BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lamch Ł, Kulbacka J, Pietkiewicz J, Rossowska J, Dubińska-magiera M, Choromańska A, Wilk KA. Preparation and characterization of new zinc(II) phthalocyanine — Containing poly(l-lactide)-b-poly(ethylene glycol) copolymer micelles for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology 2016;160:185-97. [DOI: 10.1016/j.jphotobiol.2016.04.018] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 4.2] [Reference Citation Analysis]
Number Citing Articles
1 Wang X, Liu Y, Liu T, Mustafa F, Guan Q. Doxorubicin and Zinc phthalocyanine loaded pH-responsive FA-BSP-SA/TPGS micelles for synergistic chemo-photodynamic therapy against tumors. Journal of Drug Delivery Science and Technology 2022;76:103713. [DOI: 10.1016/j.jddst.2022.103713] [Reference Citation Analysis]
2 Dantas KCF, Rosário JDS, Silva-caldeira PP. Polymeric Nanosystems Applied for Metal-Based Drugs and Photosensitizers Delivery: The State of the Art and Recent Advancements. Pharmaceutics 2022;14:1506. [DOI: 10.3390/pharmaceutics14071506] [Reference Citation Analysis]
3 Lamch Ł, Wilk KA, Dékány I, Deák Á, Hornok V, Janovák L. Rational Mitomycin Nanocarriers Based on Hydrophobically Functionalized Polyelectrolytes and Poly(lactide-co-glycolide). Langmuir 2022. [PMID: 35442685 DOI: 10.1021/acs.langmuir.1c03360] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Gourdon L, Cariou K, Gasser G. Phototherapeutic anticancer strategies with first-row transition metal complexes: a critical review. Chem Soc Rev 2022. [PMID: 35048929 DOI: 10.1039/d1cs00609f] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
5 Obata M, Ishihara E, Hirohara S. Effect of tertiary amino groups in the hydrophobic segment of an amphiphilic block copolymer on zinc phthalocyanine encapsulation and photodynamic activity. RSC Adv 2022;12:18144-53. [DOI: 10.1039/d2ra02224a] [Reference Citation Analysis]
6 Potlog T, Lungu I, Tiuleanu P, Robu S. Photophysical Properties of Linked Zinc Phthalocyanine to Acryloyl Chloride:N-vinylpyrrolidone Copolymer. Polymers (Basel) 2021;13:4428. [PMID: 34960979 DOI: 10.3390/polym13244428] [Reference Citation Analysis]
7 Lara P, Huis In 't Veld RV, Jorquera-Cordero C, Chan AB, Ossendorp F, Cruz LJ. Zinc-Phthalocyanine-Loaded Extracellular Vesicles Increase Efficacy and Selectivity of Photodynamic Therapy in Co-Culture and Preclinical Models of Colon Cancer. Pharmaceutics 2021;13:1547. [PMID: 34683840 DOI: 10.3390/pharmaceutics13101547] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
8 Borzęcka W, Domiński A, Kowalczuk M. Recent Progress in Phthalocyanine-Polymeric Nanoparticle Delivery Systems for Cancer Photodynamic Therapy. Nanomaterials (Basel) 2021;11:2426. [PMID: 34578740 DOI: 10.3390/nano11092426] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
9 Lamch Ł, Gancarz R, Tsirigotis-Maniecka M, Moszyńska IM, Ciejka J, Wilk KA. Studying the "Rigid-Flexible" Properties of Polymeric Micelle Core-Forming Segments with a Hydrophobic Phthalocyanine Probe Using NMR and UV Spectroscopy. Langmuir 2021;37:4316-30. [PMID: 33794644 DOI: 10.1021/acs.langmuir.1c00328] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Obata M, Masuda S, Takahashi M, Yazaki K, Hirohara S. Effect of the hydrophobic segment of an amphiphilic block copolymer on micelle formation, zinc phthalocyanine loading, and photodynamic activity. European Polymer Journal 2021;147:110325. [DOI: 10.1016/j.eurpolymj.2021.110325] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
11 Couto GK, Seixas FK, Iglesias BA, Collares T. Perspectives of photodynamic therapy in biotechnology. J Photochem Photobiol B 2020;213:112051. [PMID: 33074140 DOI: 10.1016/j.jphotobiol.2020.112051] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
12 Yang M, Lu X, Tang L, Fu Y, Yang P. Thermosensitive nanocomposite gel loaded zinc phthalocyanine for photodynamic therapy. J Polym Res 2020;27. [DOI: 10.1007/s10965-020-02253-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Tokarska K, Lamch Ł, Piechota B, Żukowski K, Chudy M, Wilk KA, Brzózka Z. Co-delivery of IR-768 and daunorubicin using mPEG-b-PLGA micelles for synergistic enhancement of combination therapy of melanoma. J Photochem Photobiol B 2020;211:111981. [PMID: 32862088 DOI: 10.1016/j.jphotobiol.2020.111981] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
14 Lu X, Zhu W, Chen T, Peng Q, Yu C, Yang M. Exploration of photophysical and photochemical properties of Zinc phthalocyanine-loaded SDC/TPGS mixed micelles. Chemical Physics Letters 2019;735:136737. [DOI: 10.1016/j.cplett.2019.136737] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
15 Roguin LP, Chiarante N, García Vior MC, Marino J. Zinc(II) phthalocyanines as photosensitizers for antitumor photodynamic therapy. Int J Biochem Cell Biol 2019;114:105575. [PMID: 31362060 DOI: 10.1016/j.biocel.2019.105575] [Cited by in Crossref: 38] [Cited by in F6Publishing: 54] [Article Influence: 12.7] [Reference Citation Analysis]
16 Yu Y, Xu Q, He S, Xiong H, Zhang Q, Xu W, Ricotta V, Bai L, Zhang Q, Yu Z, Ding J, Xiao H, Zhou D. Recent advances in delivery of photosensitive metal-based drugs. Coordination Chemistry Reviews 2019;387:154-79. [DOI: 10.1016/j.ccr.2019.01.020] [Cited by in Crossref: 94] [Cited by in F6Publishing: 90] [Article Influence: 31.3] [Reference Citation Analysis]
17 Lamch Ł, Kulbacka J, Dubińska-magiera M, Saczko J, Wilk KA. Folate-directed zinc (II) phthalocyanine loaded polymeric micelles engineered to generate reactive oxygen species for efficacious photodynamic therapy of cancer. Photodiagnosis and Photodynamic Therapy 2019;25:480-91. [DOI: 10.1016/j.pdpdt.2019.02.014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 17] [Article Influence: 3.7] [Reference Citation Analysis]
18 Breitenbach BB, Steiert E, Konhäuser M, Vogt L, Wang Y, Parekh SH, Wich PR. Double stimuli-responsive polysaccharide block copolymers as green macrosurfactants for near-infrared photodynamic therapy. Soft Matter 2019;15:1423-34. [DOI: 10.1039/c8sm02204f] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
19 Lamch Ł, Pucek A, Kulbacka J, Chudy M, Jastrzębska E, Tokarska K, Bułka M, Brzózka Z, Wilk KA. Recent progress in the engineering of multifunctional colloidal nanoparticles for enhanced photodynamic therapy and bioimaging. Adv Colloid Interface Sci 2018;261:62-81. [PMID: 30262128 DOI: 10.1016/j.cis.2018.09.002] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 12.0] [Reference Citation Analysis]
20 Mesquita MQ, Dias CJ, Gamelas S, Fardilha M, Neves MGPMS, Faustino MAF. An insight on the role of photosensitizer nanocarriers for Photodynamic Therapy. An Acad Bras Cienc 2018;90:1101-30. [PMID: 29873674 DOI: 10.1590/0001-3765201720170800] [Cited by in Crossref: 48] [Cited by in F6Publishing: 57] [Article Influence: 12.0] [Reference Citation Analysis]
21 Zhao Y, Li F, Mao C, Ming X. Multiarm Nanoconjugates for Cancer Cell-Targeted Delivery of Photosensitizers. Mol Pharm 2018;15:2559-69. [PMID: 29764120 DOI: 10.1021/acs.molpharmaceut.8b00088] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
22 Shao P, Zhang S, Hu S, Han L, Jia N, Bai M. Synthesis and Evaluation of a Tetra[6,7]quinoxalinoporphyrazine-based Near Infrared Photosensitizer. RSC Adv 2017;7:50555-61. [PMID: 29456839 DOI: 10.1039/C7RA06348B] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
23 Yu W, Ye M, Zhu J, Wang Y, Liang C, Tang J, Tao H, Shen Y. Zinc phthalocyanine encapsulated in polymer micelles as a potent photosensitizer for the photodynamic therapy of osteosarcoma. Nanomedicine 2018;14:1099-110. [PMID: 29462663 DOI: 10.1016/j.nano.2018.02.005] [Cited by in Crossref: 26] [Cited by in F6Publishing: 34] [Article Influence: 6.5] [Reference Citation Analysis]
24 Obata M, Tanaka S, Mizukoshi H, Ishihara E, Takahashi M, Hirohara S. RAFT synthesis of polystyrene- block -poly(polyethylene glycol monomethyl ether acrylate) for zinc phthalocyanine-loaded polymeric micelles as photodynamic therapy photosensitizers. J Polym Sci Part A: Polym Chem 2018;56:560-70. [DOI: 10.1002/pola.28929] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
25 Deshmukh AS, Chauhan PN, Noolvi MN, Chaturvedi K, Ganguly K, Shukla SS, Nadagouda MN, Aminabhavi TM. Polymeric micelles: Basic research to clinical practice. Int J Pharm 2017;532:249-68. [PMID: 28882486 DOI: 10.1016/j.ijpharm.2017.09.005] [Cited by in Crossref: 97] [Cited by in F6Publishing: 107] [Article Influence: 19.4] [Reference Citation Analysis]
26 Cabir B, Ağırtaş MS, Duygulu E, Yuksel F. Synthesis of some metallophthalocyanines bearing 9-phenyl-9H-fluoren-9-yl) oxy functional groups and investigation of their photophysical properties. Journal of Molecular Structure 2017;1142:194-9. [DOI: 10.1016/j.molstruc.2017.04.060] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
27 Chiarante N, García Vior MC, Awruch J, Marino J, Roguin LP. Phototoxic action of a zinc(II) phthalocyanine encapsulated into poloxamine polymeric micelles in 2D and 3D colon carcinoma cell cultures. Journal of Photochemistry and Photobiology B: Biology 2017;170:140-51. [DOI: 10.1016/j.jphotobiol.2017.04.009] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
28 Wang A, Zhou R, Zhou L, Sun K, Jiang J, Wei S. Positively charged phthalocyanine-arginine conjugates as efficient photosensitizer for photodynamic therapy. Bioorganic & Medicinal Chemistry 2017;25:1643-51. [DOI: 10.1016/j.bmc.2017.01.029] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
29 Lamch Ł, Tylus W, Jewgiński M, Latajka R, Wilk KA. Location of Varying Hydrophobicity Zinc(II) Phthalocyanine-Type Photosensitizers in Methoxy Poly(ethylene oxide) and Poly(l-lactide) Block Copolymer Micelles Using 1H NMR and XPS Techniques. J Phys Chem B 2016;120:12768-80. [PMID: 27973818 DOI: 10.1021/acs.jpcb.6b10267] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
30 Karaca H. Redox chemistry, spectroelectrochemistry and catalytic activity of novel synthesized phthalocyanines bearing four schiff bases on the periphery. Journal of Organometallic Chemistry 2016;822:39-45. [DOI: 10.1016/j.jorganchem.2016.08.013] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]