko-Foster I, Duscher AA, Foster JS. Transcriptomic changes in an animal-bacterial symbiosis under modeled microgravity conditions. Sci Rep 2017;7:46318. [PMID: 28393904 DOI: 10.1038/srep46318] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]