BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zheng N, Zhang P, Huang H, Liu W, Hayashi T, Zang L, Zhang Y, Liu L, Xia M, Tashiro S, Onodera S, Ikejima T. ERα down-regulation plays a key role in silibinin-induced autophagy and apoptosis in human breast cancer MCF-7 cells. J Pharmacol Sci 2015;128:97-107. [PMID: 26117209 DOI: 10.1016/j.jphs.2015.05.001] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Jovankić JV, Nikodijević DD, Milutinović MG, Nikezić AG, Kojić VV, Cvetković AM, Cvetković DM. Potential of Orlistat to induce apoptotic and antiangiogenic effects as well as inhibition of fatty acid synthesis in breast cancer cells. Eur J Pharmacol 2023;939:175456. [PMID: 36528070 DOI: 10.1016/j.ejphar.2022.175456] [Reference Citation Analysis]
2 Kiyama R. Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2022;114:109250. [PMID: 36509337 DOI: 10.1016/j.jnutbio.2022.109250] [Reference Citation Analysis]
3 Vachetta VS, Marder M, Troncoso MF, Elola MT. Opportunities, obstacles and current challenges of flavonoids for luminal and triple-negative breast cancer therapy. European Journal of Medicinal Chemistry Reports 2022;6:100077. [DOI: 10.1016/j.ejmcr.2022.100077] [Reference Citation Analysis]
4 Solanki R, Jodha B, Prabina KE, Aggarwal N, Patel S. Recent advances in phytochemical based nano-drug delivery systems to combat breast cancer: A review. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103832] [Reference Citation Analysis]
5 Bai Y, Chen J, Hu W, Wang L, Wu Y, Yu S. Silibinin Therapy Improves Cholangiocarcinoma Outcomes by Regulating ERK/Mitochondrial Pathway. Front Pharmacol 2022;13:847905. [DOI: 10.3389/fphar.2022.847905] [Reference Citation Analysis]
6 Yüksel TN, Bozgeyik E, Yayla M. THE EFFECT OF QUERCETIN AND QUERCETIN-3-D-XYLOSIDE ON BREAST CANCER PROLIFERATION AND MIGRATION. Journal of Basic and Clinical Health Sciences. [DOI: 10.30621/jbachs.1056769] [Reference Citation Analysis]
7 Liu R, Liu L, Bian Y, Zhang S, Wang Y, Chen H, Jiang X, Li G, Chen Q, Xue C, Li M, Liu L, Liu X, Ma S. The Dual Regulation Effects of ESR1/NEDD4L on SLC7A11 in Breast Cancer Under Ionizing Radiation. Front Cell Dev Biol 2021;9:772380. [PMID: 35252218 DOI: 10.3389/fcell.2021.772380] [Reference Citation Analysis]
8 Koltai T, Fliegel L. Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions. J Evid Based Integr Med 2022;27:2515690X211068826. [PMID: 35018864 DOI: 10.1177/2515690X211068826] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Brimson JM, Prasanth MI, Malar DS, Thitilertdecha P, Kabra A, Tencomnao T, Prasansuklab A. Plant Polyphenols for Aging Health: Implication from Their Autophagy Modulating Properties in Age-Associated Diseases. Pharmaceuticals (Basel) 2021;14:982. [PMID: 34681206 DOI: 10.3390/ph14100982] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
10 Binienda A, Ziolkowska S, Pluciennik E. The Anticancer Properties of Silibinin: Its Molecular Mechanism and Therapeutic Effect in Breast Cancer. Anticancer Agents Med Chem 2020;20:1787-96. [PMID: 31858905 DOI: 10.2174/1871520620666191220142741] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
11 Hou Z, Yao G, Song S. Daphnane-type diterpenes from genus Daphne and their anti-tumor activity. Chinese Herbal Medicines 2021;13:145-56. [DOI: 10.1016/j.chmed.2020.09.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
12 Liu W, Wang F, Li C, Otkur W, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Onodera S, Ikejima T. Silibinin treatment protects human skin cells from UVB injury through upregulation of estrogen receptors. J Photochem Photobiol B 2021;216:112147. [PMID: 33561689 DOI: 10.1016/j.jphotobiol.2021.112147] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
13 Şöhretoğlu D, Arroo R, Sari S, Huang S. Flavonoids as Inducers of Apoptosis and Autophagy in Breast Cancer. Discovery and Development of Anti-Breast Cancer Agents from Natural Products 2021. [DOI: 10.1016/b978-0-12-821277-6.00007-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Kaipa JM, Starkuviene V, Erfle H, Eils R, Gladilin E. Transcriptome profiling reveals Silibinin dose-dependent response network in non-small lung cancer cells. PeerJ 2020;8:e10373. [PMID: 33362957 DOI: 10.7717/peerj.10373] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
15 Hussain A, Bourguet-kondracki M, Hussain F, Rauf A, Ibrahim M, Khalid M, Hussain H, Hussain J, Ali I, Khalil AA, Alhumaydhi FA, Khan M, Hussain R, Rengasamy KRR. The potential role of dietary plant ingredients against mammary cancer: a comprehensive review. Critical Reviews in Food Science and Nutrition. [DOI: 10.1080/10408398.2020.1855413] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
16 Nawaz Q, Fuentes-chandía M, Tharmalingam V, Ur Rehman MA, Leal-egaña A, Boccaccini AR. Silibinin releasing mesoporous bioactive glass nanoparticles with potential for breast cancer therapy. Ceramics International 2020;46:29111-9. [DOI: 10.1016/j.ceramint.2020.08.083] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
17 Tuli HS, Mittal S, Aggarwal D, Parashar G, Parashar NC, Upadhyay SK, Barwal TS, Jain A, Kaur G, Savla R, Sak K, Kumar M, Varol M, Iqubal A, Sharma AK. Path of Silibinin from diet to medicine: A dietary polyphenolic flavonoid having potential anti-cancer therapeutic significance. Semin Cancer Biol 2021;73:196-218. [PMID: 33130037 DOI: 10.1016/j.semcancer.2020.09.014] [Cited by in Crossref: 15] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
18 Mashhadi Akbar Boojar M, Mashhadi Akbar Boojar M, Golmohammad S. Overview of Silibinin anti-tumor effects. Journal of Herbal Medicine 2020;23:100375. [DOI: 10.1016/j.hermed.2020.100375] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
19 Liu W, Ji Y, Sun Y, Si L, Fu J, Hayashi T, Onodera S, Ikejima T. Estrogen receptors participate in silibinin-caused nuclear translocation of apoptosis-inducing factor in human breast cancer MCF-7 cells. Archives of Biochemistry and Biophysics 2020;689:108458. [DOI: 10.1016/j.abb.2020.108458] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
20 Wang J, Zhang X, Zhang L, Yan T, Wu B, Xu F, Jia Y. Silychristin A activates Nrf2-HO-1/SOD2 pathway to reduce apoptosis and improve GLP-1 production through upregulation of estrogen receptor α in GLUTag cells. Eur J Pharmacol 2020;881:173236. [PMID: 32497626 DOI: 10.1016/j.ejphar.2020.173236] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
21 Chu C, Gao X, Li X, Zhang X, Ma R, Jia Y, Li D, Wang D, Xu F. Involvement of Estrogen Receptor-α in the Activation of Nrf2-Antioxidative Signaling Pathways by Silibinin in Pancreatic β-Cells. Biomol Ther (Seoul) 2020;28:163-71. [PMID: 31649209 DOI: 10.4062/biomolther.2019.071] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
22 Si L, Fu J, Liu W, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Onodera S, Ikejima T. Silibinin-induced mitochondria fission leads to mitophagy, which attenuates silibinin-induced apoptosis in MCF-7 and MDA-MB-231 cells. Arch Biochem Biophys 2020;685:108284. [PMID: 32014401 DOI: 10.1016/j.abb.2020.108284] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
23 Madkour LH. Antioxidants, Therapeutic Options, and Regulation of the Immune Responses. Nanoparticles Induce Oxidative and Endoplasmic Reticulum Stresses 2020. [DOI: 10.1007/978-3-030-37297-2_13] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
24 Kong Y, Feng Z, Chen A, Qi Q, Han M, Wang S, Zhang Y, Zhang X, Yang N, Wang J, Huang B, Zhang Q, Xiang G, Li W, Zhang D, Wang J, Li X. The Natural Flavonoid Galangin Elicits Apoptosis, Pyroptosis, and Autophagy in Glioblastoma. Front Oncol 2019;9:942. [PMID: 31612107 DOI: 10.3389/fonc.2019.00942] [Cited by in Crossref: 47] [Cited by in F6Publishing: 54] [Article Influence: 11.8] [Reference Citation Analysis]
25 Si L, Liu W, Hayashi T, Ji Y, Fu J, Nie Y, Mizuno K, Hattori S, Onodera S, Ikejima T. Silibinin-induced apoptosis of breast cancer cells involves mitochondrial impairment. Arch Biochem Biophys 2019;671:42-51. [PMID: 31085166 DOI: 10.1016/j.abb.2019.05.009] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
26 Ju S, Liang Z, Li C, Ding C, Xu C, Song X, Zhao J. The effect and mechanism of miR-210 in down-regulating the autophagy of lung cancer cells. Pathology - Research and Practice 2019;215:453-8. [DOI: 10.1016/j.prp.2018.12.018] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
27 Razak NA, Abu N, Ho WY, Zamberi NR, Tan SW, Alitheen NB, Long K, Yeap SK. Cytotoxicity of eupatorin in MCF-7 and MDA-MB-231 human breast cancer cells via cell cycle arrest, anti-angiogenesis and induction of apoptosis. Sci Rep 2019;9:1514. [PMID: 30728391 DOI: 10.1038/s41598-018-37796-w] [Cited by in Crossref: 65] [Cited by in F6Publishing: 72] [Article Influence: 16.3] [Reference Citation Analysis]
28 Yang J, Wen L, Jiang Y, Yang B. Natural Estrogen Receptor Modulators and Their Heterologous Biosynthesis. Trends Endocrinol Metab 2019;30:66-76. [PMID: 30527917 DOI: 10.1016/j.tem.2018.11.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
29 Liu X, Xu Q, Long X, Liu W, Zhao Y, Hayashi T, Hattori S, Fujisaki H, Ogura T, Tashiro S, Onodera S, Yamato M, Ikejima T. Silibinin-induced autophagy mediated by PPARα-sirt1-AMPK pathway participated in the regulation of type I collagen-enhanced migration in murine 3T3-L1 preadipocytes. Mol Cell Biochem 2019;450:1-23. [DOI: 10.1007/s11010-018-3368-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
30 Draz H, Goldberg AA, Tomlinson Guns ES, Fazli L, Safe S, Sanderson JT. Autophagy inhibition improves the chemotherapeutic efficacy of cruciferous vegetable-derived diindolymethane in a murine prostate cancer xenograft model. Invest New Drugs 2018;36:718-25. [PMID: 29607466 DOI: 10.1007/s10637-018-0595-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
31 Yang J, Sun Y, Xu F, Liu W, Hayashi T, Onodera S, Tashiro SI, Ikejima T. Involvement of estrogen receptors in silibinin protection of pancreatic β-cells from TNFα- or IL-1β-induced cytotoxicity. Biomed Pharmacother 2018;102:344-53. [PMID: 29571019 DOI: 10.1016/j.biopha.2018.01.128] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
32 Younas M, Hano C, Giglioli-guivarc'h N, Abbasi BH. Mechanistic evaluation of phytochemicals in breast cancer remedy: current understanding and future perspectives. RSC Adv 2018;8:29714-44. [DOI: 10.1039/c8ra04879g] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 6.4] [Reference Citation Analysis]
33 Park Y, Woo SH, Seo SK, Kim H, Noh WC, Lee JK, Kwon BM, Min KN, Choe TB, Park IC. Ginkgetin induces cell death in breast cancer cells via downregulation of the estrogen receptor. Oncol Lett 2017;14:5027-33. [PMID: 29085516 DOI: 10.3892/ol.2017.6742] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
34 Egea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, Pavićević A, Pedre B, Peyrot F, Phylactides M, Pircalabioru GG, Pitt AR, Poulsen HE, Prieto I, Rigobello MP, Robledinos-Antón N, Rodríguez-Mañas L, Rolo AP, Rousset F, Ruskovska T, Saraiva N, Sasson S, Schröder K, Semen K, Seredenina T, Shakirzyanova A, Smith GL, Soldati T, Sousa BC, Spickett CM, Stancic A, Stasia MJ, Steinbrenner H, Stepanić V, Steven S, Tokatlidis K, Tuncay E, Turan B, Ursini F, Vacek J, Vajnerova O, Valentová K, Van Breusegem F, Varisli L, Veal EA, Yalçın AS, Yelisyeyeva O, Žarković N, Zatloukalová M, Zielonka J, Touyz RM, Papapetropoulos A, Grune T, Lamas S, Schmidt HHHW, Di Lisa F, Daiber A. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 2017;13:94-162. [PMID: 28577489 DOI: 10.1016/j.redox.2017.05.007] [Cited by in Crossref: 194] [Cited by in F6Publishing: 201] [Article Influence: 32.3] [Reference Citation Analysis]
35 Zheng N, Liu L, Liu WW, Li F, Hayashi T, Tashiro SI, Onodera S, Ikejima T. Crosstalk of ROS/RNS and autophagy in silibinin-induced apoptosis of MCF-7 human breast cancer cells in vitro. Acta Pharmacol Sin 2017;38:277-89. [PMID: 27867187 DOI: 10.1038/aps.2016.117] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
36 Jiang C, Jin S, Jiang Z, Wang J. Inhibitory effects of silibinin on proliferation and lung metastasis of human high metastasis cell line of salivary gland adenoid cystic carcinoma via autophagy induction. Onco Targets Ther 2016;9:6609-18. [PMID: 27822066 DOI: 10.2147/OTT.S107101] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
37 Abdal Dayem A, Choi HY, Yang GM, Kim K, Saha SK, Cho SG. The Anti-Cancer Effect of Polyphenols against Breast Cancer and Cancer Stem Cells: Molecular Mechanisms. Nutrients 2016;8:E581. [PMID: 27657126 DOI: 10.3390/nu8090581] [Cited by in Crossref: 92] [Cited by in F6Publishing: 98] [Article Influence: 13.1] [Reference Citation Analysis]
38 Cho YJ, Woo J, Lee J, Jang DS, Lee K, Choi J. Eclalbasaponin II induces autophagic and apoptotic cell death in human ovarian cancer cells. Journal of Pharmacological Sciences 2016;132:6-14. [DOI: 10.1016/j.jphs.2016.02.006] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
39 Kiyama R. Biological effects induced by estrogenic activity of lignans. Trends in Food Science & Technology 2016;54:186-96. [DOI: 10.1016/j.tifs.2016.06.007] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 4.3] [Reference Citation Analysis]
40 Zhu XX, Ding YH, Wu Y, Qian LY, Zou H, He Q. Silibinin: a potential old drug for cancer therapy. Expert Rev Clin Pharmacol. 2016; 18: 1-8 Epub ahead of print. [PMID: 27362364 DOI: 10.1080/17512433.2016.1208563] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
41 Zheng N, Liu L, Liu W, Zhang P, Huang H, Zang L, Hayashi T, Tashiro S, Onodera S, Xia M, Ikejima T. ERβ up-regulation was involved in silibinin-induced growth inhibition of human breast cancer MCF-7 cells. Archives of Biochemistry and Biophysics 2016;591:141-9. [DOI: 10.1016/j.abb.2016.01.002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
42 Vriend J, Reiter RJ. Breast cancer cells: Modulation by melatonin and the ubiquitin-proteasome system – A review. Molecular and Cellular Endocrinology 2015;417:1-9. [DOI: 10.1016/j.mce.2015.09.001] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.1] [Reference Citation Analysis]
43 Wang L, Long L, Wang W, Liang Z. Resveratrol, a potential radiation sensitizer for glioma stem cells both in vitro and in vivo. Journal of Pharmacological Sciences 2015;129:216-25. [DOI: 10.1016/j.jphs.2015.11.001] [Cited by in Crossref: 39] [Cited by in F6Publishing: 42] [Article Influence: 4.9] [Reference Citation Analysis]
44 Rezaei-Seresht H, Cheshomi H, Falanji F, Movahedi-Motlagh F, Hashemian M, Mireskandari E. Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: An in silico and in vitro study. Avicenna J Phytomed 2019;9:574-86. [PMID: 31763216 DOI: 10.22038/AJP.2019.13475] [Cited by in F6Publishing: 16] [Reference Citation Analysis]